
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2020

[Re] Neural Networks Fail to Learn Periodic Functions
and How to Fix It
Mayur Arvind1, ID and Mustansir Mama2, ID
1BITS Pilani, Goa, India – 2BITS Pilani, Pilani, India

Edited by
Koustuv Sinha,
Sasha Luccioni

Reviewed by
Anonymous Reviewers

Received
29 January 2021

Published
27 May 2021

DOI
10.5281/zenodo.4833389

Reproducibility Summary

Scope of Reproducibility
Neural Networks Fail to Learn Periodic Functions and How to Fix It [1] demonstrates ex-
perimentally that standard activations such as ReLU, tanh, sigmoid and their variants
all fail to learn how to extrapolate simple periodic functions. The original paper goes
on to propose a new activation, which the authors name the snake function.

The central claims of the paper are two-fold: (1) The properties of the activation func-
tions are carried over to the neural networks. Atanhnetworkwill be smooth and extrap-
olates to a constant function, while ReLU extrapolates in a linear way. Standard neural
networks with conventional activation functions are insufficient for extrapolating peri-
odic functions. (2) The proposed activation function manages to learn periodic func-
tions while being able to optimize as well as conventional activation functions. While
both experimental proof and theoretical justifications are provided for the claims, we
shall only be concerned with testing the claims via experimental means.

Methodology
While one of the authorswas contacted to clarify certain difficulties, the reproduction of
all experiments was completed using only the information provided in the paper. With
one exception, the links to all datasets used were also provided in the original paper.
This allowed us to implement most experiments from scratch.

Results
We were able to successfully replicate experiments supporting the central claim of the
paper, that the proposed snake non-linearity can learn periodic functions. We also
analyze the suitability of the snake activation for other tasks like generative modeling
and sentiment analysis.

What was easy
Manyexperiments includeddescriptions of theneural network architectures and graphs
showcasing performance, giving us a clear benchmark to compare our results against.

Copyright © 2021 M. Arvind and M. Mama, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Mayur Arvind (f20160603@goa.bits-pilani.ac.in)
The authors have declared that no competing interests exist.
Code is available at https://github.com/mayurak47/Reproducibility_Challenge – DOI 10.5281/zenodo.4696245. – SWH
swh:1:dir:8887a5d45dac9427457c6b5869728e1ba3cfd37c.
Open peer review is available at https://openreview.net/forum?id=ysFCiXtCOj.

ReScience C 7.2 (#3) – Arvind and Mama 2021 1

https://orcid.org/0000-0002-4925-5560
https://orcid.org/0000-0003-4114-234X
mailto:f20160603@goa.bits-pilani.ac.in
https://github.com/mayurak47/Reproducibility_Challenge
http://oadoi.org/10.5281/zenodo.4696245
https://archive.softwareheritage.org/swh:1:dir:8887a5d45dac9427457c6b5869728e1ba3cfd37c/
https://openreview.net/forum?id=ysFCiXtCOj
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

Links to datasets for all experiments, barring one, were also included in the paper itself.

What was difficult
Data for the human body temperature experiment was not available. Proper implemen-
tation details were not given for initializing the weights in neural networks with snake
and using snake with RNNs.

Communication with original authors
Liu Ziyin, one of the authors, was contacted to provide the dataset used for the human
body temperature experiment, elaborate upon the implementation of variance correc-
tion and provide the implementation of RNNs using snake. Liu provided the GitHub
link to the authorsʼ original code for the human body temperature, market index, and
extrapolation experiments. Liu also provided an explanation on how to implement vari-
ance correction. While the code for the RNN implementation using the snake activa-
tion was not made public, a screenshot of the same was provided. We thank the authors
for their assistance.

1 Introduction

Deep neural networks are playing an increasingly prominent role in fields as diverse as
computer vision [2], speech recognition [3], and language modeling [4]. However, while
neural networks are excellent tools for interpolating between existing data, standard ver-
sions of these networks are not suited for extrapolation beyond the training range. This
causes them to struggle at making predictions in problems with a periodic component.
Previous attempts at addressing neural networksʼ inability to learn periodic functions
have included using periodic activation functions [5, 6]. For example, using sin(x) as
the activation function for implicit neural representations has been successful at rep-
resenting complex natural signals and their derivatives [7]. However in more general
cases, experimental results suggest that using sin as the non-linearity cannot compete
against ReLU-based activation functions [8, 9, 10, 11] on standard tasks [12].

The original paper: (1) studies the extrapolation properties of a neural network beyond
a bounded region; (2) shows that neural networkswith standard activation functions are
insufficient to learn periodic functions outside the bounded region where data points
are present; (3) proposes a solution for this problem in the form of a novel activation
function and its variants, and showcases its performance on toy examples and real-
world tasks. We have tested the claimsmade in the original paper, replicating the experi-
ments displaying the failure of standard activation functions to learn periodic functions
as well as the results of the novel activation function on toy and real-world tasks. We
have also conducted experiments of our own to understand how viable the proposed
activation function is at replacing existing standards such as ReLU and tanh.

2 Scope of reproducibility

The authors make two key claims:

• Standard neural networks with standard activation functions are insufficient to learn
periodic functions outside the bounded region where data points are present.

• The proposed novel activation function can learn periodic functions while maintain-
ing the favorable optimization property of the ReLU-based activations. The novel ac-
tivation is referred to as “snake”:

ReScience C 7.2 (#3) – Arvind and Mama 2021 2

https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

snakea(x) := x+
1

a
sin2(ax)

where a is treated as a fixed parameter in initial experiments, and as a learnable pa-
rameter in a few experiments. Snake is shown to outperform standard activation
functions ReLU,tanh,LeakyReLU [9], as well as more recently proposed functions
such as swish [8], and sin [7, 12].

Due to the broad and far-reaching consequences of the two claims, the original paper
supports them via both theoretical justification and an extensive list of experiments
which range from testing performance on toy datasets to real world applications. We
have exhaustively replicated the original list of experiments, and have conducted a few
additional experiments of our own, using the proposed activation function in a Deep
Convolutional Generative Adversarial Network (DCGAN) to generate images of hand-
written digits and in a Long Short TermMemory (LSTM) network for sentiment analysis.

3 Methodology

The code used by the authors had not been made public at the time we started working
on re-implementing the paper. That meant we reproduced all the results in the paper
from scratch relying on the descriptions of the neural network architecture and a link
or description of the dataset. The descriptions were brief but sufficient such as “feedfor-
ward neural network with 2 hidden layers, both with 64 neurons” for the Body Temper-
ature Prediction experiment and “4-layer feedforward network with 1 → 64 → 64 → 1
hidden neurons” for the Financial Data Prediction experiment. In the case of experi-
ments that utilized large standard networks such as ResNet18, the PyTorch library im-
plementation of the model was used, with snake substituted in place of the default ac-
tivation functions. Besides the model implementations, we were also required to make
a a learnable parameter in snake for a few experiments.

3.1 Model descriptions
Models used in the original paper included fully-connected, feed-forward neural net-
works with different architectures for the various experiments. Larger standard models
such as ResNet18 were also used. The authors of the original paper had initially not
made their code available and we had to implement most models ourselves.

3.2 Datasets
The data used in the extrapolation experiments are directly sampled from periodic func-
tions such as sin(x). Some experiments dealt with standard datasets such MNIST and
CIFAR-10. Data for the real-life datasets had to be downloaded:

• Daily data from 1995-1-1 to 2020-1-31 of Wilshire 5000 Total Market Full Cap In-
dex: Downloaded from link provided in the original paper: https://www.wilshire.com/
indexes

• Average weekly temperature evolution in Minami-Tori-shima, an island south of
Tokyo (longitude: 153.98, latitude: 24.28) after April 2008: Downloaded from link
provided in the original paper: https://join.fz-juelich.de/access

• Patient body temperature: Made available by the authors upon request

• IMDBReviewsDataset used for our additional sentiment analysis experiment: Down-
loaded from https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

ReScience C 7.2 (#3) – Arvind and Mama 2021 3

https://www.wilshire.com/indexes
https://www.wilshire.com/indexes
https://join.fz-juelich.de/access
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

3.3 Hyperparameters
Different experiments included varying levels of detail with respect to hyperparame-
ters. Many experiments provided an overview of the neural network architecture (e.g.
“4-layer fully connected neural network”) but not other hyperparameters and relevant
details, such as batch size, loss function, or learning rate. In cases where information
was missing, assumptions had to be made, with some trial-and-error required to obtain
a close approximation of the original result. This trial-and-error involved a grid search
over the architecture (number of layers, number of neurons in each layer), number of
epochs (100 to 5000), batch size (16 to 512), optimizer (Adam, SGD, RMSProp), learning
rate (0.001 to 0.1) and value of a in networks with the snake activation (1 to 30).

3.4 Experimental setup
The entire codebase has been uploaded to GitHub and is publicly available: https://github.
com/mayurak47/Reproducibility_Challenge. The experiments were run locally as well as on
GPU enabled sessions on Google Colab. All the models and experiments were coded
using the PyTorch library.

3.5 Computational requirements
Many of the experiments, particularly those relating to regressing different functions
and datasets, could be run locally on a MacBook Air with an Intel i5 CPU and 8 GB of
RAM, not requiring more than a few minutes to train. The more demanding experi-
ments required the use of GPUs. Training a ResNet18 on CIFAR-10 with six activation
functions for 100 epochs took roughly 12 hours on a Tesla T4 GPU on Google Colab. Our
additional experiments on training a GAN and an LSTM required roughly 2 hours each
on the same hardware.

4 Results

Wherever possible, the claims of the original papers were tested and in each case, we
were able to reproduce the original results. The list of experiments that we reproduced
is listed below.

4.1 Extrapolation experiments on analytic functions

Figure 1. Regressing analytic functions with neural networks having the specified activation func-
tion

ReScience C 7.2 (#3) – Arvind and Mama 2021 4

https://github.com/mayurak47/Reproducibility_Challenge
https://github.com/mayurak47/Reproducibility_Challenge
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

Neural networks with a single hidden layer consisting of 512 neurons are trained on
data sampled from four different analytic functions using the ReLU and tanh activa-
tion functions. The training data is obtained by sampling from [-5, 5] with a gap in [-1,
1]. It is observed in Fig. 1 that the extrapolation of neural networks depends on the
activation function used. When ReLU is used, the extrapolation diverges to ±∞. When
tanh is used, the extrapolation levels off. The authors formally prove these observa-
tions and conclude that neural networks using these activation functions cannot learn
to extrapolate periodic functions.

4.2 Applicability of proposed method
It is first demonstrated that the snake activation function is easier to optimize than
other commonly used baseline periodic activation functions like sin(x) and x+sin(x).
Fully-connected neural networks with 3 hidden layers (512 neurons each) are trained
on the MNIST dataset. This is a 10-way classification problem, and the training cross-
entropy losses for the different networks can be observed in Fig. 2, with the snake
network achieving the lowest training loss.

Figure 2. Optimization of different activation functions on MNIST

It is then shown that snake is able to regress the periodic function sin(x). While all
activation functions learn the training data (Fig. 1), only snake is able to capture the
periodic behavior of sin(x) (Fig. 3). The extrapolation diverges from the underlying
sin function due to the limited training data used.

Figure 3. Regressing sin(x) using the snake activation function

ReScience C 7.2 (#3) – Arvind and Mama 2021 5

https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

4.3 Applications
Multiple experiments are conducted to illustrate the performance of snake on a range
of tasks.

Figure 4. Test accuracy of ResNet18
with different non-linearities

ResNet18 [13], with 10M parameters, is trained
on the CIFAR-10 dataset. This is a 10-way im-
age classification task. The ReLU layers in
the architecture are replaced with the specified
activation, and the network is trained for 100
epochs. The LaProp optimizer 1 [14] is used;
the learning rate is 4 × 10−4 for the first 50
epochs and 4 × 10−5 for the next 50. A test
accuracy of 93-94% is achieved by the snake
network (Fig. 4), in line with that of the
other standard activation functions. This sug-
gests that snake is suitable for large-scale im-
age classification problems, and may be used as
a straightforward alternative to other activation
functions.

The core utility of snake is shown via two real-life
problems. The two tasks are predicting the evolu-
tion of temperature in Minami-Tori-shima island
in Japan (Fig. 5), and the modeling the body temperature of a patient (Fig. 6). The ar-
chitectures used are 1 → 100 → 100 → 1 and 1 → 64 → 64 → 1 respectively, as in the
original paper. In the Minami-Tori-shima weather experiment, the parameters a were
made learnable; in the body temperature experiment, a = 30. In both cases, snake
is the only activation function that makes meaningful extrapolation and predictions. It
can also be seen in Fig. 5b that snake is the only activation function that is able to
learn the training data - the other non-linearities are unable to fit the training points,
irrespective of the number of epochs the models are trained for.

(a) (b)

Figure 5. Atmospheric temperature evolution. (a) predictions of different networks; (b) train and
test losses observed during training

The snake network correctly learns the periodicity of the atmospheric temperature
dataset, even though the amplitude is slightly off, and correctly infers that body tem-
perature is roughly 37°C.

1Code taken from https://github.com/Z-T-WANG/LaProp-Optimizer

ReScience C 7.2 (#3) – Arvind and Mama 2021 6

https://github.com/Z-T-WANG/LaProp-Optimizer
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

Figure 6. Regressing body temperature

Method Test MSE
Swish DNN 390.33 ± 17.57
ReLU DNN 343.34 ± 78.07
Snake DNN 211.39± 46.64

Table 1. Prediction of Wilshere 5000 in-
dex

Another regression problem the authors used to
demonstrate the working of snake is that of fi-
nancial data prediction (Fig. 7). The data used is
from the Wilshire 5000 Total Market Full Cap In-
dex, considered representative of the worldwide
economic trend. The snake network (1 → 64 →
64 → 1, a = 30), which was trained using data
from1995 to 2020-1-31, before COVID-19 impacted
the world economy, predicted an economic slow-
down in 2020. This might be due to the cyclic na-
ture of world markets, which the model was able to capture. As in the previous regres-
sion experiments, snake performs better than conventional non-linearities (Table 1).

Figure 7. Predicting the Wilshere 5000 index

Figure 8. Predictions made by the model after 10, 20, and 50 epochs of training on the Wilshere
5000 index

The authors, in an additional experiment described in the appendix, use this dataset
to gain insights into how the snake activation function learns (Fig. 8). Observing the
predictions made at various points in the training process, we notice that at first, the
features learned are mostly linear, low frequency features are then learned, and high-

ReScience C 7.2 (#3) – Arvind and Mama 2021 7

https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

frequency features are learned at the later stages of training.

The performance of a snake feedforward network (two hidden layers of 64 neurons
each, a = 30) and a recurrent neural network (single recurrent layer, 64 features in
hidden state), typically used for time-series prediction, are compared in Fig. 9. The task
is to learn the function sin(0.1x), with Gaussian noise σ added, for T = 300 timesteps.
The first 200 are used for training, while the last 100 are used for testing.

Figure 9. Predictions of a feedforward network with snake activation and a conventional RNN on
sin(0.1x)

It is seen that because of the noisy training data, even the predictions of the RNN are
noisy, with a high generalization loss. The feedforward network, on the other hand,
almost perfectly learns the underlying function with the right frequency and amplitude.
Further, RNNs learn by backpropagation through time (BPTT), which has a prohibitively
high computation cost, and can result in the exploding/vanishing gradient problem [15].
As a result the time taken by the snake network to regress the function is roughly 2
orders of magnitude lower than the time taken by the RNN (Fig. 10). This suggests that
snake networks may be more effective in modeling data that is known beforehand to
be periodic in nature.

taken.bb taken.bb

Figure 10. Time taken for a single epoch of training an RNN and a snake feedforward network on
T timesteps of sin(0.1x)

4.4 Effect of a
In a series of experiments, the authors depict the effect the parameter a has on the learn-
ing process. We reproduce one of these experiments for brevity. Simple neural networks
(1 → 64 → 64 → 1) are trained on the sinusoidal function sin(x) + sin(4x)/4.
It is seen in Fig. 11 that larger a encourages the model to learn features with higher
frequency. With a = 1, the higher frequency modulation is considered noise, while the
a = 16 model learns both the signals. This tendency can be taken into account while
working with data known to be periodic, with a well-chosen a speeding up training.

ReScience C 7.2 (#3) – Arvind and Mama 2021 8

https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

Figure 11. Features learned by snake neural networks at different a

4.5 Results beyond original paper
The original paper demonstrated the ability of neural networks with the snake activa-
tion function to learn periodic functions and that the performance on everyday tasks
like image classification is similar to that of neural networks employing conventional
activation functions. We extend this study to more sub-fields of deep learning.

(a) (b)

Figure 12. Samples output by (a) snake GAN and (b) LeakyReLU GAN after training for 50 epochs

(a) (b)

Figure 13. Losses observed over the course of training (a) snake GAN and (b) LeakyReLU GAN

We train a deep convolutional generative adversarial network (DCGAN) 2 [16] to gener-
ate samples of theMNIST dataset. All the activations in the generator and discriminator
sub-networks are replaced with the specified non-linearity. We see that while the initial
training is slow for the snake GAN (Fig. 13a), it eventually generates realistic samples

2Code adapted from https://github.com/eriklindernoren/PyTorch-GAN

ReScience C 7.2 (#3) – Arvind and Mama 2021 9

https://github.com/eriklindernoren/PyTorch-GAN
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

(Fig. 12a), which are qualitatively indistinguishable from those output by a typical GAN
using the LeakyReLU non-linearity (Fig. 12b). a was a learnable parameter in this ex-
periment.

Finally, we use the snake activation function in a Long Short Term Memory (LSTM)
network for sentiment analysis 3 on the IMDB movie reviews dataset. This is a binary
classification problem, attempting to predict whether amovie review is positive or nega-
tive. The typical tanh activation used to output the value ht = ot ∗tanh(Ct) in an LSTM
is replaced by the snake activation, so that ht = ot ∗ snake(Ct). We observed that the
snake LSTM network did not perform very well on this task (Fig. 14) and convergence
was much more gradual. A single epoch of training the snake LSTM took twice as long
as training the tanh LSTM. Also, in many cases, the snake network got stuck in local
minima, necessitating a restart of training.

A possible explanation for this is that the snake function is not bounded like tanh,
causing an increase in the magnitudes of ht and leading to instability. The results of
the experiment do not mean that snake cannot be used in sequence models, only that
the application is not as straightforward as in the previous experiments, and further
modifications in the architectures might be necessary.

(a) (b)

Figure 14. Training and testing accuracies versus epochs for (a) snake LSTM and (b) tanh LSTM

5 Discussion

As the authors had not initially made their code available and only included brief de-
scriptions of the network architectures used in their experiments, exact replication of
their experimental results was not possible. However, the qualitative nature of the pa-
permeant that only the relative performance ofsnake in comparison to other activation
functions on the specified problems was of interest, as opposed to the exact architec-
tural details or loss values achieved. For example, the losses observed in Table 1 and
Fig. 5b are orders of magnitude different from those in the original paper, likely due
to varying normalization techniques and hyperparameters, even though the overall re-
sults observed in Fig. 5a and Fig. 7 are similar to those observed in the original paper.
We were able to uphold the claim that neural networks with standard activation func-
tions are insufficient to learn periodic functions outside the training range. We were
also able to verify that the proposed activation function performs as well as standard
activation functions, ReLU,tanh,LeakyReLU, over a wide range of tasks (with the ex-
ception of the LSTM experiment), by replicating the experiments in the original paper
and conducting some additional ones ourselves. Future work could focus upon provid-
ing theoretical justifications for the behavior of snake and developing more suitable
optimization algorithms.

3Code adapted from https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch and https://github.
com/piEsposito/pytorch-lstm-by-hand

ReScience C 7.2 (#3) – Arvind and Mama 2021 10

https://www.kaggle.com/arunmohan003/sentiment-analysis-using-lstm-pytorch
https://github.com/piEsposito/pytorch-lstm-by-hand
https://github.com/piEsposito/pytorch-lstm-by-hand
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

5.1 What was easy
A detailed description of the neural network architectures used for experiments such as
training on the MNIST dataset and human body temperature was provided, allowing us
to replicate the experiments closely. Links to datasets for all experiments, barring one,
were also included in the paper itself. An extensive appendix sections listed additional
experiments comparing the performance of snake with different a. Every experiment
was supported by graphs showcasing the performance of snake with other activation
functions, giving us a clear metric against which we could compare the results of our
reproductions.

5.2 What was difficult
The original source codewasnot provided initially andwehad to rely on the descriptions
of architectures and hyperparameters (which were absent in many cases) and educated
guesswork while attempting to replicate the results. Data for the human body temper-
ature experiment was not available. Theoretical justification for variance correction
and the results of this variance correction using ResNet101 on CIFAR-10 were provided,
but implementation details were not included. The section on Comparison with RNN
on Regressing a Simple Periodic Function simply states that snake was deployed on a
feedforward network, without any additional details of the hyperparameters used. The
dataset for the experiment had to be inferred from the graphs of the results, and since
white noise had been added to the data, exact replication of the experimental setup was
not possible.

5.3 Communication with original authors
Liu Ziyin, one of the authors, was contacted to provide the dataset used for the human
body temperature experiment, elaborate upon the implementation of variance correc-
tion and provide the implementation of RNNs using snake. Liu provided the GitHub
link to the authorsʼ original code4 for the human body temperature, market index, and
extrapolation experiments. Liu also provided an explanation on how to implement vari-
ance correction. While the code for the RNN implementation using snake activation
was not made public, a screenshot of the same was provided. The provided code was
incomplete and not fully documented but was nonetheless valuable in giving us a rough
idea about the hyperparameters used. The provided repository also contains the human
body temperature dataset within the codebase, which is not available in the original pa-
per. We thank the authors for their assistance.

References

1. L. Ziyin, T. Hartwig, and M. Ueda. Neural Networks Fail to Learn Periodic Functions and How to Fix It. 2020.
arXiv:2006.08195 [cs.LG].

2. M. Leo, A. Furnari, G. G. Medioni, M. Trivedi, and G. M. Farinella. Deep Learning for Assistive Computer Vision.
Ed. by L. Leal-Taixé and S. Roth. Cham, 2019.

3. L. Deng. Deep learning: from speech recognition to language and multimodal processing. 2016. DOI:
10.1017/ATSIP.2015.22.

4. G. Melis, C. Dyer, and P. Blunsom. On the State of the Art of Evaluation in Neural Language Models. 2017.
arXiv:1707.05589 [cs.CL].

5. A. Silvescu. Fourier Neural Networks. July 2000.
6. A. Zhumekenov, M. Uteuliyeva, O. Kabdolov, R. Takhanov, Z. Assylbekov, and A. J. Castro. Fourier Neural Net-

works: A Comparative Study. 2019. arXiv:1902.03011 [cs.NE].
7. V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit Neural Representations

with Periodic Activation Functions. 2020. arXiv:2006.09661 [cs.CV].
4Repository link provided: https://github.com/AdenosHermes/NeurIPS_2020_Snake

ReScience C 7.2 (#3) – Arvind and Mama 2021 11

http://arxiv.org/abs/2006.08195
https://oadoi.org/10.1017/ATSIP.2015.22
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1902.03011
http://arxiv.org/abs/2006.09661
https://github.com/AdenosHermes/NeurIPS_2020_Snake
https://rescience.github.io/

[Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It

8. P. Ramachandran, B. Zoph, and Q. V. Le. Swish: a Self-Gated Activation Function. 2017.
9. V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. Ed. by J. Fürnkranz

and T. Joachims. 2010. URL: https://icml.cc/Conferences/2010/papers/432.pdf.
10. D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep Network Learning by Exponential

Linear Units (ELUs). 2016. arXiv:1511.07289 [cs.LG].
11. B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolutional Network.

2015. arXiv:1505.00853 [cs.LG].
12. G. Parascandolo, H. Huttunen, and T. Virtanen. Taming the waves: sine as activation function in deep neural

networks. 2017.
13. K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. 2016. DOI:

10.1109/CVPR.2016.90.
14. L. Ziyin, Z. T. Wang, and M. Ueda. LaProp: Separating Momentum and Adaptivity in Adam. 2020.

arXiv:2002.04839 [cs.LG].
15. R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training Recurrent Neural Networks. 2013.

arXiv:1211.5063 [cs.LG].
16. A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional Gen-

erative Adversarial Networks. 2016. arXiv:1511.06434 [cs.LG].

ReScience C 7.2 (#3) – Arvind and Mama 2021 12

https://icml.cc/Conferences/2010/papers/432.pdf
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1505.00853
https://oadoi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2002.04839
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1511.06434
https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup
	Computational requirements

	Results
	Extrapolation experiments on analytic functions
	Applicability of proposed method
	Applications
	Effect of a
	Results beyond original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors

