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A B S T R A C T

Modern malware is becoming hard to spot since attackers are increasingly adopting new techniques to
elude signature- and rule-based detection mechanisms. Among the others, steganography and information
hiding can be used to bypass security frameworks searching for suspicious communications between processes
or exfiltration attempts through covert channels. Since the array of potential carriers is very large (e.g.,
information can be hidden in hardware resources, various multimedia files or network flows), detecting
this class of threats is a scarcely generalizable process and gathering multiple behavioral information is
time-consuming, lacks scalability, and could lead to performance degradation.

In this paper, we leverage the extended Berkeley Packet Filter (eBPF), which is a recent code augmentation
feature provided by the Linux kernel, for programmatically tracing and monitoring the behavior of software
processes in a very efficient way. To prove the flexibility of the approach, we investigate two realistic use
cases implementing different attack mechanisms, i.e., two processes colluding via the alteration of the file
system and hidden network communication attempts nested within IPv6 traffic flows. Our results show that
even simple eBPF programs can provide useful data for the detection of anomalies, with a minimal overhead.
Furthermore, the flexibility to develop and run such programs allows to extract relevant features that could
be used for the creation of datasets for feeding security frameworks exploiting AI.
1. Introduction

Detecting modern threats requires increased efforts, for instance due
to the use of multi-stage loading architectures, modular design or the
adoption of sophisticated Crime-as-a-Service frameworks [1]. Attack-
ers are progressively introducing new techniques to elude signature-
and rule-based detection systems. This trend culminates into malware
endowed with some form of information hiding or steganography to
covertly exfiltrate data towards a remote Command & Control (C&C) fa-
cility and to embed attack routines or configuration files into innocent-
looking digital images [2]. To identify anomalies and spot suspicious
activity, deep visibility over the behavior of software processes is
required, but this often leads to unacceptable overheads, especially
for virtualized services or resource-constrained devices. Moreover, the
availability of ubiquitous and seamless network connectivity, the up-
take of 5G with edge/fog installations, as well as the progressive
integration with IoT, build a distributed and multi-domain computing
continuum where new services are created and disposed in a rapid
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manner. Unfortunately, security paradigms have not evolved at the
same pace and legacy security perimeter models cannot effectively
address new vulnerabilities and threats [3]. Thus, detecting sophisti-
cated attacks and steganographic malware (defined in the following as
stegomalware) is an emerging challenge that should properly balance
the depth of inspection with resource consumption [1,2].

Spotting attacks targeting communication and computing infras-
tructures has been largely discussed in the literature. For the case of
networks, many works focus on anomaly detection (see, e.g., [4] for
a recent survey), which aims at recognizing deviating behaviors to
prevent or reveal a wide-range of attacks like DoS, traffic amplification,
spoofing and scanning attempts. Another important aspect concerns
the ability of detecting threats targeting hosts, network appliances
and personal devices, which are increasingly mobile [5] or intercon-
nected with a cyber–physical system [6]. However, information-hiding-
capable threats and stegomalware pose new challenges, as they exploit
bandwidth-scarce channels and their detection depends on the used
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carrier, i.e., the software/hardware entity manipulated for encoding the
secret [1,7,8].

Under this perspective, new technologies that give programmatic
visibility over applications, infrastructures, and devices are necessary.
They should be able to monitor, inspect and trace processes at run-time,
hence allowing to undertake specific attacks without overwhelming
the system. In this paper, we propose to take advantage of kernel-
level techniques for code augmentation and investigate their usage
for detecting stegomalware. Originally proposed as a monitoring and
tracing mechanism for performance tasks, the extended Berkeley Packet
Filter (eBPF) framework has been already adopted for security pur-
poses, though existing applications do not fully take advantage of its
capabilities. We therefore investigate suitable indicators that can be
collected via eBPF programs to reveal two different steganographic
threats. First, we consider two processes running on the same host
and colluding to ‘‘evade’’ typical security controls (i.e., sandboxing).
Second, we gather low-level measurements that are not available from
common tools to detect hidden communication attempts nested within
network traffic.

Summarizing, the contributions of this paper are: (i) the develop-
ment of eBPF programs to collect data from the Linux kernel in a
very efficient way; (ii) the creation of realistic use cases for collud-
ing applications and IPv6-capable covert channels, which has been
often neglected in the literature; (iii) the analysis of how the collected
information can be used to design effective algorithms for detecting
stegomalware and covert channels; (iv) an analysis on the use of eBPF,
by taking into account performance measurements in terms of resource
consumption.

This paper is an extended version of the work presented in [9] and
has the following main improvements: (i) the use of kernel-level tracing
to support security-related tasks has been refined; (ii) attacks leveraging
covert channels built within IPv6 traffic have been also considered,
i.e., the paper does not focus anymore on colluding applications only;
(iii) deployability and scalability of the approach have been taken into
account.

The remainder of the paper is structured as follows. Section 2
reviews techniques to support the detection of malware and stegoma-
lware. Section 3 provides background information on the considered
threats and the eBPF. Section 4 showcases the use of eBPF to detect
covert communications via the manipulation of permissions of files,
while Section 5 investigates its ability to spot network covert channels
targeting IPv6 traffic. Section 6 elaborates on the use of kernel-based
measurements both in terms of overheads and perspective integration
with other frameworks. Finally, Section 7 concludes the paper and
portraits some future research directions.

2. Related works

Being able to collect information (e.g., network traffic) or trace the
execution flow of a wide array of software entities are two core tasks to
support frameworks and algorithms to detect malware, prevent attacks
or engineer security-by-design systems.

To face the heterogeneity of modern deployments and to provide
scalability and reusability features, virtualization has been proposed
to ease data gathering operations both in computing and networking
scenarios. As possible examples, in [10] and [11] authors propose the
adoption of an orchestrator for controlling pervasive and lightweight
security hooks embedded in the virtual layers of cloud applications.
Flexible monitoring can be also obtained by enhancing network hyper-
visors: this allows to engineer monitoring and security-oriented services
in an easier manner, especially when in the presence of complex
architectures based on micro services or cloud technologies [12]. For
the specific case of targeting communication networks, Deep Packet
Inspection (DPI) is an important component as it allows to examine
many facets of a flow. Owing to virtualization, probes can be deployed
as software components over commodity hardware. For instance, [13]
2

proposes an approach for the dynamic placement of DPI-capable soft-
ware agents to contain power consumptions and costs, while delivering
suitable degrees of scalability and performance. A similar blueprint can
be used to enforce integrity of virtual machines, isolate higher software
layers, and implement adaptive network security appliances (e.g., in-
trusion detection systems and firewalls) encapsulated within virtual
machines [14]. When dealing with complex and virtualized scenarios,
an important aspect concerns the definition and the implementation of
efficient orchestration policies. A possible idea exploits meta-functions
to dynamically construct security services for satisfying various security
requirements [15].

The use of cloud-based frameworks or virtualized platforms for
detecting stegomalware or network covert channels, i.e., hidden com-
munication attempts laying within network traffic, has been addressed
in a limited manner. Apart our preliminary study in [9], other works
solely focus on the normalization of network traffic (see, e.g., [7]
and [8] and the references therein) but no prior work investigates
how a steganographic threat or a covert channel can be detected
or prevented by means of virtualization. Typically, risks arising by
attacks endowed with some form of information hiding technique are
only briefly discussed (see, e.g., [16]) while threats like DoS and Dis-
tributed DoS are addressed more frequently [17]. A notable exception
considering virtualization, covert channels and stegomalware concerns
colluding applications, i.e., two entities trying to communicate outside
their respective (secured) execution environments. As paradigmatic
examples, [18] and [19] investigate colluding containers or virtual
machines trying to communicate via a covert channel to exfiltrate data,
map the underlying hardware deployment or guessing if the attacker
has been confined within a honeypot. Another typical scenario for
a colluding application scheme concerns the use of hidden channels
between virtual machines to exfiltrate private keys [20].

Due to the nature of stegomalware and other emerging threats like
cryptolockers, a recent trend concerns the gathering and monitoring
of some well-defined and low-level features instead of high-level yet
specific metrics [1,7,9]. Even if this could sound paradoxical, being
able to gather system-specific information could allow to generalize
the detection phase or make it more scalable. In this vein, examples
of threats that can be detected in a more effective manner via low-
level tracing, include cryptojacking, i.e., unauthorized utilization of the
host or computing infrastructure of a victim to mine crytpocurrencies,
ransomware, i.e., threats encrypting the file-system of the victim to
obtain a ransom, or the aforementioned stegomalware. Concerning
cryptojacking, in [21] authors propose to detect attacks by gathering in-
formation on system features like the CPU usage, memory consumption,
intensity of disk read/write operations, and activities on the network
interface. In [22], authors address JavaScript threats acting within the
browser. To detect attacks, they collect information on the JavaScript
runtime (including the load of events), as well as usage statistics for
the network and specific libraries. Such an approach can be used to
automatically identify a large population of in-browser cryptojacking
attacks. A complementary technique exploits signatures in the network
traffic produced by the cryptojacking daemons to send results to C&C
servers [23]. For the case of ransomware, its aggressive usage of
resources during the attack (i.e., the encryption of a portion of the file
system) typically leads to an anomalous load of operations that could
be observed. This has been used in [24] to early detect ransomware by
examining how the data of user changes in a time window, if the type
of files is modified or many files are deleted.

Indeed, more fine-grained measurements can be performed by op-
erating in the lower levels of the software architecture, for instance
by directly developing in-kernel probes or via ad-hoc mechanisms like
eBPF. For the case of eBPF, some approaches have been already pro-
posed in the literature. In [25] authors deal with an eBPF-based tool for
enriching information extracted from network packets and to efficiently
gather data when inspecting communications across virtualized hosts

or containerized applications. A similar idea is used in [26], but in this
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Fig. 1. Reference scenario for the colluding applications technique.

case eBPF and eXpress Data Path have been primarily used for network
monitoring and traffic analysis purposes, rather than for detecting
attacks (see, [27] for a very recent survey on the topic). As regards
approaches mixing in-kernel measurements and the eBPF engine, [28]
reviews various kernel-level security mechanisms for improving con-
tainer security and network function virtualization. Concerning the
use of in-kernel measurements to detect malware, [29] focuses on
Android OS and proposes to monitor system calls entering the kernel
to detect malicious behavior potentially hidden in native code. Instead,
in [30] the focus is shifted from the syscall to data, i.e., malware is
haracterized according to the properties of data objects manipulated
uring the attacks.

To sum up, at the best of our knowledge, there are not any prior
orks dealing with platform-specific or kernel-based measurements to
etect stegomalware. Rather, some works abstract the detection process
y computing general indicators of the presence of two applications
olluding via a covert channel. For instance, in [31] authors proved
hat the power consumption can be used to spot such attacks. To
ollect information, they employed CPU usage measurements and tools
nteracting with the power management layer of the device. Another
dea is to reveal steganographic communications by evaluating overlaps
n the activation patterns of communicating processes. In this case,
easurements of the CPU usage (as well as time spent in the various

ueues waiting for being scheduled) are needed [32].

. Background

In this section, we provide background information on two main
echniques used in stegomalware to bypass security frameworks and to
xfiltrate data. Then, we introduce kernel-based data gathering.

.1. Colluding applications

The term ‘‘colluding applications’’ is an umbrella for identifying a
lass of threats able to bypass the security policies deployed in underly-
ng software and hardware layers, including the guest OS. Put briefly,
he attack creates a local covert channel for exchanging data within the
ingle host [8,33] to set up an ‘‘abusive’’ inter-process communication
ervice between various software entities, e.g., applications and pro-
esses. Fig. 1 illustrates the reference scenario, i.e., two applications
anting to leak sensitive data outside the hosting node. Specifically,
pplication A can access sensible information of the victim but it is
revented by a sandbox from accessing the network layer. Instead,
pplication B has not access to such data, therefore is considered safer
nd can communicate outside the host.

A stegomalware can implement two innocent-looking applications
olluding to leak sensitive information. To this aim, it should find a
uitable carrier where to inject the secret data. For instance, the sender
an modulate the amount of used RAM to signal a bit to the receiver
nspecting the resource, e.g., 1 when allocating memory and reducing
he overall availability and 0 otherwise. The carriers can be various

software or hardware artifacts composing the entire architecture: ap-
proaches to create a local covert channel include modulation of the
3

space available in the file system, the CPU load, highjacking of inter-
process communication or messaging services, or the state of TCP/Unix
sockets [8,33].

3.2. Network covert channels

Network covert channels enable to transmit secrets in a stealthy
manner by injecting the information within a network artifact acting
as the carrier. In this case, the secret sender directly embeds data
in network packets or alters the temporal evolution of some features
of the traffic, e.g., it modulates the inter-packet statistics or changes
the packet sequence to encode information. According to the adopted
approach, a storage or a timing network covert channel is created as
depicted in Fig. 2. We point out that, in this work, we mainly focus on
storage channels.

In general, network covert channels are used by stegomalware for
data exfiltration, implementation of the C&C infrastructure, develop-
ment of cloaked transfer services for retrieving additional software
components, botnet orchestration, and elusion of firewall rules [7,8,
18]. To inject data within a network flow, the typical mechanisms
are: alteration of the volume of the produced traffic, modulation of
the throughput, artificial creation of retransmissions or increased error
rates, transcoding of multimedia streams for using the freed capacity to
store secrets, and direct embedding of data in unused fields of headers
of packets [1,7,8,18]. Recently, IPv6 is gaining its momentum and
literature already proposed several techniques targeting such protocol.
In particular, the seminal work in [34] introduced over twenty different
covert channels exploiting various fields and internals of IPv6. Yet,
the contribution is only theoretical, as no implementation or exper-
imental evaluations have been provided. Even if real measurements
downsized the capacity of IPv6-based covert channels, their stealthiness
make them a suitable choice to endow malware with steganographic
communication features [35].

3.3. Data gathering with eBPF

As hinted, detecting stegomalware requires temporal and spacial
correlation of fine-grained system properties and actions. The Linux
kernel provides quite a complete framework for giving deep visibility
over the execution of applications and the kernel itself. Several data
sources are available for tracing the execution of both system calls
and internal functions: kprobes, uprobes, tracepoints, dtrace-probes, and
LLTng-UST [9,36]. Even if multiple tools are available to collect in-
formation from tracing hooks (e.g., ftrace, perf, sysdig, SystemTap, and
TTng), the eBPF is still the most powerful framework for gathering
ata in the perspective of detecting stegomalware, covering both code
racing and packet inspection.

Originally used to monitor and inspect network packets [37], eBPF
s basically a virtual machine within the kernel able to execute bytecode
ompiled from C sources in a just-in-time fashion. To avoid harming
he system, eBPF programs go through an in-kernel verifier checking
heir control flow graph to ensure termination and that the memory
nd registers accessed during the execution are always in a valid state.
ven if fast and flexible, eBPF has some limitations: (1) programs
annot have loops as to enforce that they will finish within a bounded
xecution time; (2) interactions with the user space happen via ‘‘maps’’,
hich are key–value structures stored in a shared-memory area; (3) it

s not Turing complete.
Compared with similar solutions, eBPF does not require additional

ernel modules. This improves the portability of eBPF programs across
ifferent installations. In addition, programs can be chained, using
low-overhead linking primitive called tail call, which allows the

reation of complex applications running inside the kernel. The eBPF
xploits an event-driven architecture and a program is hooked to a
articular type of event: each occurrence of the event will trigger its
xecution and, based on the type, the program might be able to alter
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Fig. 2. Reference scenario for network covert channels.
the event context (e.g., check the parameters of a function call or
parse a network packet). This model allows to execute programs only
when needed, making always-on solutions inexpensive. Programs can
be attached to multiple hooks. Possible examples are: network cards via
the eXpress Data Path, egress/ingress queues within the network stack,
kprobes, uprobes, Userland Statically Defined Tracing probes, Java
Virtual Machine, tracepoints, and seccomp/landlock security things.
We point out that, in this paper, our investigation leverages both kprobe
and tc1 programs.

The typical use of eBPF for gathering information requires the
development of both an eBPF program and a user-space utility that
loads the program and interacts with the kernel counterpart via a map
mainly to configure parameters and collect monitored data. To this aim,
a valuable resource is the BPF Compiler Collection2 (BCC), which is a
toolkit for creating efficient kernel tracing and manipulation programs.
It includes several tools for tracing the most common features, allows
writing eBPF programs in C, and also offers frontends in Python and
Lua. Even if originally conceived for performance analyses, the BCC
can be also used ‘‘out of the box’’ to detect some well-known covert
channels, as we will show in Section 4.1. For possible usages of the
BCC for security purpose, see [9] and the references therein.

4. Data gathering for colluding applications

In this section, we investigate eBPF tracing for the detection of
a stegomalware implementing a colluding applications scheme. To
this aim, we implement an attack via the chmod-stego technique
discussed in Section 4.1. Obtained numerical results are presented in
Section 4.2.

4.1. Chmod-based stegomalware and its detection

To model a malware implementing a colluding applications attack
(see, Fig. 1), we used chmod-stego.3 The chmod-stego is a Python appli-
cation made of two peers, i.e., the secret sender and the secret receiver.
To communicate, the sender encodes the secret message within access
permission numbers associated in Linux to files stored in a directory

1 tc (acronym for Traffic Control) is the user-space utility in Linux for
managing the kernel packet scheduler, which includes classification, queuing,
policing, shaping, and scheduling operations.

2 https://github.com/iovisor/bcc.
3 https://github.com/operatorequals/chmod-stego.
4

accessible by both endpoints. It can also set the channel capacity by
imposing a delay between two consecutive invocations of the needed
chmod(s). As a first step, the sender saves the initial ‘‘state’’ for all
the files (by using the stat system call in the OS module). Moreover,
it splits the secret message to be sent into chunks of a fixed size.
Every character within a chunk is converted to an integer value directly
mapped into the permissions of the targeted set of files. This operation
is repeated until a special EOF character is found. To achieve some
form of synchronization, the sender signals the encoding of a character
using a ticking mechanism, i.e., each time that a permission is changed,
it toggles the owner read bit of the first file in the directory. Accord-
ingly, the receiver remains listening on the owner read bit of the file
(i.e., the tick bit) in order to understand whether permissions encode
new information. If yes, the receiver acquires the access permission for
all the files and deciphers the character by using the ASCII encoding.
The process is iterated until the secret message is transmitted in its
entirety. To avoid that the communication is easily spotted due to
inconsistencies in the file system, at the end of the transmission, the
secret sender restores the file permissions to the original state.

Since the chmod-stego technique is based on the manipulation of the
file system, the most straightforward way to design a detection strategy
is by tracing the __x64_sys_chmod kernel function, which provides
better indications than generic I/O activity (e.g., read/write operations
through __x64_sys_read and __x64_sys_write). For this pur-
pose, we used the trace utility from BCC,4 which periodically reports
the number of times a given kernel function is invoked.

4.2. Numerical results

To assess if kernel-level tracing can be used to detect stegomalware,
we created an experimental setup composed of a Virtual Machine
running Debian GNU/Linux 10 (buster) with Linux kernel 4.20.9 and
the aforementioned chmod-stego application. To create some sort of
‘‘background noise’’, a kernel compilation was run, which entails many
I/O system calls and can be easily replicated for comparison. To gather
data, a simple eBPF filter was injected to trace invocations of the
__x64_sys_chmod kernel function and to report its relevant pa-
rameters, i.e., file and permissions, the Process ID, and the Thread
ID.

We performed two different sets of experiments. The first aimed
at evaluating the tradeoff between the steganographic bandwidth of

4 bcc/trace, URL: https://github.com/iovisor/bcc/blob/master/tools/trace.
py.

https://github.com/iovisor/bcc
https://github.com/operatorequals/chmod-stego
https://github.com/iovisor/bcc/blob/master/tools/trace.py
https://github.com/iovisor/bcc/blob/master/tools/trace.py
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Fig. 3. Detected invocation of the __x64_sys_chmod kernel function with 𝐿 = 30 and 𝛥𝑡 = 0.5, 5, 10, 20 s.
Fig. 4. Detected invocation of the __x64_sys_chmod kernel function with 𝛥𝑡 = 5 s and 𝐿 = 30, 60, 90, 120.
the covert channel and its detectability. To this aim, we fixed the
length 𝐿 of the secret message to be transmitted and we varied the
time between the transmission of two consecutive characters, denoted
as 𝛥𝑡. Specifically, we conducted trials with 𝐿 = 30 characters and
𝛥𝑡 = 0.5, 5, 10, 20 s. In the second round of tests, we investigated the
influence of the size of the data exchanged between the two colluding
applications. Hence, we set 𝛥𝑡 = 5 s and we performed trials with
𝐿 = 30, 60, 90, 120 characters, which may be representative of the
exfiltration of a PIN, a cryptographic key or the information of a
credit card. In both experiments, the ‘‘clean’’ configuration has been
considered the one characterized by the load of traced kernel functions
due to the compilation of the Linux kernel 5.5.5. All the trials lasted
10 min and the hidden communication started at the begin of the
experiment. We point out that such parameters allowed to consider a
wide range of threats (e.g., slow and long communications character-
izing advanced persistent threats or malicious applications wanting to
exfiltrate as quick as possible sensitive information) while guaranteeing
the adequate statistical relevance.

Fig. 3 depicts the results of the first round of tests. As shown, the
presence of an exchange of information through a covert channel (de-
noted as CC in the figure) affects both the number and the distribution
of the __x64_sys_chmod kernel functions. Specifically, the presence
of an anomaly can be detected by the larger number of cumulative
invocations of the kernel function with respect to a known baseline
(see Fig. 3(a)). We note that the higher the steganographic bandwidth
(i.e., 𝛥𝑡 decreases) the higher is the load of __x64_sys_chmod
kernel functions at the begin. In fact, higher transmission rates reduce
the time needed to transmit the secret message. This can be viewed
in Fig. 3(b), where the instantaneous time evolution is shown. The
cumulative number of __x64_sys_chmod invocations converges to
a common value at the end, since the size of the message is the same
in this scenario. Similar results have been observed for the second
5

set of experiments, which are showcased in Fig. 4. In this case, the
steganographic bandwidth is fixed and the length of the message is the
unique factor that makes the transmission more or less detectable. The
difference between cumulative counters at the end of the experiments
comes from different message sizes.

For what concerns detection, in general, channels with a higher
steganographic bandwidth and longer messages are easier to detect. In-
deed, they imply either sudden peaks or larger volumes of
__x64_sys_chmod kernel functions. Clearly, on-line detection is not
straightforward, because of the difficulty to find an effective decision
rule able to discriminate between legitimate usage and the presence
of hidden transmissions for different use cases. For the case of chmod-
stego technique, a possible signature is given by a sudden change in
the volume of __x64_sys_chmod kernel functions at the end of the
trials. This is due to the sender that restores the original file permis-
sions, as to avoid the detection by common file system monitoring
tools. Unfortunately, there may be false positives, as the peak in the
middle of the kernel compilation. Yet, taking into account additional
parameters available from tracing (e.g., the file names) can be used to
further improve the likelihood of the detection.

5. Data gathering for covert channels

In this section, we investigate the use of eBPF for gathering infor-
mation on a threat exfiltrating data through a network covert channel
nested in IPv6 traffic. The implementation of the attack is discussed in
Section 5.1, while numerical results are presented in Section 5.2.

5.1. IPv6 covert channels and their detection

To implement a realistic IPv6 network covert channel, we developed
a prototypal application. Our software is written in Python 3 and makes
use of Scapy and NetfilterQueue libraries for retrieving and manipulat-
ing network packets, respectively. We point out that our scope is not the
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weaponization of steganographic threats, so the execution footprints
of the secret sender and the secret receiver are not important in our
implementation.

Recalling Fig. 2, we aim at exploiting part of the IPv6 protocol data
unit to inject the secret information. Even if the literature proposes
several mechanisms, we directly store the covert data in the Flow
Label field of the IPv6 header. This allows to have an adequate
steganographic capacity (i.e., 20 bit per packet) and to model an
attack effective in realistic scenarios [35,38]. Moreover, recent analyses
highlight the fragility of the algorithms used to randomly generate
Flow Label values in many OSes, thus understanding other potential
security flaws is a prime research goal [39].

To have the needed volume of carriers, the secret endpoints ‘‘high-
jack’’ an overt and licit IPv6 traffic flow in a Man-in-the-Middle fashion.
To perform the injection and extraction of secrets, both endpoints use
ip6tables rules combined with NFQUEUE programmatically driven.
The overt traffic is routed in the NFQUEUE of the sender and triggers
the injection function, which retrieves the IPv6 datagram by using the
get_payload() call. If a packet is candidate for containing a secret
(e.g., the sender needs to transmit a character), the original Flow
Label is altered via the invocation of the set_payload() routine.

he IPv6 packet is then released and sent through the network. To
ollect the secret information, the receiver inspects the incoming flow
ia an ip6tables rule as well. If the datagram contains a secret,
he Flow Label is read and the bit of information is stored. In our
estbed, steganographic packets are recognized via a counting scheme:
eveloping more sophisticated and robust signatures is part of our
ngoing research.

A detector for this kind of network covert channel should be able
o inspect the Flow Label field and analyze its usage. In this vein,

we developed an ad-hoc eBPF program for inspecting the header of
IPv6 packets and attached it to the tc queuing subsystem. To guarantee
scalability and to optimize performances, our program splits the label
space (i.e., the 20-bit space of the values of the various Flow Label
observed) into a number of equal bins, and counts the number of occur-
rences of the values in each bin. As a companion, we also developed a
user-space utility that periodically collects data from the shared map
allowing the percolation of information from the kernel to the user
space.

5.2. Numerical results

To evaluate the effectiveness of using eBPF to support the detec-
tion of covert network communications, we prepared an experimental
testbed. A secret sender and a secret receiver exchange data through the
aforementioned IPv6 covert channel running on two Virtual Machines
with Debian GNU/Linux 10 (buster) with kernel 4.20.9. The overt
traffic used by the two secret endpoints to embed data is an scp-based
transfer over a native IPv6 network (i.e., no tunneling or additional
4to6 or 6to4 mechanisms were present). We underline that our tests
aim at investigating how changes in the Flow Label affect the ‘‘his-
togram’’ measured by our eBPF filter and to understand features that
should be considered in the design of effective detection algorithms.
For this reason, background traffic has not been considered and more
complex investigations are left as future work. A third Virtual Machine
with Debian GNU/Linux 10 (buster) with kernel 4.20.9 has been set up
to act as an intermediate router running the eBPF program and the user
space utility. The eBPF filter was used to parse all the packet headers,
extract the Flow Label and increase the proper bin, according to the
observed value.

To precisely assess the performances of eBPF to support the detec-
tion of malware endowed with steganographic communication features,
we performed different trials. The first aimed at evaluating the impact
of the volume of information to be exfiltrated on the detectability of
the covert channel. Hence, we varied the length of the secret message
6

𝐿. Specifically, we considered 𝐿 = 256 bit (e.g., an encryption key
Fig. 5. Numbers of changing bins with 𝛥𝑠 = 100 ms and 𝑘 = 0 for covert messages
with various lengths 𝐿 and number of bins 𝐵.

r a PIN), 𝐿 = 4096 bit and 𝐿 = 65 kb (e.g., multiple address
ook entries or sensitive data in a textual form), and 𝐿 = 1000 kb

(e.g., a highly-compressed image containing an industrial secret). For
the second round, we investigated the impact of possible countermea-
sures deployed by the attacker. We considered a malware using covert
channels implementing different ‘‘interleaving’’ policies to make the
burst of packets containing secret data stealthier through some form of
decorrelation. Thus, we performed trials with steganographic packets
interleaved with 𝑘 ‘‘clean’’ packets, i.e., with the original value of
the Flow Label used by the legitimate endpoints. In this case, we
considered 𝑘 = 0, 10, 100 and 1000 packets, with 𝑘 = 0 denoting a
flow without interleaving. The third round of tests addressed the perfor-
mances of eBPF. We repeated the aforementioned trials by varying the
time between two adjacent reads of the traffic measurements via the
user space tool, defined in the following as 𝛥𝑠. Specifically, we made
trials with 𝛥𝑠 = 0.1, 1, 10 s. We also investigated the ‘‘granularity’’ of the
eBPF-capable gathering framework by considering different numbers
of bins, denoted as 𝐵. Owing to security requirements, eBPF enforce
writing programs with precisely-bounded memory usages, thus we were
not able to map the Flow Label with a resolution greater than 216

bins, i.e., we considered 𝐵 = 28, 210, 212, 214, 216.
According to preliminary investigations, we found that 𝛥𝑠 = 100 ms

was the best resolution for detecting attacks. In fact, slower ‘‘sam-
pling times’’ can be effective only in the presence of bandwidth-scarce
environments or long-lasting communications (e.g., as it happens in
advanced persistent threats). Therefore, in the rest of this section, we
omit results for 𝛥𝑠 = 1 s and 10 s since the investigation of eBPF in
challenging settings is part of our ongoing research. Moreover, both
for the sake of clarity and compactness, we will show trials for selected
combinations of the parameters.

Fig. 5 shows the number of bins that change between two consecu-

tive sampling intervals. In the case of a legitimate behavior, we expect
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Fig. 6. Impact of the message length 𝐿 and the interleaving scheme 𝑘 on the number of changing bins with various 𝐵 and 𝛥𝑠 = 100 ms.
S
S
s

that each active flow uses the same Flow Label for its whole duration.
Hence, for each sampling interval, the number of changing bins will
be limited to 1 if new packets have been observed, otherwise to 0
(i.e., no traffic was present). To avoid burdening the graph, we do not
show the curve representing the legitimate behavior, since it would be
overlapped to the x-axis. Instead, when the IPv6 traffic is used to embed
a covert channel, the different values of the Flow Label will spread
across multiple bins. Here, the number of bins 𝐵 plays a role. In fact,
low values of 𝐵 lead to ‘‘larger’’ bins, thus the likelihood that different
(but ‘‘close’’) labels will be counted in the same bin increases. This
suggests that the detection will be more accurate with a finer-grained
partition of the label space (i.e., 𝐵 increases). Besides, the detection is
also affected by the duration of the transmission, which is proportional
to the length of the secret message. As shown, very short messages
(i.e., for 𝐿 = 256 bit) are very hard to be detected especially with
additional background traffic.

A similar investigation is presented in Fig. 6. In this case, we con-
sider a stegomalware using a more sophisticated transmission scheme,
i.e., data is exfiltrated in bursts interleaved with trails of 𝑘 non-
steganographic packets. As shown, the bursty mechanism accounts for
visible oscillations in the number of changing bins. This is more clear
for longer messages (i.e., when 𝐿 increases), whereas for shorter covert
communications the information is completely transmitted in the first
burst. To correctly detect the presence of a covert communication,
average values of multiple consecutive samples should be considered,
or a more fine sampling 𝛥𝑠 should be used.

Lastly, Fig. 7 reports how the number of bins 𝐵 impacts the ‘‘vis-
ibility’’ of the covert channel. Specifically, the higher the number of
bins, the larger the changes in the distribution of various values of
the Flow Label. This lets to easily spot a covert communication
even in the presence of background traffic. In fact, since almost every
IPv6 conversation is characterized by a life-long value for the Flow
Label, larger discrepancies in how new values are generated (or their
statistical distribution, see, e.g., [35,39]) can be used to reveal the
presence of the covert channel within the bulk of traffic. Unfortunately,
larger granularities require a higher consumption of resources in the
node running the eBPF filter. This is supported by the delay and lower
number of measurements in the case of 216 bins: despite the sampling
time is set to 100 ms, the user-space program takes more than 1 s to
cquire the map and to write the output to a file. As a consequence,
7

the related trend is always ‘‘late’’ with respect to the other cases,
especially for shorter message lengths. Delays and performance issue
will be further discussed in Section 6.

6. Deployability and additional results

Kernel-level tracing can be considered an effective enabler for de-
tecting steganographic attacks that targets both end nodes and network
traffic. In general, the technique should be properly integrated in a
more complex security framework. For instance, eBPF programs can
be used to provide data to specific toolkits aimed at detecting ste-
gomalware or emergent threats (as proposed in Project SIMARGL5 -
ecure Intelligent Methods for Advanced Recognition of Malware and
tegomalware) and they can be dynamically orchestrated at run-time to
upport multiple detection techniques (as proposed in Project ASTRID6

- AddreSsing ThReats for virtualIzeD services). We then consider addi-
tional aspects related to efficiency and resource consumption, outline
possible usage for advanced detection techniques, and point out open
issues.

6.1. Resource usage

We took into consideration the impact of the proposed approach
on resource consumption. The most relevant use case is still the IPv6
covert channel, where a larger amount of data is collected. As said,
eBPF is conceived as a lightweight framework, thus its stack size is
limited to 512 bytes and there is no kmalloc-style dynamic allocation
inside bpf programs either. Memory maps for communicating with the
user space are allowed to take more space.

Our eBPF program is only 96 instructions long. Table 1 reports
relevant statistics about memory usage when different number of bins
are used (the value 0 denotes the baseline scenario when no monitoring
is performed). The first section summarizes data reported by the eBPF
utilities (bpftool, in our case). The middle section shows selected

5 simargl.eu.
6 www.astrid-project.eu.

https://simargl.eu
http://www.astrid-project.eu
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Fig. 7. Impact of the granularity of 𝐵 on the number of changing bins for different message lengths 𝐿 with 𝛥𝑠 = 100 ms and 𝑘 = 0 (no interleaving).

Fig. 8. Heatmaps for various covert transmissions, with 𝐵 = 28, and different granularities 𝛥𝑠 used for populating bins via eBPF.
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Table 1
Memory usage with different number of bins 𝐵.

0 28 210 212 214 216

Max entries – 256 1024 4096 16,384 65,536
Mem size [kB] – 4.10 12.30 36.96 135.17 528.39

N. of active slabs 5777 5899 5928 5938 5990 6004
Active slab size [MB] 48.49 49.85 49.94 50.14 50.47 50.53
Total slab size [MB] 50.01 51.35 51.47 51.67 52.01 52.06

Free memory [MB] 1715.27 1620.13 1620.81 1619.62 1619.00 1618.26
Mapped memory [MB] 81,644.00 81,728.00 81,720.00 81,740.00 81,772.00 81,808.00
Table 2
Real sampling time experienced by the user-space program.

N. of bins 28 210 212 214 216

𝛥𝑠′ [ms] 109.40 120.40 233.48 351.13 1391.91

relevant measures of the used cache (number of active slabs7 and their
size as reported by slabtop). The last section reports a subset of
information available from /proc/meminfo. Even if the memory
required may increase by few kilobytes when the number of bins grows,
the impact on the kernel cache is rather limited. The relative impact on
the overall memory is even more limited.

Another potential performance bottleneck concerns the time needed
to run an eBPF program, since this overhead is present for each packet.
We took simple measurements from the Virtual Machine where the
eBPF program ran in the IPv6 testbed. This machine has 4 virtual
cores and 2 GB of RAM assigned and it was deployed over an Intel
server with two Xeon E5-2660 v4 processors running at 2.00 GHz.
Our measurements point out that such time is very small, 104.48 ns
on the average. In our trials, the maximum and minimum execution
times observed were 19, 715 ns and 49 ns, respectively. To be more
precise, we also evaluated the cumulative execution time taken when
our eBPF program is run for each packet composing a 1.2 GB file
transfer (accounting for a total of more than 75,000 packets). The
obtained total value is ∼7 ms, which leads to an almost negligible
overhead.

Unfortunately, the user-space application suffers performance is-
sues. To give a simple yet meaningful example, we set the desired
sampling time 𝛥𝑠 = 100 ms and tested our framework with different
values of 𝐵. Table 2 reports the real sampling times obtained, denoted
as 𝛥𝑠′. As shown, the user-space counterpart of our eBPF program is
able to follow the expected working frequency only for the lowest
number of bins. This can be mainly ascribed to the need of saving
data on the file system, which is slower than the RAM. To deploy
such a solution in production-quality environments, a more realistic
implementation should not save all measurements on a file, so this
problem could be largely mitigated.

6.2. Envisioned applications

Information gathered by kernel-level tracing and inspection can feed
detection algorithms and analytics engines. Obtained insights can be
directly delivered to streaming analytics in a (quasi) real-time fashion
or can be used to create large collections of datasets, which is a
key challenge to address for developing effective detectors based on
Machine Learning or Artificial Intelligence techniques [40]. In fact,
AI-capable frameworks require heterogeneous and rich information to

7 Slabs are small portions of Linux caches and they build the ‘‘slab layer’’.
ach cache stores a different type of temporary objects, such as task or
evice structures and inodes. The slab layer improves performance by ad-
ressing efficient allocation/deallocation of frequent data structures, memory
ragmentation, intelligent allocation decisions, symmetric multi-processors,
9

tc.
provide satisfactory statistical performances or to discover relations
‘‘invisible’’ to methodologies based on the common sense. The identi-
fication of a proper set of ‘‘features’’ that contain relevant information
for training the machine is probably the most challenging aspect for
application of ML, that usually require to implement multiple kinds
of measurements. In this perspective, code augmentation provides an
effective and flexible mechanism for building the required feature
set, especially when a measurement campaign cannot be planned a
priori. Thus, a trial and error approach can be easily implemented by
stacking multiple filters for having a suitable volume of information
for feature engineering purposes or to compute efficient high-level
indicators allowing to decouple the detection pipeline from the specific
steganographic approach.

To understand whether our set of measurements could be used
to feed a ML detector, we searched for potential correlation patterns
of the Flow Label distribution and content of the hidden message.
Therefore, we performed additional tests keeping both the same testbed
and parameters as in Section 5, but varying the type of secret message
exfiltrated by the malware via the IPv6 covert channel. Specifically, we
considered the transmission of a text file encoded in ASCII, a JPG and
a randomly generated string. Obtained value-to-bin mappings of the
Flow Label have been depicted via heatmaps. Fig. 8 showcases se-
lected results with different sampling times of the user-space program.
Figs. 8(a), 8(e), and 8(i) depict maps of a clean IPv6 conversation,
i.e., only the bin corresponding to the original value of the Flow
Label populates depending on the produced traffic (i.e., the volume
of packets).

According to the figure, correlations characterizing each content can
be easily spotted via kernel-level tracing. For instance, for the case of
𝛥𝑠 = 100 ms, the data depicted in Figs. 8(b)–8(d) can be used to train
some AI for identifying the exfiltrated content. Hence, the proposed
eBPF-based approach can be used in a sort of 2-tier blueprint: a first
layer for detecting the presence of stegomalware by inspecting the
number of changing bins for the IPv6 traffic load, and a second layer
for guessing whether the covert channel is used to send commands,
orchestrate a botnet or which type of information is being exfiltrated,
e.g., textual or multimedia.

Based on our results, we believe that AI methodologies can be
‘‘overlaid’’ on top of standard tools to improve the performance of the
detection, for instance to identify the severity of exfiltration. This may
also be useful to support the decision process, namely to decide which
type of countermeasure should be deployed. For instance, recognizing a
covert channel transporting parameters for configuring a backdoor may
trigger an update in the rules of a firewall or in an intrusion detection
system.

As a final remark, we argue that the additional code injected in
the kernel should not introduce bottlenecks, mainly to avoid degrada-
tions in the performances experienced by end users. Concerning the
considered channels, filters and eBPF programs should be then able to
efficiently map the ‘‘space’’ generated by the various values of the Flow
Label. We already investigated this aspect in the previous Section;
here, we consider how scalability might affect the detection accuracy.
Our results show that the correlation is visible even in the presence of
coarse-grained measurements. Despite being 𝐵 = 256 bins, Figs. 8(j)–
8(l) computed from data gathered by the eBPF program with 𝛥𝑠 = 10 s
still offer informative insights.



Computer Networks 191 (2021) 108010L. Caviglione et al.

e
s
a
d
d
g
a
a
v
r

s
r
i
e
o
b

t
L
e
c
t
n
d

7

w
t
w
e
d
b
c
a
w

6.3. Open points and limits of the approach

In order to deploy eBPF for detecting stegomalware in production-
quality scenarios, some open research points have to be addressed.
First, although we gave some insights about how our measurements
could be used for attack detection, the design of concrete detectors
falls outside the scope of this paper. We elaborated on the usage of
data gathering techniques jointly with some form of machine learning
or statistical tool, but the benefit of this approach against de-facto
standard mechanisms like rule-based ones has to be quantified. In fact,
many existing works highlighted that the need of manual labeling,
the lack of scalability and the composite nature of datasets are prime
obstacles for successfully mixing AI and cybersecurity [41,42]. For
instance, the detection of changes in the file permissions usually falls
under the scope of continuous integrity verification; hence, when two
colluding applications try to communicate by altering the file-system,
an efficient detection scheme may exploit inconsistencies or anomalous
patterns in the access permissions (see, e.g., [43] for the case of NTFS).
Similarly, the detection of covert channels leveraging the Flow Label
field in the IPv6 header is rather straightforward if state information is
kept for each flow, but this is computationally expensive and does not
scale well with the number of active flows.

Second, samples of stegomalware (including threats implementing
a colluding applications scheme) and IPv6 covert channels collected in-
the-wild are very limited. Thus, as it often happens in the literature, our
investigation is based on non-weaponized colluding applications and
covert channel attacks [1,2,7,8,18,35].

Third, detecting this type of threats requires some a priori knowl-
dge of the steganographic method used by the attacker (e.g., where the
ecret is embedded). To this extent, the flexibility of the eBPF is surely
plus, as it allows to develop in a quite simple manner several filters to
ifferentiate the collection of data, which can be extended to consider
ifferent carriers or scenarios. Moreover, eBPF and kernel-based data
athering should be also evaluated as tools for obtaining high-level
nd threat-independent indicators. In addition, also the possibility to
utomatically generate and run new programs is really interesting yet
ery challenging, but requires deep usage of AI techniques and it mostly
epresents a long-term objective.

Lastly, the impact of software layers for gathering data and detect
tegomalware should be better understood. For instance, tracing tools
unning on mobile devices could deplete the battery or be undeployable
n resource-constrained devices. Besides, network traffic could experi-
nce additional delays and jitter impacting on the Quality of Experience
f users. Thus the tradeoffs of resorting to this type of analysis should
e precisely evaluated.

A limit of the proposed approach concerns the tight dependence on
he Linux kernel. Even if many network devices and appliances run
inux, this OS has not the same penetration on end nodes (with the
xception of Android OS). Thus, revealing steganographic attacks like
olluding applications could require platform-dependent approaches or
o shift the detection in the network or in some edge/cloud compo-
ents. Again, this requires methods to efficiently collect various type of
ata, thus kernel-level measurements still deserve deeper investigation.

. Conclusions

In this paper, we showcased how eBPF, a code augmentation frame-
ork offered by the Linux kernel, can be used for programmatically

racing and monitoring the behavior of software processes and net-
ork traffic with the aim of detecting stegomalware. To prove the
ffectiveness of the idea, we evaluated the use of eBPF to gather
ata in two different use cases. In the first, we showed how it can
e used to trace specific system calls when an attack based on the
olluding applications scheme is ongoing. In the second, we developed
n eBPF program to evaluate the behavior of the Flow Label field
hen used to implement a covert channel within bulk of the IPv6
10
traffic. In both cases, results indicated that in-kernel measurement
via code augmentation can be used to gather data to feed toolkits
for detecting stegomalware. In addition, eBPF demonstrated to be
flexible enough to provide information for more sophisticated detec-
tion frameworks, e.g., to feed detection models or create datasets for
machine-learning-capable techniques.

Future work aims at refining the proposed approach. In particular,
the main objective is the definition of a more programmatic process
to progressively narrow down the scope from generic indicators to
fine-grained tracing of execution patterns. This can be also applied
to network covert channels, e.g., to shift the detection from traffic
analysis to code inspection. In this respect, ongoing research deals
with the development of threat-independent signatures such as energy
consumption, RAM usage patterns, and the time statistics of running
processes. Another relevant portion of our ongoing research extends
and generalizes the approach and using eBPF to detect a wider array
of threats such as cryptolockers and advanced persistent threats. In
this vein, future developments also aim at using some form of artificial
intelligence or machine learning in order to make the detection more
effective and scalable, possibly by also identifying the class of the
exfiltrated information (e.g., an encryption key, a command of a botnet
or a document).
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