Preprint Open Access

Synchronisation of yeast cell cycle through quorum sensing coupling

Perrino, Giansimone; di Bernardo, Diego

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20210527111501.0</controlfield>
  <controlfield tag="001">4812026</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy</subfield>
    <subfield code="a">di Bernardo, Diego</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1925588</subfield>
    <subfield code="z">md5:958ec9a74178e97c8b09faef6e52afcf</subfield>
    <subfield code="u"> di Bernardo 2020 IFAC.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-04</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cosy-bio</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">16779-16784</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">IFAC-PapersOnLine</subfield>
    <subfield code="v">53</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy</subfield>
    <subfield code="a">Perrino, Giansimone</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Synchronisation of yeast cell cycle through quorum sensing coupling</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cosy-bio</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766840</subfield>
    <subfield code="a">Control Engineering of Biological Systems for Reliable Synthetic Biology Applications</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;The cell cycle is present in all cells of all species and it is of fundamental importance in coordinating all the steps required for cell replication, including growth, DNA replication and cell division. Budding yeast is an unicellular organism characterised by a mother cell that buds to generate a daughter cell at each cell cycle. Each cell in a population buds at a different time. Despite its importance in biological applications, such as unravelling cell-cycle machinery mechanisms and production of valuable bioproducts, at present no yeast strain is capable of budding synchronously. To overcome this problem, we used control theory to propose a strategy to modify the yeast cell to endow it with the ability to synchronise its cell cycle across the population. Our strategy relies on a quorum sensing molecule diffusing freely in and out of the cell. The quorum sensing molecule is produced only during a specific phase of the cell cycle and couples the cell-cycle across the cell population. Here we model the proposed strategy with ordinary differential equations and numerically simulate it to demonstrate the feasibility of such an approach.&lt;/p&gt;</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.ifacol.2020.12.1143</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
Views 19
Downloads 7
Data volume 13.5 MB
Unique views 18
Unique downloads 7


Cite as