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Abstract
Reflectance Transformation Imaging (RTI) is a computa-

tional photographic method that captures an object’s surface
shape & color and enables the interactive re-lighting of the sub-
ject from any direction. RTI model of an object is built from multi-
ple images of it captured by a stationary camera but varying light
directions. By changing the direction of the light, the respective
micro-geometry of the object is highlighted. The RTI acquisition
process is often long, and tedious when it is not automated. It re-
quires expertise to define for each analysed object which are the
number and the relevant lighting positions in the acquisition se-
quence. In this paper, we present our novel Next Best Light Posi-
tion (NBLP) method to address this issue. The proposed method is
based on the principle of a gradient descent allowing in an adap-
tive and iterative way, to automatically define the most appropri-
ate lighting directions for the RTI acquisition of an object/surface.

Introduction
RTI is one of the widely used imaging techniques for cul-

tural heritage objects [2].The two most popular methods adopted
for performing the RTI acquisitions[1] are: 1. Using a handheld
light source and manually illuminating the stationary object from
different directions while the camera is fixed on a stationary tri-
pod [4]. This is known as highlight RTI (H-RTI). This method is
suitable for objects that are bigger in size and where there is no
access to sophisticated systems and equipment. 2. Hemispherical
lighting dome (see figure 1a having lights positioned in fixed di-
rections or has an internal mechanism that moves the light source
from one point to another (figure 1b). The camera is fixed at the
apex of the hemispherical dome and is triggered in synchroniza-
tion with the lighting. The dome system is usually adopted in
a laboratory environment where it is highly calibrated and built
upon an optical table. This set up is suitable for performing the
RTI acquisition of smaller objects. In both cases, it is important
to formulate a strategy for positioning the light for each image
capture during the acquisition to ensure good results. In H-RTI,
commonly, one or more reflective spheres are used to determine
the light directions. This is a more cost-effective practice to re-
cover light directions than a fully calibrated acquisition system
which are generally expensive.

The overall objective of this work is to formulate a strategy
to estimate the next best light positions from an initial set of im-
ages captured during RTI acquisitions. The idea is a direct off-
shoot of the desire to ensure that all the critical light directions of
the surface are captured in an acquisition, to decrease the number
of images captured during an RTI acquisition and thereby reduce
the overall acquisition time, and to realize the possibility of au-
tomating the acquisition. Indeed, in a RTI acquisition where the

light positions are chosen intuitively or set uniformly around the
object, not all the important light directions are captured and con-
versely all captured images often do not contribute significantly
in the RTI model. For example, at a grazing angle, the reflection
of a relatively flat surface is often close to zero, and at positions
normal the pixel intensities attain saturation. Having too many
images with zero or saturated pixel intensities, which are actually
non-measured information’s, is not desirable as these images are
not useful, and can even be detrimental for the RTI model qual-
ity. For certain application domains, such as Cultural Heritage or
industrial ones, it is also of primary importance to optimize the
acquisition time. Indeed, access to CH objects for acquisition is
often limited to a short period of time, and the industrial context
often makes the cycle time determining in the choice of a technol-
ogy. In cases similar to this, it is thus very important to perform
good quality acquisition, in a single attempt.

The NBLP approach aims to adaptively measure the strictly
necessary information according to the object analyzed. This ap-
proach determine automatically the appropriate light positions for
RTI acquisition. Our method is an iterative and adaptive approach
that estimates the next best light positions during the RTI acquisi-
tion process non-stochastically. We conceived the acronym NBLP
for RTI scanning in analogous to NBV (Next Best View) for 3D
scanning [3]. The proposed method have been implemented in
the existing RTI dome system presented in figure 1a and 1b. We
show the advantages of the implemented method by comparing
the acquisition made with the NBLP determined light positions to
that made with predefined light positions. We evaluate the per-
formance of our proposed method using the histogram of mean
pixel intensities of the images captured, finding the closeness of
the results to that of a dense acquisition and finally by comparing
the gradient fields. In addition to the presented method, in this
paper we also briefly discuss our experience with a few other ap-
proaches and the reasons why they fail to yield the desired results.

(a) Inhouse RTI dome system (b) Mechanised light source
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Figure 2: Bidirectional Reflectance Distribution Function
(BRDF)

State of the art
The reflectance of the surface of an opaque body is a prop-

erty of the surface material and of its microscopic configuration
(roughness) but also of its gross configuration (curvature) [5].
Bidirectional reflectance can be determined as a function of light
direction as illustrated in figure 2. For example, in a perfect mir-
ror, the distribution of reflected light direction is the same as the
viewers direction, while in the case of a diffused surface the the
distribution is uniform in all directions.The Reflectance Transfor-
mation Imaging technique is a partial BRDF where the observer
is fixed, generally orthogonally to the surface to be inspected, and
only the lighting direction varies in the acquisition sequence. The
discrete angular reflectance is thus estimated in the directions of
acquisition. An experimental model can then be determined by
both Least square fitting (global approximation), local approxi-
mation or interpolation approaches. The main used global ap-
proximation model used in the case of RTI data are the Polyno-
mial Texture Mapping approach (PTM) [1], the Hemispherical
Harmonics (HSH) [6, 7], and the Discrete Modal Decomposition
(DMD) [8]. These techniques are becoming widely used among
the cultural heritage conservators as well as in industry for the
control of the appearance on manufactured surfaces.

According to best of the authors knowledge there are no stan-
dard method to estimate salient light directions during the RTI
acquisition process. The light positions are predetermined either
homogeneously over the surface of the object or points defined
by certain patterns. Both the size and configuration of acquisi-
tions are determined empirically involving multiple attempts and
hence the acquisition remains a tedious and time consuming pro-
cess. Making a continuous acquisition instead of discrete light di-
rections eliminates the problem of choosing the salient light direc-
tions. However continuous acquisition from every possible light
direction is not practically feasible and the size of the data will
be too big to handle. Multi-modal acquisition like multi-spectral
[10], high dynamic range RTI [11], UV are the growing trends
in RTI where enormous data is generated during acquisition and
hence continuous acquisition poses numerical practical problems.
Besides, cultural heritage conservation, RTI is oftentimes applied
in industries too as a tool for engineering failure analysis [12],
[13]. Automation of RTI acquisition using robot arm is another
domain that draws much interest from the RTI users community
as that will be an efficient way of performing the acquisitions in
terms of both quality and time. NBLP is an important step to-
wards enabling a fully automated pipeline for performing the re-
flectance transformation imaging. The closest analogy to NBLP is
the NBV problem where it is desired to estimate a good sequence
of range-image views during the scanning process for obtaining

the complete 3D model of an object or scene.

NBLP-RTI acquisition strategy
In this section, we present our approach to the NBLP prob-

lem running through the development iterations. We describe our
initial approaches that didn’t yield the desired results along with
their drawbacks first and then the working method is explained.

Method based on finding the local disparity
among the images captured from neighbouring
light positions

Fig. 3 represent the schematic of this method. This method
is backed by the idea that more an image is different from those
captured with neighbouring LPs, more are the chances that signif-
icant surface details can be captured between these neighbouring
LPs. This method was implemented using K-D tree to find the
neighbourhoods. The drawback of this approach is that it is very
sensitive to the initial set of LPs. Through the iterations, it fails
to expand globally and tends to get trapped within a few neigh-
borhood that has the highest disparity. Thus, this method may be
useful as a last step to verify whether all the salient directions are
captured or not in a dense acquisition but is not suitable as a fully
automated adaptive acquisition method.

Calculate the mean of the pixelwise
squared differences of the intensities
of every image to that of every other

image with adjacent LPs

Filter out the LPs where the
difference is low

NBLP 
Interpolate points
between filtered

adjacent LP pairs

Figure 3: Method based on finding the local disparity among the
images captured from neighbouring light positions

Method based on gradient ascent
In this approach, an initial sparse acquisition is made by illu-

minating the surface from directions homogeneously distributed
around it. For the acquired images and light positions, model fit-
ting of the pixel intensities are carried out individually against the
spherical co-ordinates of the light positions. Gradient vector field
of the fitted model and its steepest ascent direction is computed
for each pixel. Weights are assigned to pixels proportional to its
variance and a global steepest ascent direction is estimated as the
weighted mean of the local steepest ascents. This global ascent is
regarded as the next best light direction. This method is compu-
tationally very expensive and is practically challenging to execute
during the acquisition process.

Method based on interpolation of points between
salient LP pairs

The flow chart in Fig. 4 illustrates this approach to estimat-
ing the next best light positions during an acquisition.

For a good comparison of this approach to the existing prac-
tice, we have chosen an Egyptian currency coin Fig. 5 (S1) with
high degree of surface details and a highly polished metallic sur-
face Fig. 6 (S2) as the subjects . S1 is feature-rich surface profile
where as S2 is polished and is more like a mirror. Our method is
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Figure 4: Schematic of the implemented NBLP method.

compared with the acquisitions made with uniformly distributed
light positions.

Figure 5: S1 surface acquired for comparison of results

Figure 6: S2 surface acquired for comparison of results

Similar to our previous approach, an initial sparse acquisi-
tion (Eq.2) is made by capturing images with N number of ho-
mogeneously distributed light positions. A set of next best light
positions are estimated from this initial acquisition consisting of
N images, I taken with N difference light directions, P (θ ,φ ).

Acq =

{
I1 I2 I3 ... IN
P1 P2 P3 ... PN

(2)

A score function Ci representing the highest deviation of an
image from the other images is defined to assign the salience of
the corresponding pair of light directions. This function is as
given below in Eq. 3 - 5

Ci = max

(
i
1D
i
1A

,
i
2D
i
2A

,
i
3D
i
3A

, ...,
i
ND
i
NA

)
(3)

i
jD =

Ii− I j

size(I)
(4)

(5)
i
jA = arccos[(sin(Φi)× sin(Φ j))

+ (cos(Φi)× cos(Φ j)× cos(Θi −Θ j))]

Figure 7: Arc distance between light directions i and j.

Here, j
i D is the mean value of the difference between image i

and image j, i
jA is the relative arc distance between light positions

i and j along the hemisphere, size(I) is the total number of pixels
in the image , θi and φi represents the azimuth and altitude of
the light position i. The salience score Ci, is a measure of the
gradient at the light position i and a higher score would indicate
a higher possibility of capturing relatively more significant detail
that between the i light position and its salient pair.

The salience scores of the LPs are then normalized between
0 to 1 for conveniently scaling and filtering. The LPs are iden-
tified as critical LP and non-critical LP based on their respective
salience scores. The LPs having scores lesser than a threshold
score, c̄ are considered non-critical directions and the LPs having
score higher than the threshold are considered as critical direc-
tions as shown in the Eq. 6

Acqcritical ⊂ Acq
Pcritical = {P : C > c̄} (6)

After identifying the critical light directions, a new set of
light directions are determined by linearly interpolating points be-
tween every salient direction and its corresponding salient pair.
This interpolation is carried out along the hemispherical arc be-
tween the pair. The number of interpolation points between a pair
of directions is set as proportional to the salience score by multi-
plying the score with a constant called interpolation scale factor,
s f

This is illustrated with a critical point P1 and its critical pair
P3 in the coin acquisition as an example in the Fig. 8

The new set of captures is appended to the initial acquisition
and the whole process is repeated with the appended set as the
current state of the acquisition. The iteration terminates when 1.
the highest of i

jD of all the critical pairs is lower than a thresh-
old intensity called iterminate or 2. all the estimated new LPs are
already acquired in the previous iterations.

The size of the acquisition, the behaviour of the implemented
NBLP algorithm can be tuned by adjusting the following param-
eters.

Parameter Description Range
N Size of the initial acquisition Ideally 30 to 45
c̄ Minimum salience score threhold [0, 1]
s f Interpolation scale factor >0
iterminate Threshold intensity for termination [0, 255]
sphi Phi scale factor to force interpolation along azimuth [0, 1]

Results and discussions
The next best light position estimation algorithm based on

interpolation of points between salient LP pairs is successfully
implemented and integrated to our in house RTI acquisition soft-
ware. Our approach is able to identify the critical directions as
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Figure 8: Determination of next best light positions illustrated
with critical point P1 and its critical pair P3 as an example.

the acquisition process progresses and thus the acquisition evolves
emphasising the identified critical light directions. The approach
is tested with different surfaces and in this paper to demonstrate
the performance of NBLP over the common approach we present
the results of the acquisitions carried out for surfaces S1 and S2.

Fig 9 shows the evolving of the acquisitions made with the
implemented NBLP algorithm. In each iteration, the plots on the
left represents the light positions in the 3D hemisphere and the
plots on the right represents mean pixel intensities of the image
captured at each light positions projected on a 2D plane. The scale
in the plot is the color scale indicating the pixel intensities ranging
from 0 to 255. S1 surface acquisition Fig. 9a terminated after 3
iterations. For this acquisition the parameters are set as number of
N = 54, c̄= 0.75, s f = 50.0, iterminate = 2.5, sphi = 0.75. It can be
observed that, the surface being a diffused surface, the reflectance
is nearly uniform along all the directions. NBLP identifies major-
ity of the directions as critical direction as the reflectance changes
at uniform rate along θ and φ . As a result, the NBLP estimated
light positions exhibits an artifact like patterns for this surface.
Fig. 9b shows the evolving of S2 surface acquisition. This surface
the acquisition terminated after 4 iterations. For this acquisition
the parameters are set as number of N = 45, c̄ = 0.75, s f = 12.0,
iterminate = 5.0, sphi = 0.75. s f is set lower for this surface because
the overall reflectance of this surface is higher. Unlike in case of
S1, it can be observed from the plots that the NBLP method iden-
tified specific light directions such as x{-3, 2} in the plot as the
most critical light directions and tried to capture images densely
along these directions.

Fig. 10 compares the end results of the homogeneous vs the
NBLP acquisitions for S1 surface (Fig. 10a, Fig. 10b) and for S2
surface (Fig. 10c, Fig. 10d). S1 surface acquisition terminated af-
ter capturing images from 421 number of unique light directions.
S2 surface acquisition terminated after capturing images from 242
number of unique light directions. For analysing the performance

initial acquisition 
size: 54

Iteration 1 
size: 107

Iteration 2 
size: 241 Mean pixl intensities 

Mean pixl intensities Mean pixl intensities 
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(a) Surface S1
initial acquisition 
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size: 96

Iteration 2 
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x x
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Mean pixl intensities 

Mean pixl intensities 

Mean pixl intensities 

LPs LPs

LPs LPs

(b) Surface S2
Figure 9: Acquisitions of S1 and S2 surfaces evolving through the
NBLP iterations.

of the NBLP method, the homogeneous acquisition is made close
to the size of the NBLP acquisition. From these plots, it is ob-
served that the light directions where the reflection is very high
(orange) and the light directions where the reflection is low (blue)
are captured but the intermediary light directions are mostly not
captured in case of the homogeneous acquisition. Where as in the
NBLP acquisition, it is observed that intermediary light directions
(from blue, red to orange, yellow) are well captured.

Fig. 11 are the histogram plots of the acquisition of S1 and
S2 surfaces. The homogeneous acquisition (red) and the NBLP
acquisition (blue) histograms are plotted overlapping each other
for easy comparison. In the histogram plot, it can be clearly in-
ferred that in case of homogenous acquisition, there are many in-
significant light directions captured. For example, there are num-
ber of images captured from the light directions where the re-
flectance is nearly 0. These images carry insignificant surface in-
formation. On the contrary, the NBLP clearly avoided more num-
ber of captures on these directions and tried to acquire as dense as
possible along the light directions where the reflectance is unique
and carry significant surface information.

From the acquired images and the respective light directions,
relighting model of the surfaces were performed using DMD
method. Fig. 12 shows a directional slope of the reconstructed
surface model for comparing the results of the homogeneous ac-
quisition and NBLP acquisition. It is observed that for S1 surface,
the visible difference between the reconstructed surfaces is low.
Where the difference is easily visible in case of S2 surface. The
dark pixels visible on the upper part of the rebuilt surface rep-
resents the lack of information that the homogeneous acquisition
missed to capture.
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(a) S1 Homogeneous (b) S1 NBLP

(c) S2 Homogeneous (d) S2 NBLP
Figure 10: Comparison of acquisitions made with the predeter-
mined homogeneously distributed light directions vs NBLP esim-
tated light directions.
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Figure 11: Histograms of the mean pixel intensities of the images
captured in homogeneous acquisition and NBLP acquisitions.

(a) S1 rebuilt. Homogeneous (b) S1 rebuilt. NBLP

(c) S2 rebuilt. Homogeneous (d) S2 rebuilt. NBLP
Figure 12: Surface reconstructed (directional slopes) from the ho-
mogeneous LPs acquisition vs the NBLP acquisition data using
the DMD RTI model.

Conclusions
We recognised the importance and advantages of identify-

ing relevant light directions in an acquisition and the same is ex-
plained in this paper. There are no existing work published that
addresses this problem for RTI. We proposed our novel approach
to estimate the best light positions for building the reflectance
model of a surface. Our method is adaptive to the surface being
scanned and automatically detects the critical directions as the ac-
quisition evolves and tries to acquire dense information in those
directions. Whereas the commonly applied homogeneous light
positions approach the scan configurations are prefixed regardless
of the surface being scanned. We have demonstrated the perfor-
mance of our algorithm comparing with that of standard homo-
geneous acquisition. The mean pixel intensities plot, histogram
plots, the reconstructed images illustrates the significance of us-
ing the NBLP approach over the standard predetermined light po-
sitions approach. It can be observed that our method tends to form
artifacts like arcs and patterns. This is because of linear interpo-
lation points between the critical point and its critical pair.

Our method is a first step toward the adaptive RTI acquisi-
tion. This is particularly useful for multi-modal RTI acquisitions
like multi spectral or High Dynamic RTI in the sense that it allows
to measure just necessary information.
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Gaëtan and Favreliere, Hugues and Mansouri, Alamin, High dynamic
range reflectance transformation imaging: an adaptive multi-light ap-
proach for visual surface quality assessment, Fourteenth International
Conference on Quality Control by Artificial Vision, volume 11172,
pages 1117213, 2019, International Society for Optics and Photonics

[12] Lemesle, Julie and Robache, Frederic and Le Goic, Gaetan and
Mansouri, Alamin and Brown, Christopher A and Bigerelle, Max-
ence, Surface reflectance: An optical method for multiscale curva-
ture characterization of wear on ceramic-metal composites,Materials
Journal, volume 13, number 5, pages 1024, 2020, Multidisciplinary
Digital Publishing Institute

[13] Coules, HE and Orrock, PJ and Seow, CE, Reflectance Transfor-
mation Imaging as a tool for engineering failure analysis,Journal of
Engineering Failure Analysis, volume 105, pages 1006-1017, 2019,
Elsevier

132-6
IS&T International Symposium on Electronic Imaging 2021

Material Appearance 2021



• SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
• INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Electronic Imaging 
IS&T International Symposium on

SCIENCE AND TECHNOLOGY

Imaging across applications . . .  Where industry and academia meet!

JOIN US AT THE NEXT EI!

www.electronicimaging.org
imaging.org


