
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2020

[Re] Training Binary Neural Networks using the Bayesian
Learning Rule

Prateek Garg1, ID , Lakshya Singhal1, ID , and Ashish Sardana2, ID
1Indian Institute of Technology Delhi, New Delhi, India – 2NVIDIA, Bangalore, KA, India

Edited by
Koustuv Sinha

Reviewed by
Anonymous Reviewers

Received
29 January 2021

Published
27 May 2021

DOI
10.5281/zenodo.4833681

Reproducibility Summary

Meng, Bachmann, and Khan1 gives a mathematically principled approach to solve the discrete
optimization problem that occurs in the case of BinaryNeuralNetworks and claims to give a sim-
ilar performance on various classification benchmarks such as MNIST, CIFAR-10, and CIFAR-
100 as compared to their full-precision counterparts, as well as other recent algorithms to train
BNNs like PMF and Bop. The paper also claims that the BayesBiNN method has an applica-
tion in the continual learning domain as it helps in overcoming catastrophic forgetting of the
past by using the posterior approximation of the previous task as a prior for the upcoming task.
We try to reproduce all the results presented in the original paper by making a separate and
independent codebase.

Scope of Reproducibility
We try to verify the performance of our re-implementation of the BayesBiNN optimizer
on various classification and regression benchmarks. We also implemented the STE
optimizer which was the central baseline model used in the paper. Finally, we tried to
evaluate the results of BayesBiNN on the continual learning benchmark to get a better
insight.

Methodology
We developed our separate code-base, consisting of an end-to-end trainer with a Keras-
like interface, for the reproduction which includes the implementation of the Bayes-
BiNN and STE optimizer. We did refer to the author s̓ code open-sourced on GitHub
to get some insights about the hyperparameters and other doubts that emerged during
code development.

Results
We reproduced the accuracy of the BayesBiNN optimizer within less than 0.5% of the
originally reported value, which upholds the conclusion that it performs nearly as well
as its full-precision counterpart in classification tasks. When we tried this in a seman-
tic segmentation context, we found that the results were very underwhelming and in

Copyright © 2021 P. Garg, L. Singhal and A. Sardana, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Prateek Garg (prateekgarg.iitd@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/prateekstark/training-binary-neural-network – DOI 10.5281/zenodo.4716863. – SWH
swh:1:dir:904c01b8e4ac0d4acd1f5fe667511d5a9234d8da.
Open peer review is available at https://openreview.net/forum?id=bhiGno-Cxq.

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 1

https://orcid.org/0000-0003-3162-4011
https://orcid.org/0000-0002-3461-2529
https://orcid.org/0000-0001-8716-171X
mailto:prateekgarg.iitd@gmail.com
https://github.com/prateekstark/training-binary-neural-network
http://oadoi.org/10.5281/zenodo.4716863
https://archive.softwareheritage.org/swh:1:dir:904c01b8e4ac0d4acd1f5fe667511d5a9234d8da/
https://openreview.net/forum?id=bhiGno-Cxq
https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

contrast with the seemingly good results by the STE optimizer even with much hyper-
parameter tuning. We can conclude that, like other Bayesian methods, it is difficult to
train BayesBiNN on more complex tasks.

What was easy
After we worked out the mathematics behind the BayesBiNN approach, we developed a
pseudo-code for the optimization process which alongwith references from the author s̓
code, helped us a lot in our reproduction study.

What was difficult
Some of the hyperparameters were not mentioned by the authors in their paper so it
was difficult to approximate the values of those parameters. The lack of resources was
the next big difficulty that we faced.

Communication with original authors
We had a very fruitful conversation with the authors, which helped us in better under-
standing the BayesBiNN approach and its extension to the segmentation domain. The
detailed pointers are given at the end of this report.

1 Introduction

Deep Learning is moving towards larger and larger parameters day-by-day, which often
makes it difficult to run on resource-constraint devices like mobile phones. Binary Neu-
ral Networks (BNNs) could act as a savior in such situations, helping in largely saving
storage and computational costs. The problem of optimizing this binary set of weights
is clearly a discrete optimization problem. Previous approaches like Straight-Through
Estimator (STE) and Binary Optimizer (Bop) tend to ignore this and use gradient-based
methods, which still worked in practice. The paper presents a mathematically princi-
pled approach for training BNNs which also justifies the current approaches.

2 Scope of reproducibility

The paper mentions a bayesian approach to solve the discrete optimization problem
in the case of Binary Neural Networks (BNNs). The outcome of this approach was a
BayesBiNN optimizer which could be used to train BNNs and achieve similar accuracy
as compared to their full-precision counterparts. To verify the claims given in the paper,
we target to achieve the following objectives:

• Work out and present the mathematics behind BayesBiNN in a simpler way and
prepare a pseudo-code to the optimizer.

• Implement the BayesBiNN optimizer and STE optimizer to verify the accuracy on
tasks of varying domains, as reported in the original paper.

• Reproduce the results for other baselines present in the paper such as proximal
mean-field (PMF) according to the hyper-parameters given in the paper.

• Evaluate the performance of BayesBiNN optimizer in more complex domains like
semantic segmentation.

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 2

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

3 Methodology

We have re-implemented the algorithm proposed in the paper from scratch using Py-
Torch and created an end-to-end model trainer with a Keras-like interface. We referred
to the code given by the authors for the baselinemodel hyperparameters and the source
of synthetic datasets. The algorithmpresented by the original authors in their paper can
be represented as follows:

Algorithm 1: Bayesian Learning rule for BayesBiNN
Input: Input: Initialize λ

for number of training epochs do
for i = 1,...,number of mini-batch examples do

Sample ϵ ∼ U(0, 1) and set δ = 1
2 log

ϵ
1−ϵ

Initialize wb = tanh((λ+ δ)/τ)
Compute following using gumbel-softmax trick

gi :=
1

M
∇wb

l(yi, fwr
(xi))

si :=
N(1− w2

b)

τ(1− tanh(λ)2)

end
Update µ and λ using following equation

µ← tanh(λ)

λ← (1− α)λ− α[

M∑
i=1

(si ⊙ gi)− λ0]

end

This would make the paper easier to interpret and this implementation on code. Some
of the mathematical expressions mentioned in the original paper were presented from
various sources andmissed out several intermediate steps whichwe found to be very im-
portant while reproducing the paper from scratch. Here we present a step-wise deriva-
tion of some important expressions written in the original paper:
Bayesian formulation of the discrete optimization problem, in which loss has to be min-
imized w.r.t posterior q(w), given prior p(w) can be written as:

Eq(w) [

N∑
i=1

l(yi, fw(xi))] +DKL[q(w)∥p(w)]

To solve the above optimization problem, Bayesian learning rule given in Khan and Rue2
is applied, assuming solution to be a part of minimal exponential family of distribution,
given by:

q(w) = h(w)exp[λTϕ(w)−A(λ)]

where base measure h(w) is assumed to be 1. Following is the update rule used to learn
λ:

λ← (1− ρ)λ− ρ[∇µEq(w)[l(yifw(xi))]− λ0]

where ρ is the learning rate, µ = Eq(w)[ϕ(w)]. Bernoulli distribution being a special
case of minimal exponential family distribution, we assume prior p(w) ∼ Bern(p) with

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 3

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

p = 0.5, and posterior q(w) to be mean-field Bernoulli distribution:

q(w) =

W∏
j=1

p
1+wj

2
j (1− pj)

1−wj
2

For weight j,

q(wj) = exp(
1

2
(1 + wj) log pj +

1

2
(1− wj) log(1− pj))

= exp(wj︸︷︷︸
ϕ(w)

1

2
log

p

1− p
)︸ ︷︷ ︸

λ

+
1

2
log(p(1− p))

Comparing above expression with minimal exponential family distribution, we can say:

λ =
1

2
log

p

1− p
andϕ(w) = w.

We defined µ = Eq(w)[ϕ(w)],

µ =

∫
wq(w)dw = E[q(w)] =

∑
wi∈{−1,1}

wiq(wi)

=
∑

wi∈{−1,1}

wip
1+wi

2 (1− p)
1−wi

2 = −(1− p) + p

= 2p− 1

From above derivations we can say that, p = 1/(1 + exp(−2λ)) = Sigmoid(2λ) and
q(w) ∼ Bern(p).
To implement the update rule, we need to compute the gradient with respect to µ. Origi-
nal paper uses a reparamaterization trick called gumbel-softmax trick Maddison, Mnih,
and Teh3, which is used to relax the discrete random variables of a concrete distribution
(for eg, bernoulli distribution). Binary concrete relaxation Maddison, Mnih, and Teh3

of binary concrete random variableX ∈ (0, 1) with distributionX ∼ BinConcrete(α, λ)
with temperature λ and location α,

X =
1

1 + exp(−(logα+ L)/λ)

where L ∼ Logistic. And its density is given by

pα,λ(x) =
λαx−λ−1(1− x)−λ−1

(αx−λ + (1− x)−λ)2

Using above expressions, for binary weights wj ∈ {0, 1}, relaxed variable w
ϵj ,τ
r (pj) ∈

(0, 1) can be used with temperature τ and α = e2λ given by

wϵj ,τ
r (pj) =

1

1 + exp(− 2λj+2δj
τ)

,

where δj ∼ Logistic and its density is given by

p(wϵj ,τ
r (pj)) =

τe2λw
ϵj ,τ
r (pj)

−τ−1(1− w
ϵj ,τ
r (pj))

−τ−1

(e2λw
ϵj ,τ
r (pj)−τ + (1− w

ϵj ,τ
r (pj))−τ)2

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 4

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

4 Experimental setup

4.1 Model descriptions
We kept the model architectures the same as mentioned in the original paper to main-
tain uniformity and implemented them ourselves. For the MNIST classification task we
used the BinaryConnect architecture and for the CIFAR classification task we used the
VGGBinaryConnect architecture. The authors also compared their BayesBiNN method
with the LR-Net method in Shayer, Levi, and Fetaya4. We implemented the same model
architecture as in the LR-Net paper. The detailed architectures are mentioned in the
supplementary material provided with this report. For the segmentation task, we used
the original U-Net architecture detailed in Ronneberger, Fischer, and Brox5 with a mi-
nor difference that we introduced a BatchNorm layer after every convolution layer.

4.2 Datasets
The datasets used for image classification tasks are MNIST, CIFAR-10, and CIFAR-100.
For generating visualizations for the BayesBiNN and STE methods, we used small toy
datasets, the Snelson dataset6 for regression problems, and TwoMoons̓ dataset Snelson
and Ghahramani7 for classification problems. For the segmentation part, we used the
Brain Tissue segmentation dataset from Ronneberger, Fischer, and Brox5, and for the
continual learning visualizations we used the permuted MNIST dataset Goodfellow et
al.8. The pre-processing of inputs has been kept the same as mentioned in the original
paper and has been detailed below.
Pre-processing: For the MNIST dataset we simply normalize the images and do not per-
form data augmentation. We keep our validation split as 0.1 uniformly across all sets of
experiments except the comparison with the LR-Net method Shayer, Levi, and Fetaya4.
For the CIFAR datasets also, we perform the normalization of images along with data-
augmentation where we generate images by randomly cropping a 32x32 image from a
40x40 padded image. Finally, for our semantic segmentation task, we had a very small
dataset of 30 images out of which 24 were chosen for training and 6 for validation. No
other pre-processing has been done.

4.3 Hyperparameters
We have used the hyper-parameters given in the original paper. Table Table 1 contains
the list of all the parameters we used for our experiments:

Optimizer Parameter MNIST CIFAR10 CIFAR100 Snelson Dataset 2 Moons Dataset

BayesBiNN

MC steps 1 1 1 1 5
Initial LR 10−4 3.10−4 3.10−4 10−4 10−3

Final LR 10−16 10−16 10−16 10−5 10−5

LR Scheduler Cosine Cosine Cosine MultiStepLR MultiStepLR
Temperature τ 10−10 10−10 10−8 1 1
Initialization λ ±10 ±10 ±10 ±10 ±15

STE
Initial LR 10−2 10−2 10−2 10−1 10−1

Final LR 10−16 10−16 10−16 10−1 10−3

LR Scheduler Cosine Cosine Cosine MultiStepLR MultiStepLR

Adam (Full
Precision)

Initial LR 10−5 10−4 10−4 - -
Final LR Step Step Step - -

LR Scheduler 1 100 100 - -

Table 1. Training setting for different optimizers on MNIST, CIFAR10, and CIFAR100 datasets.

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 5

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

4.4 Computational requirements
All our final experimental results were performed on a machine having 1 NVIDIA Tesla
V100 GPU with 16 GB memory. Training the Binary Network with BayesBiNN optimizer
for a single run, takes around 2.5 GPUhours forMNIST, 5.5 GPUhours for CIFAR-10, and
around 8.5 GPU hours for the CIFAR-100 dataset, in the current experimental setup.

5 Results

In Table Table 1we report our results for various classificationbenchmarks using our im-
plemented BayesBiNN and STE optimizer. We notice that we get a difference of less than
0.1% as compared to that in the original paper. We generated the results for baseline
STE optimizer and full-precision networks by evaluating our implementation of these
methods. We also generated the results of PMF, by modifying its original open-sourced
code and using the hyperparameters mentioned in the original paper.

(a)MNIST (b) CIFAR10 (c) CIFAR100

Figure 1. Training/Validation/Test accuracy using BayesBiNN optimizer

Datasets Optimizer Training Accuracy Validation Accuracy Test Accuracy

MNIST

BayesBiNN(ours) 99.90± 0.01% 99.89± 0.07% 98.87± 0.06%
BayesBiNN(orig.) 99.85± 0.05% 99.02± 0.13% 98.86± 0.05%

STE 99.90± 0.01% 98.86± 0.09% 98.89± 0.05%
PMF - 98.73% -

Adam (Full Precision) 99.98± 0.01% 99.02± 0.04% 99.02± 0.01%

CIFAR10

BayesBiNN(ours) 99.96± 0.01% 93.59± 0.45% 93.54± 0.26%
BayesBiNN(orig.) 99.96± 0.01% 94.23± 0.41% 93.72± 0.16%

STE 99.99± 0.01% 93.77± 0.06% 93.54± 0.08%
PMF - 91.98% -

Adam (Full Precision) 99.99± 0.01% 94.27± 0.15% 94.38± 0.16%

CIFAR100

BayesBiNN(ours) 98.35± 0.1% 74.13± 0.78% 73.56± 0.06%
BayesBiNN(orig.) 98.02± 0.18% 74.76± 0.41% 73.68± 0.31%

STE 99.22± 0.03% 72.74± 0.06% 73.25± 0.26%
PMF - 70.82% -

Adam (Full Precision) 99.89± 0.02% 75.04± 0.71% 74.80± 0.39%

Table 2. Results of different optimizers trained on MNIST, CIFAR10, and CIFAR100.

5.1 Comparison with LR-Net
Authors compared their BayesBiNN approach to the LR-Netmethod presented in Shayer,
Levi, and Fetaya4. We tried to reproduce the result for the same setting. In this compari-
son, the data pre-processing and augmentationmethods remain the same asmentioned
in section 4.2, but we do not split the data in training and validation sets in this case. We

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 6

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

denote the test accuracies after 190 epochs in the case of MNIST and 290 epochs in the
case of CIFAR-10, as done in the original paper to maintain uniformity. Note that, our
accuracy ismatchingwith that of the original authors in the case ofMNIST but not in the
case of CIFAR-10. We suspect that this is due to some difference in Batch-Norm layers
used.

Optimizer MNIST CIFAR10
BayesBiNN (ours) 99.52% 84.49%
BayesBiNN (orig.) 99.50% 93.97%

LR-net Shayer, Levi, and Fetaya4 99.47% 93.18%

Table 3. Test accuracy of BayesBiNN and LRNet.

5.2 Continual Learning
Asmentioned in the original paper, we try to reproduce the author s̓ claims about weight
distribution across tasks in a simple continual learning domain tested on Permuted
MNIST. Clearly, as we learn across the tasks, the curve becomes flat from the middle
conveying that the weights become more deterministic. Our result matches with the
claims in the original paper.

(a) Prior λ (b) λ after task 1 (c) λ after task 2

Figure 2. Distribution of p(w = 1) across consecutive learning tasks

5.3 Visualization using Synthetic Dataset
In the original paper, the authors present visualizations on binary classification (Two
moons dataset Snelson and Ghahramani7) and toy regression (Snelson dataset6) using
STE and BayesBiNN optimizer. For the classification task, the authors claimed that STE
is a more deterministic classifier compared to BayesBiNN. We reproduced this experi-
ment and the results depicted in Figure Figure 3 seem to be consistent with the author s̓
claim. For the regression task, we conclude that the author s̓ claim about BayesBiNN
(mean) giving a smoother curve compared to STE is true, which can also be seen in Fig-
ure Figure 4.

5.4 Extended Results (Semantic Segmentation)
We tried to validate the performance of the BayesBiNN optimizer onmore complex tasks
like semantic segmentation. Unfortunately, the results with BayesBiNN were quite un-
derwhelming as compared to STE and its full-precision counterpart. We tried various
parameters to improve its performance but none seemed to work. We had a brief dis-
cussion with the authors regarding this issue and the authors suggested that Bayesian

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 7

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

Figure 3. Classification on Two Moons dataset using STE and BayesBiNN optimizer.

Figure 4. Regression on Snelson dataset using STE and BayesBiNN optimizer.

models are intrinsically very difficult to train. For the results shown in Table Table 5
and Figure Figure 5, we have used the hyperparameters denoted in Table Table 1.

(a) BayesBiNN (b) STE (c) Adam

Figure 5. Some samples of segmented image outputs

6 Discussion

We reproduced almost all the experiments given in the original paper and most of our
results match with the original claims. While this BayesBiNN approach is mathemat-
ically principled, we tried to take a step forward by using that optimizer on a single
segmentation task. However the results were against our expectation and the result of
segmentation was a zoomed segmented image of the input with lots of noise. In addi-
tion to this, in the case of comparison with the LR-Net method, our accuracy differs
from that of the original authors, which we feel might be due to some difference in ar-
chitecture chosen. Themajor contribution of our work is developing a code base library

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 8

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

Temperature 10 1 0.1 10−2 10−3 10−4

MSE Loss 1.313 0.208 2.151 0.443 0.231 0.199
Temperature 10−5 10−6 10−7 10−8 10−9 10−10

MSE Loss 0.156 0.127 0.173 0.122 0.195 0.173

Table 4. Mean square error loss of Snelson dataset for different temperatures.

BayesBiNN STE Adam (Full Precision)
Validation Score 0.4102 0.3108 0.2943

Table 5. (1 - IoU) score for validation set

based on PyTorch with a Keras type interface for training BNNs with several different
methods in its arsenal. This could reduce the coding efforts required for training BNNs
and could help in future research as benchmarking library.

6.1 What was easy
The original paper contained a very good explanation of the mathematics behind the
BayesBiNN approach. After we worked that out the pseudo-code as pointed out in Algo-
rithm algorithm 1, the basic implementation of the optimizer became easy and easily
verifiable by the author s̓ original code. The appendix in the original paper contained a
list of various hyper-parameters used for experiments. This helped us a lot while run-
ning the experiments and deciding the range of hyper-parameters while doing ablation
studies.

6.2 What was difficult
Themost difficult part here was running a large number of experiments in lack of many
computational resources. This difficulty was increased since we are taking an average
of 5 runs while reporting all our results. Apart from this, we also faced some difficulty
in taking care of the hyper-parameters, which were not mentioned in the original paper
(like momentum coefficient). To cater to that, we had to guess some possible values of
the hyper-parameters and run small random searches to find a good candidate. Finally,
we also faced difficultywhile reproducing the results for the baselines PMF andBop, and
adapting their experimental settings tomatchwith those used in the original BayesBiNN
paper. Since their code was written a long time ago and used older software stack, this
task took us a lot of time.

6.3 Communication with original authors
We did not understand the intent of the authors for choosing temperature as 1 in the
case of experiments on synthetic datasets. We were also curious about the author s̓ view
on segmentation tasks using BayesBiNN. Hence, we reached out to the authors via email
along with the review of their paper, to ask for some pointers. They gave the following
major pointers:

• It is reasonable that at high temperatures the learned distribution will have high
variance. The mode mentioned in the paper refers to the sign(̂(w)), where (̂w)
denotes the expectation of the learned posterior Bernoulli distribution. It is not
appropriate to directly use the continuous (̂w) as the mode. Another way is to use

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 9

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

mean, which samples from the learned posterior Bernoulli distribution, and then
make predictions using ensemble learning.

• STE is more stable and suggested by the authors to act as a baseline, in particular,
Adam STE first, to make sure binary networks work. As shown in the paper, there
is literally very little difference between STE and BayesBiNN but indeed the latter
is difficult to train, as most Bayesian optimizers.

Broader Impact

Recent researches Strubell, Ganesh, and McCallum9 mention that training a single big
transformer model could emit around 626,155 lbs CO2 which is around 5 times of aver-
age carbon emission by a car in its total lifetime. Clearly, Deep Learning takes a huge
toll on the environment which is why there has been an increased focus on much more
energy-efficient ”Green AI”. BNNs intrinsically have far less computational and space
complexity as compared to their full-precision counterparts and as we can see above
they can also achieve accuracy close to the full-precision networks, at least in the classi-
fication tasks, and also show the potential of expanding well to more complex segmen-
tation tasks. This can help us a lot in moving towards cleaner Deep Learning. This field
of research also provides a huge set of opportunities in extending AI to edge devices
with much smaller and low-energy systems. We feel that its potential impact on the
environment and sustainability is at par with its academic importance.

Acknowledgement

We would like to thank NVIDIA and IIT Delhi HPC facility for providing necessary com-
putational resources. The computational requirements were also partly met by Google
Colab and Code Ocean. We would also like to thankWeights & Biases for providing free
teams to people in academic sphere which proved to be most valuable for our experi-
ments and collaboration.

References

1. X. Meng, R. Bachmann, and M. E. Khan. Training Binary Neural Networks using the Bayesian Learning Rule.
2020. arXiv:2002.10778 [cs.LG].

2. M. Khan and H. Rue. Learning Algorithms from Bayesian Principles. URL: https://emtiyaz.github.io/papers/
learning_from_bayes.pdf.

3. C. J. Maddison, A. Mnih, and Y. W. Teh. “The Concrete Distribution: A Continuous Relaxation of Discrete Random
Variables.” In: CoRR (2016). URL: http://arxiv.org/abs/1611.00712.

4. O. Shayer, D. Levi, and E. Fetaya. “Learning DiscreteWeights Using the Local Reparameterization Trick.” In: CoRR
(2017). URL: http://arxiv.org/abs/1710.07739.

5. O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In:
CoRR (2015). URL: http://arxiv.org/abs/1505.04597.

6. Moons, T. Two moons datasets description. 2018. URL: https://scikit- learn.org/stable/modules/generated/
sklearn.datasets.make_moons.html.

7. E. Snelson and Z. Ghahramani. “Sparse Gaussian Processes Using Pseudo-Inputs.” In: Proceedings of the 18th
International Conference on Neural Information Processing Systems. MIT Press, 2005, pp. 1257–1264.

8. I. J. Goodfellow, M. Mirza, X. Da, A. C. Courville, and Y. Bengio. “An Empirical Investigation of Catastrophic For-
geting in Gradient-Based Neural Networks.” In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014. URL: http://arxiv.org/
abs/1312.6211.

9. E. Strubell, A. Ganesh, and A. McCallum. “Energy and Policy Considerations for Deep Learning in NLP.” In: CoRR
(2019).

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 10

http://arxiv.org/abs/2002.10778
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1710.07739
http://arxiv.org/abs/1505.04597
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

Appendix

MLP Binary Connect Architecture

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Dropout p = 0.2
Fully Connected Layer (units = 2048, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 11

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

VGG Binary Connect Architecture

Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)
ReLU

Max Pooling Layer (size = 2×2, stride = 2×2)
Batch Normalization Layer (gain = 1, bias = 0)

Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)

ReLU
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 1024, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 1024, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

MLP Binary Connect Architecture for Continual Learning

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Fully Connected Layer (units = 100, bias = False)

ReLU
Batch Normalization Layer (gain = 1, bias = 0)

Fully Connected Layer (units = 100, bias = False)
ReLU

Batch Normalization Layer (gain = 1, bias = 0)
Softmax

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 12

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

LRNet Architecture (MNIST)

Convolutional Layer (channels = 32, kernel-size = 5×5, bias = False, padding = same)
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 64, kernel-size = 5×5, bias = False, padding = same)
Max Pooling Layer (size = 2×2, stride = 2×2)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Fully Connected Layer (units = 512, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

ReLU
Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

LRNet Architecture (CIFAR-10)

Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)

ReLU
Convolutional Layer (channels = 128, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 256, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)

Batch Normalization Layer (gain = 1, bias = 0)
ReLU

Convolutional Layer (channels = 512, kernel-size = 3×3, bias = False, padding = same)
Batch Normalization Layer (gain = 1, bias = 0)
Max Pooling Layer (size = 2×2, stride = 2×2)

ReLU
Fully Connected Layer (units = 1024, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

ReLU
Fully Connected Layer (units = 10, bias = False)
Batch Normalization Layer (gain = 1, bias = 0)

Softmax

Semantic Segmentation using BayesBiNN with augmented dataset
We generated 1260 images from 30 original images using the rotation, random horizon-
tal flip, random vertical flip operations. The result for BayesBiNN with this extended

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 13

https://rescience.github.io/

[Re] Training Binary Neural Networks using the Bayesian Learning Rule

dataset was still very poor and inconsistent with the other methods (STE and Full Preci-
sion). The results presented in Section 5.4 were to show the extent of difficulty to train
BayesBiNN for segmentation task as even with such a small dataset and large number of
epochs, it was still not even able to overfit. Following are some of the images obtained
by using BayesBiNN with this bigger dataset:

(a)Mask example 1 (b)Mask example 2

ReScience C 7.2 (#5) – Garg, Singhal and Sardana 2021 14

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Experimental setup
	Model descriptions
	Datasets
	Hyperparameters
	Computational requirements

	Results
	Comparison with LR-Net
	Continual Learning
	Visualization using Synthetic Dataset
	Extended Results (Semantic Segmentation)

	Discussion
	What was easy
	What was difficult
	Communication with original authors

