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Wavelets meet Burgulence: CVS-filtered Burgers equation
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Abstract

Numerical experiments with the one-dimensional inviscid Burgers equation show that filtering the solution at each time step in a way similar
to CVS (Coherent Vortex Simulation) gives the solution of the viscous Burgers equation. The CVS filter used here is based on a complex-valued
translation-invariant wavelet representation of the velocity, from which one selects the wavelet coefficients having modulus larger than a threshold
whose value is iteratively estimated. The flow evolution is computed from either deterministic or random initial conditions, considering both white
noise and Brownian motion.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The fully-developed turbulent regime is described by so-
lutions of the Navier–Stokes equations for two or three-
dimensional incompressible fluids, in the limit where the
kinematic viscosity becomes very small. By analogy, Burgu-
lence is described by the solutions of Burgers equations for
a one–dimensional fluid in the same limit, as first proposed
by Burgers [3] and advocated by von Neumann [19]. This toy
model for turbulence has been extensively used since then [1,
13,15,21,23]; Frisch and Bec have proposed to name it: Burgu-
lence [11].

We consider the one-dimensional Burgers equation in a
periodic domain of support x ∈ [−1, 1], which describes
the space–time evolution of the velocity u(x, t) of a one-
dimensional fluid flow:

∂t u +
1
2
∂x u2

= ν∂xx u, (1)

supplemented with a suitable initial condition and where
ν denotes the kinematic viscosity. The solutions of (1) can be
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computed analytically using the Cole–Hopf transformation [4,
6,14]. When ν → 0 the solutions of the viscous Burgers
equation approach weak solutions of the inviscid problem.
The uniqueness of these solutions stems from the condition
that shocks have negative jumps, which guarantees energy
dissipation. For Burgers equation, this condition is equivalent
to an entropy condition [12,17,18,20].

The wavelet representation has been proposed for studying
turbulence [7], since it preserves both the spatial and spectral
structure of the flow by realizing an optimal compromise
in regard of the uncertainty principle. We have found that
projecting the vorticity field onto a wavelet basis, and
retaining only the strongest coefficients, extracts the coherent
structures out of fully-developed turbulent flows [8,9]. We
have then proposed a computational method for solving the
Navier–Stokes equations in wavelet space [8]. We have shown
that extracting the coherent contribution at each time step
preserves the nonlinear dynamics, whatever its scale of activity,
while discarding the incoherent contribution corresponds to
turbulent dissipation [22]. This is the principle of the CVS
(Coherent Vortex Simulation) method we have proposed
[8,10].

The aim of the present paper is to apply the CVS filter to
the inviscid Burgers equation and check if this is equivalent
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Fig. 1. Deterministic initial conditions. Left: Time evolution of energy. Right: Energy spectrum at t = 5. We compare the Galerkin-truncated inviscid (square),
viscous (triangle) and CVS-filtered inviscid (circle) cases. We observe that for the inviscid case (right) the wavelet spectrum (white line) better exhibits the energy
equipartition than the Fourier spectrum (black line).

to solving the viscous Burgers equation. The outline is the
following. First we recall the principle of CVS filtering and its
extension using complex-valued translation-invariant wavelets.
The numerical scheme is described briefly and the main part
presents results of several numerical experiments, considering
either deterministic or random initial conditions. Finally, we
draw conclusions and propose some perspectives.

2. Numerical method

The Burgers equation (1) is discretized on N grid points
using a Fourier spectral collocation methods,

∂U

∂t
+

1
3

DN (U
2)+

1
3

U · DN (U )− νD2
N (U ) = 0, (2)

where U approximates (u(x0, t), u(x1, t), . . . , u(xN−1, t)),
DN stands for the Fourier collocation differentiation and · is
the pointwise product of two vectors. The discretization of
the nonlinear term in (2) is chosen in order to conserve the
kinetic energy E =

1
2

∫ 1
−1 u2(x, t)dx when ν = 0 [5]. For time

integration a fourth-order Runge–Kutta scheme is used.
At each time step we filter the solution using the CVS

method, which we now recall briefly. Given orthogonal
wavelets (ψ j i ) and the associated scaling function at the largest
scale ϕ, the velocity can be expanded into

u(x) = 〈u | ϕ〉ϕ(x)+

J−1∑
j=0

2 j∑
i=1

〈u | ψ j i 〉ψ j i (x), (3)

where j is the scale index, i is the position index and the inner
product is 〈a | b〉 =

∫ 1
−1 a(x) · b∗(x)dx with b∗ denoting the

complex conjugate of b. Since location in orthogonal wavelet
space is sampled on a dyadic grid, this representation breaks
the local translation invariance of (1) which may impair the
stability of the numerical scheme. Therefore we prefer using,
instead of real-valued wavelets, complex valued wavelets [16]
which very closely preserve translation invariance. In this case,
(3) still holds as long as we replace the right-hand side by its
real part.

The CVS filter then consists in discarding the wavelet
coefficients whose modulus is below a threshold T . In addition,
wavelet coefficients at the finest scale are systematically filtered
out to avoid aliasing errors. The resulting velocity uT is a
nonlinear approximation of u.

Because the velocity field decays in time, the threshold has
to be estimated at each time step in a self-consistent way. To
do this, we follow the iterative method introduced in [2], which
consists in imposing the ratio between the standard deviation of
the discarded wavelet coefficients and the threshold itself,

T 2
=

5
NT

J−1∑
j=0

2 j∑
i=1

|̃u j i |
2 H(T − |̃u j i |), (4)

where H is the Heaviside step function and NT is the number
of wavelet coefficients below the threshold. The solution
of (4) is determined numerically using a fixed point iterative
procedure [2], initialized with T0 = 5E/N , where E is the total
energy.

3. Deterministic initial condition

We consider Burgers equation (1) with the deterministic
initial condition u(t = 0, x) = − sin(πx). We begin by
comparing three computations: a Galerkin-truncated inviscid
case (ν = 0), a viscous case (ν = 10−4), and an inviscid case
with the CVS filter applied at each time step. The solutions are
computed up to time t = 5, using N = 4096 grid points.

By computing in the Galerkin-truncated inviscid case
(ν = 0), we check that our numerical scheme conserves
energy (Fig. 1, left) as theoretically predicted. We observe
that the final solution at t = 5 exhibits energy equipartition
(Fig. 1, right) with a Gaussian velocity PDF, as expected.
Note that the white line in Fig. 1 (right) corresponds to the
wavelet energy spectrum, i.e., the squared modulus of the
wavelet coefficients computed with a complex-valued Morlet
wavelet. It better exhibits the k0 scaling, characteristic of
the energy equipartition, than the highly oscillatory Fourier
energy spectrum (black line). This illustrates the fact that the
wavelet energy spectrum is more stable than the Fourier energy
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Fig. 2. Deterministic initial conditions. Snapshots of velocity for the viscous (left) and the CVS-Filtered inviscid (right) cases at t = 0 (dotted line), t = 0.5 (solid
line) and t = 5 (dashed line). The insets show a zoom of the shock at t = 0.5.

Fig. 3. Deterministic initial conditions. Left: Time evolution of the percentage of wavelet coefficients retained after filtering. Right: Dyadic tree of the wavelet
coefficients which are retained after filtering at t = 5. The crosses indicate the 7%N retained wavelet coefficients, while the small dots correspond to the 93%N
discarded wavelet coefficients. The scale varies from coarse to fine, up the vertical axis.

spectrum when we analyse only one realization of a stochastic
process [7].

For the viscous and CVS-filtered inviscid cases, the energy
remains basically constant until the shock forms at t = 1/π , but
then decays with a t−2 law. In Fig. 1 (right) the energy spectra
of the viscous and CVS-filtered inviscid cases exhibit a power
law behaviour with slope −2.

Fig. 2 shows the velocity at three time instants for the
viscous and CVS-filtered inviscid cases. The CVS-filtered
inviscid solution follows the same dynamics as the viscous
one, except for the small overshoot we observe at x = 0 after
the shock has formed. This Gibbs phenomenon is stronger but
less oscillatory for the CVS-filtered inviscid case than for the
viscous case (see the insets in Fig. 2).

The time evolution of the percentage of retained wavelet
coefficients is presented in Fig. 3 (left). It shows that, with only
relatively few coefficients (about 7%N ), we are able to track
the nonlinear dynamics of the flow and this number remains
almost constant after the shock formation. At t = 5, the retained
wavelet coefficients are located around x = 0, the position

of the shock, and span all scales there, as illustrated in Fig. 3
(right).

We now show that, when N increases, the filtered solutions
converge towards the entropy solution uref which solves the
Burgers equation in the inviscid limit. For comparison, we also
consider viscous solutions with viscosity depending on N (ν =

0.4096N−1), which are known to converge to uref everywhere,
except at x = 0. The entropy solution uref is directly calculated
using the method of characteristics.

First, we consider a global error estimate, the relative mean
square error, defined as

εN (t) =
‖u − uref‖

2
2

‖uref‖
2
2

. (5)

On Fig. 4(left) we plot εN (t) for N = 4096. The error for the
CVS-filtered inviscid case is larger but saturates after t ' 2. In
contrast, the error for the viscous case keeps increasing because
the finite viscosity smooths the shock away. Considering
now t = 5 and varying N , we find that for both the viscous
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Fig. 4. Deterministic initial conditions. Left: Time evolution of the relative mean squared error εN at N = 4096. Right: Relative mean squared error εN at t = 5
for different numerical resolutions, N = 128 to N = 8192. We compare the viscous (triangle) and CVS-filtered inviscid (circle) cases.

Fig. 5. Deterministic initial conditions. Error on the relative total variation ε′N (left), and number of retained wavelet coefficients (right), as functions of N at t = 5,
for the viscous (triangle) and CVS-filtered inviscid (circle) solutions.

and CVS-filtered inviscid cases εN decreases as N−1 (Fig. 4,
right).

We now study the behaviour of the oscillations in the
neighbourhood of the shock when the resolution N is increased.
The total variation of a function f on [−1, 1] is defined by:

‖ f ‖T V =

∫ 1

−1
|∂x f |dx . (6)

To detect the presence of spurious oscillations, we compute
the relative error on the total variation.

ε′N (t) =
‖u(x, t)‖T V − ‖uref(x, t)‖T V

‖uref(x, t)‖T V
, (7)

which is plotted as a function of N for t = 5 on Fig. 5 (left).
For the viscous case, ε′N is negative and converges towards zero
when N increases. For the CVS-filtered inviscid case, ε′N tends
to a finite positive value close to 0.84. The overshoot that could
be seen on Fig. 2 persists but becomes more and more localized
around the singularity when N increases, thus ensuring mean
square convergence.

Let us end this section by a short discussion on the evolution
of the compression rate when N increases. Fig. 5 (right)

shows that the number of retained wavelet coefficients increases
roughly logarithmically as a function of N . As a consequence,
notice that for the filtered solution the relative mean square
error εN (t), if it is considered as a function of the number
of retained coefficients only, converges to zero exponentially
fast. However, to experience this promising rate of convergence
in practice, we should compute the evolution of u using only
the wavelet coefficients whose modulus remains above the
threshold.

4. Random initial condition

In the previous section we demonstrated that the CVS-
filtered inviscid Burgers equation exhibits an evolution similar
to that of the viscous Burgers equation. We now would like to
check if this is still verified in the context of Burgulence for
both white noise [1] and Brownian motion [21].

4.1. White-noise initial condition

We take as initial velocity one realization of a Gaussian
white noise computed at resolution N = 4096, which
corresponds to a random non-intermittent initial condition.
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Fig. 6. White noise initial conditions. Left: Time evolution of energy. The inset shows the t−2/3 decay in log–log coordinates. Right: energy spectrum at t = 5. We
compare the viscous (triangle) and CVS-filtered inviscid (circle) simulations. We observe that the wavelet spectrum (white lines) better exhibits the k−2 scaling of
energy than the Fourier spectrum (black lines).

Fig. 7. White noise initial conditions. Snapshots of velocity at t = 0.3 (left) and t = 5 (right). Top: viscous equation with ν = 2 × 10−5. Bottom: CVS-filtered
inviscid equation.

Since the CVS filter removes the non-intermittent noisy
contributions, if applied to a Gaussian white noise the latter
would be completely filtered out. Therefore we first integrate
the viscous equation with ν = 2 × 10−5 without filtering,
and wait until the flow intermittency has sufficiently developed
before applying the filter. To check the flow intermittency we
monitor the flatness of the velocity gradient until it reaches
the value 20, which happens at t = 0.017 for the realization
described here. Then, we reset t = 0 and integrate up to t = 5,
both the viscous equation with ν = 2 × 10−5, and the CVS-
filtered inviscid equation.

In Fig. 6 (left) we show that the energy, for both the CVS-
filtered inviscid solution and the viscous solution, decays with
a t−2/3 law, as found by Burgers [4,21]. In Fig. 6 (right)
we observe at t = 5 that both energy spectra present the
same k−2 scaling. Notice that the two white lines in Fig. 6
(right) correspond to the wavelet energy spectrum, which better
exhibits the k−2 scaling of the energy than the highly oscillatory
Fourier energy spectrum (black lines).

Finally, we show on Fig. 7 that the viscous and CVS-
filtered inviscid solutions are almost identical in physical

space, presenting a typical sawtooth profile as first noticed by
Burgers [4].

4.2. Brownian motion initial condition

We use the same resolution N = 4096 as above, but only
the initial condition changes. Since we have chosen periodic
boundary conditions we approximate the Brownian motion by
the Fourier series:

u(x, 0) = Re

(∑
k

ûkeikx

)
(8)

where k = −
N
2 + 1,− N

2 , . . . ,
N
2 − 1. We set û0 = 0 and,

for k 6= 0, we take for ûk a complex Gaussian random variable
with standard deviation 1/|k|.

The solution for the viscous case is computed with ν =

1.2 × 10−4. For the CVS-filtered inviscid case, as we did for
the white noise initial condition, we do not filter before enough
intermittency has developed. We thus integrate the viscous
equation with ν = 1.2 × 10−4 for 0.05 time units and then
switch viscosity off. This procedure provides the initial velocity
which, by construction, is the same for both methods (Fig. 8).
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Fig. 8. Brownian initial condition. Velocity at t = 0 (left), its Fourier energy spectrum (right, black line) and its wavelet energy spectrum (right, white line).

Fig. 9. Brownian initial condition. Left: Time evolution of energy. Right: wavelet energy spectrum at t = 5. We compare the viscous (triangle) and CVS-filtered
inviscid (circle) cases.

Fig. 10. Brownian initial conditions. Snapshots of velocity at t = 0.1 (left) and t = 5 (right). Top: viscous equation with ν = 1.2 × 10−4. Bottom: CVS-filtered
inviscid equation.

The energy decay matches well between the CVS-filtered
inviscid and the viscous solutions (Fig. 9, left). A k−2 power
spectrum is also obtained for both at t = 5 (Fig. 9, right).

At t = 0.1 numerous small shocks are present in the viscous
solution (Fig. 10, top left). All of them are correctly reproduced
by the CVS-filtered inviscid solution (Fig. 10, bottom left).
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At t = 5 the single remaining shock, which is still
resolved in the viscous solution (Fig. 10, top right), is correctly
reproduced in the CVS-filtered inviscid solution (Fig. 10,
bottom right).

5. Conclusion

We have shown that CVS filtering at each time step
the solution of the inviscid Burgers equation gives the
same evolution as the viscous Burgers equation, for both
deterministic and random initial conditions. As our contribution
to Euler equations’ 250th anniversary and Euler’s 300th
birthday, we conjecture that CVS filtering the Euler equation
may be equivalent to solving the Navier–Stokes equations in
the fully-developed turbulent regime, i.e., when dissipation
has become independent of viscosity. We predict that the
retained wavelet coefficients would preserve Euler’s nonlinear
dynamics, while discarding the weaker wavelet coefficients
would model turbulent dissipation and give Navier–Stokes
solutions. Since in the fully-developed turbulent regime
turbulent dissipation strongly dominates molecular dissipation,
there is no reason to model turbulent dissipation by a Laplace
operator anymore. Indeed, turbulent dissipation is a property
of the flow, while molecular dissipation is a property of the
fluid and may no more play a role when turbulence is fully-
developed. We think that in this regime the CVS filter could
be a better way to model dissipation, replacing global by
local smoothing, while preserving nonlinear interactions. In
this paper we have chosen the simplest toy model to test
this conjecture, although Burgers’ equation, in contrast to
Euler’s equation, is neither chaotic nor produces randomness.
Therefore we conjecture that the CVS-filter would work better
for Euler/Navier–Stokes than for Burgers, since CVS is based
on denoising which is justified when there is chaos and
randomness.
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