Planned intervention: On Wednesday April 3rd 05:30 UTC Zenodo will be unavailable for up to 2-10 minutes to perform a storage cluster upgrade.
Published April 7, 2021 | Version v1
Journal article Open

Is the New Global Threat Biological Warfare or Sustainable Health Security?

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey.

Description

Özet

Tür düzeyinde tanımlanmış virüslerin sayısı 2019 yılı itibariyle 6590 olup, bu virüslerin yaklaşık yarısı sadece bir veya iki konakçıyı enfekte edebilmektedir. Virüslerin önemli bir bölümünde konakçı aralığı oldukça dar olmasına rağmen, türler arası temas sıklığındaki artış nedeni ile tür bariyeri aşılabilmekte ve virüsler yeni konakçı türlerini enfekte edebilmektedir. Bununla beraber, bir virüsün yeni bir konakçıya adapte olması kolay olmadığı için, virüslerin yeni konakçı popülasyonlarında yayılımları genel olarak sınırlı kalmaktadır. Örneğin, 2003 yılında ortaya çıkan SARS-CoV’nin (Severe acute respiratory syndrome coronavirus) insanlar arasında yayılmasının sınırlı düzeyde kalmasında virüsün insanlara adapte olamaması ve insanların ara konakçılarla temas sıklığının nadir bir durum olması gibi nedenler de öne sürülmüştür. Benzer şekilde yüksek patojen avian influenza suşları tür bariyeri ve doku tropizmi gibi sınırlamalar nedeni ile insanlar arasında kolay yayılamamaktadır. Ortaya çıkış şekli henüz açıkça ortaya konamamış olan SARS-CoV-2 ise yeni konakçısı olan insanlara çok iyi adapte olan ve insanlar arasında kolay yayılan yeni bir zoonotik virüstür. Bu virüsün vizon çiftliklerinde olduğu gibi hayvanlar arasında hızla yayılması da dikkat çekicidir. Virüsün faklı türler arasında kolay yayılması yeni mutasyon ve rekombinasyonları ortaya çıkarma potansiyeli ile endişelere neden olmuştur. Virüsler kısa genomlarının getirdiği dezavantajları aşmak adına Hepatit B virusunda olduğu gibi süperpoze olmuş ORF (open reading frame) bölgeleri veya bazı virüslerde olduğu gibi subgenomik transkripsiyon sistemleri ile aynı genomdan farklı proteinler sentezlemektedir. Koronaviruslar gibi büyük genomları olan bazı virüslerde ise genomik stabilitenin korunabilmesi için bazı kontrol mekanizmaları bulunur. Bunların dışında, bir virüsün konakçı popülasyonlarında varlığını devam ettirebilmesi için konakçı immün sistemleri ile hassas bir dengede olması gerekmektedir. Tüm bu faktörler doğal enfeksiyonlara benzer şekilde yayılabilen modifiye virüsler üretmeyi ve bunları bir silah olarak kullanmayı zorlaştırmaktadır. Modifiye virüslerin bir biyolojik savaş aracı olarak kullanılması olası olmakla beraber, viral enfeksiyonlarda yüzlerce farklı parametrenin varlığı nedeni ile bu tür bir silahın insanlar üzerinde neden olabileceği etkinin simülasyonu çok zordur. Son yıllarda moleküler biyoloji alanındaki ilerlemelerle birlikte bilimsel çalışmalar için kimerik veya modifiye virüsler tasarlanıyor olsa da, ticari, ekonomik ve sosyal olarak bütünleşen günümüz dünyasında global etkileri öngörülemeyen yeni bir biyolojik silah tasarlanmasından ziyade; Ebolavirus, Nipah virus veya Çiçek virusu gibi doğal virüslerin dar kapsamlı lokal saldırılarda kullanılması daha olasıdır. Günümüzdeki asıl problem ise SARS-CoV-2 salgınında da tecrübe ettiğimiz üzere pandemik potansiyeli olan virusların sağlık sistemlerinin kapasitelerini (solunum cihazı, aşı, ilaç ve koruyucu ekipmanlara gereksinim gibi) aşacak etkilerle kitlesel ölümlere yol açmasıdır. Son 20 yılda sıklığı artan viral salgınlar insan hareketliliğinin ve zoonotik virüslerle temas riskinin yeni bir boyuta geçtiğine ve bu tehditle mücadele ve akılcı çözümler üretmede küresel iş birliğinin önemine işaret etmektedir.

Abstract

The number of viruses defined at the species level is 6590 as of 2019, with about half of these viruses being able to infect only one or two host species. Although the host range is significantly narrow for most viruses, the species barrier can be overcome due to the increase in interspecies contact and viruses can infect new host species. However, the spread of viruses in new host populations is generally limited, since it is not easy for a virus to adapt to a new host. For example, the inability of the virus to adapt to humans and the rare occurrence of human contact with intermediate hosts have also been suggested as the reasons for the limited spread of SARS-CoV (emerged in 2003) among humans. Similarly, highly pathogenic avian influenza strains cannot spread easily among humans due to limitations such as species barrier and tissue tropism. SARS-CoV-2, the emergence of which has not yet been clearly revealed, is a new zoonotic virus that is well adapted to humans as new hosts and spreads easily among human populations. The rapid spread of this virus among animals such as in mink farms is also remarkable. The easy spread of the virus among different species has raised concerns due to the possibility of the emergence of new mutations and recombinations. Viruses synthesize different proteins from the same genome with superposed ORF (open reading frame) regions such as Hepatitis B virus, or sub-genomic transcription systems as in some viruses to overcome the disadvantages of their short genomes. Moreover, some viruses with large genomes such as coronaviruses have some control mechanisms to maintain genomic stability. In addition, for a virus to survive in host populations, it must be in delicate balance with the host immune systems. All these factors make it difficult to produce modified viruses that can spread similar to natural infections and to use them as a weapon. Although it is possible to use modified viruses as a biological warfare tool, it is very difficult to simulate the effect that such a weapon can cause on humans due to the presence of hundreds of different parameters in viral infections. Chimeric or modified viruses have been designed for scientific studies with advances in the field of molecular biology in recent years, but in nowadays world (commercially, economically, and socially integrated) the use of these viruses, whose global effects are unpredictable, as a biological weapon is very unlikely. Natural viruses such as Ebolavirus, Nipah virus or Smallpox virus are more likely to be used in local attacks. The main problem today is that, as we have experienced in the SARS-CoV-2 epidemic, viruses with pandemic potential resulting mass deaths by exceeding the capacities (the need for ventilator, vaccine, medicine, and protective equipments) of health systems. Viral outbreaks, which have increased in frequency in the last 20 years, indicate that human mobility and the risk of contact with zoonotic viruses have taken a new dimension and the importance of global cooperation in combating this threat and generating rational solutions.

Notes

Yeni Küresel Tehdit Biyolojik Savaş mı, Sürdürülebilir Sağlık Güvenliği mi?

Files

jmvi.2021.27.pdf

Files (617.5 kB)

Name Size Download all
md5:d3417f812036d52008174ca87afc0330
617.5 kB Preview Download

Additional details

References

  • 1. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011; 1(1): 31-45.
  • 2. Rodrigues RAL, Andrade ACDSP, Boratto PVM, Trindade GS, Kroon EG, Abrahão JS. An Anthropocentric View of the Virosphere-Host Relationship. Front Microbiol 2017; 8: 1673.
  • 3. Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, et al. Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives. Int J Environ Res Public Health 2020; 17(24): 9411.
  • 4. Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 2013; 9(7): e1003467.
  • 5. Oliveira M, Mason-Buck G, Ballard D, Branicki W, Amorim A. Biowarfare, bioterrorism and biocrime: A historical overview on microbial harmful applications. Forensic Sci Int 2020; 314: 110366.
  • 6. Plotkin SA. Vaccines for epidemic infections and the role of CEPI. Hum Vaccin Immunother 2017; 13(12): 2755-62.
  • 7. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Viruses: Structure, Function, and Uses (Section 6.3). In: Molecular Cell Biology (4th edition). 2000, W. H. Freeman, New York. NBK21523.
  • 8. Şahiner F, Aygar İS. Aşı Teknolojisinde Yeni Bir Dönem: mRNA Temelli Aşı Tasarımı. J Mol Virol Immunol 2020; 1(3): 9-17.
  • 9. Ramezanpour B, Haan I, Osterhaus A, Claassen E. Vector-based genetically modified vaccines: Exploiting Jenner's legacy. Vaccine 2016; 34(50): 6436-48.
  • 10. El-Andaloussi N, Bonifati S, Kaufmann JK, Mailly L, Daeffler L, Deryckère F, et al. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. J Virol 2012; 86(19): 10418-31.
  • 11. Li XF, Deng YQ, Yang HQ, Zhao H, Jiang T, Yu XD, et al. A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol 2013; 87(24): 13694-705.
  • 12. Pray L. The biotechnology revolution: PCR and the use of reverse transcriptase to clone expressed genes. Nat Educ 2008; 1(1): 94.
  • 13. Güzel Tanoğlu E. mRNA Aşılarının Üretim ve Dağıtımı: SARS-CoV-2 Deneyimi. J Mol Virol Immunol 2020; 1(3): 27-34.
  • 14. Haberturk.com, Ciner Yayın Holding, İstanbul, Türkiye. Erenoğlu C. Yeni küresel tehdit: Biyolojik savaş mı biyogüvenlik savaşı mı? Available at: https://www.haberturk.com/yeni-kuresel-tehdit-biyolojik-savas-degil-biyoguvenlik-savasi-haberler-2643113 [Accessed April 11, 2020].
  • 15. Bengis RG, Leighton FA, Fischer JR, Artois M, Mörner T, Tate CM. The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech 2004; 23(2): 497-511.
  • 16. Şahiner F. Zika virus salgınının küresel yayılımı: Güncel bilgiler ve belirsizlikler. Mikrobiyol Bul 2016; 50(2): 333-51.
  • 17. Petrikova I, Cole J, Farlow A. COVID-19, wet markets, and planetary health. Lancet Planet Health 2020; 4(6): e213-e214.
  • 18. GAVI (The Vaccine Alliance), Geneva, Switzerland. 10 infectious diseases that could be the next pandemic. Available at: https://www.gavi.org/vaccineswork/10-infectious-diseases-could-be-next-pandemic [Accessed May 7, 2020].
  • 19. Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, et al. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA. World J Gastroenterol 2018; 24(21): 2261-8.
  • 20. Aggarwal M, Dhindwal S, Kumar P, Kuhn RJ, Tomar S. trans-Protease activity and structural insights into the active form of the alphavirus capsid protease. J Virol 2014; 88(21): 12242-53.
  • 21. Ryman KD, Klimstra WB. Host responses to alphavirus infection. Immunol Rev 2008; 225: 27-45.
  • 22. Cantoni D, Rossman JS. Ebolaviruses: New roles for old proteins. PLoS Negl Trop Dis 2018; 12(5): e0006349.
  • 23. UniProt, EMBL-EBI, UK; SIB, Switzerland; PIR, US. UniProtKB - Q05127 (VP35_EBOZM). Available at: https://www.uniprot.org/uniprot/Q05127 [Accessed April 5, 2021].
  • 24. Şahiner F, Cebeci İ. Hepatit C Virusu: Genetik Özellikleri, Aşı Geliştirme Çalışmalarında İlerlemeler ve Güncel Zorluklar. J Mol Virol Immunol 2020; 1(1): 1-13.
  • 25. Menachery VD, Yount BL Jr, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015; 21(12): 1508-13.
  • 26. van Aken J, Hammond E. Genetic engineering and biological weapons. New technologies, desires and threats from biological research. EMBO Rep 2003; 4 Spec No (Suppl 1): S57-60.
  • 27. Lundstrom K. RNA Viruses as Tools in Gene Therapy and Vaccine Development. Genes (Basel) 2019 10(3): 189.
  • 28. World Health Organization (WHO), Geneva, Switzerland. WHO-convened global study of origins of SARS-CoV-2: China Part. Available at: https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part [Accessed March 30, 2021].
  • 29. Zhukova A, Blassel L, Lemoine F, Morel M, Voznica J, Gascuel O. Origin, evolution and global spread of SARS-CoV-2. C R Biol 2020. [Epub ahead of print]
  • 30. Anadolu Ajansı, Ankara, Türkiye. AB ile AstraZeneca arasındaki anlaşmazlık büyüyor. Available at: https://www.aa.com.tr/tr/dunya/ab-ile-astrazeneca-arasindaki-anlasmazlik-buyuyor/2124719 [Accessed January 27, 2021].
  • 31. Our World in Data (OWID), University of Oxford, England, UK. Coronavirus (COVID-19) Vaccinations. Available at: https://ourworldindata.org/covid-vaccinations [Accessed April 3, 2021].
  • 32. Groves DC, Rowland-Jones SL, Angyal A. The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 2021; 538: 104-7.
  • 33. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv 2020; 2020.12.30.20249034.
  • 34. Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021. [Epub ahead of print]
  • 35. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. bioRxiv 2021; 2021.01.18.427166. [Preprint]
  • 36. Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021; 2021.01.25.427948. [Preprint]
  • 37. World Health Organization (WHO), Geneva, Switzerland. WHO urges countries to build a fairer, healthier world post-COVID-19. Available at: https://www.who.int/news/item/06-04-2021-who-urges-countries-to-build-a-fairer-healthier-world-post-covid-19 [Accessed April 6, 2021].
  • 38. World Health Organization (WHO), Geneva, Switzerland. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ [Accessed April 5, 2021].
  • 39. T.C. Sağlık Bakanlığı, Ankara, Türkiye. COVID-19 Bilgilendirme Sayfası, COVID-19 Durum Raporu Günlük Rapor. Available at: https://covid19.saglik.gov.tr/TR-68444/gunluk-rapor--daily-report.html [Accessed April 4, 2021].
  • 40. T.C. Sağlık Bakanlığı, Ankara, Türkiye. COVID-19 Aşısı Bilgilendirme Platformu. Available at: https://covid19asi.saglik.gov.tr/ [Accessed April 4, 2021].
  • 41. World Health Organization (WHO), Geneva, Switzerland. COVID-19 vaccine doses shipped by the COVAX Facility head to Ghana, marking beginning of global rollout. Available at: https://www.who.int/news/item/24-02-2021-covid-19-vaccine-doses-shipped-by-the-covax-facility-head-to-ghana-marking-beginning-of-global-rollout [Accessed February 24, 2021].
  • 42. Anadolu Agency, Ankara, Turkey. Ivory Coast receives COVAX facility's COVID-19 vaccines, Batch is second shipped to Africa after Ghana. Available at: https://www.aa.com.tr/en/africa/ivory-coast-receives-covax-facilitys-covid-19-vaccines/2158712 [Accessed February 27, 2021].
  • 43. Mahase E. Covid-19: Where are we on vaccines and variants? BMJ 2021; 372: n597.
  • 44. van Oosterhout C, Hall N, Ly H, Tyler KM. COVID-19 evolution during the pandemic - Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence 2021; 12(1): 507-8.
  • 45. Conti P, Caraffa A, Gallenga CE, Kritas SK, Frydas I, Younes A, et al. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. J Biol Regul Homeost Agents 2021; 35(1): 1-4. [Epub ahead of print]
  • 46. Jing QL, Liu MJ, Yuan J, Zhang ZB, Zhang AR, Dean NE, et al. Household Secondary Attack Rate of COVID-19 and Associated Determinants. medRxiv 2020; 2020.04.11.20056010.
  • 47. Sarı O, Hoşbul T, Şahiner F. COVID-19 Salgınında Beşinci Ay Sonunda Temel Epidemiyolojik Parametreler. J Mol Virol Immunol 2020; 1(1): 67-80.
  • 48. BioNTech SE, Mainz, Rhineland-Palatinate, Germany. In Vitro Studies Demonstrate Pfizer and BioNTech COVID-19 Vaccine Elicits Antibodies that Neutralize SARS-CoV-2 with Key Mutations Present in U.K. and South African Variants Available at: https://investors.biontech.de/news-releases/news-release-details/vitro-studies-demonstrate-pfizer-and-biontech-covid-19-vaccine/ [Accessed January 29, 2021].
  • 49. Moderna, Massachusetts, ABD. COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. Available at: https://investors.modernatx.com/node/10841/pdf [Accessed January 25, 2021]
  • 50. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al.; NGS-SA Group Wits–VIDA COVID Group. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med 2021. [Epub ahead of print]
  • 51. He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol 2006; 80(12): 5757-67.
  • 52. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D, Menachery VD, Weaver S, Dormitzer PR, Shi PY. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera. bioRxiv 2021; 2021.01.27.427998. [Preprint]
  • 53. Rathnasinghe R, Jangra S, Cupic A, Martínez-Romero C, Mulder LCF, Kehrer T, et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. medRxiv 2021; 2021.01.19.21249592. [Preprint]
  • 54. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Coronavirus (COVID-19) Update: FDA Takes Action to Help Facilitate Timely Development of Safe, Effective COVID-19 Vaccines. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-takes-action-help-facilitate-timely-development-safe-effective-covid [Accessed August 29, 2020].
  • 55. Wise J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots BMJ 2021; 372: n699.
  • 56. CDC COVID-19 Response Team; Food and Drug Administration. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine - United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep 2021; 70(2): 46-51.
  • 57. European Medicines Agency (EMA), Amsterdam, Netherlands. COVID-19 Vaccine AstraZeneca: benefits still outweigh the risks despite possible link to rare blood clots with low blood platelets. Available at: https://www.ema.europa.eu/en/news/covid-19-vaccine-astrazeneca-benefits-still-outweigh-risks-despite-possible-link-rare-blood-clots [Accessed December 29, 2020].
  • 58. Sümbül HE, Şahiner F. Rapid Spreading of SARS-CoV-2 Infection and Risk Factors: Epidemiological, Immunological and Virological Aspects. J Mol Virol Immunol 2020; 1(2): 36-50.
  • 59. Koopmans M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. Lancet Infect Dis 2021; 21(1): 18-19.
  • 60. Lassaunière R, Fonager J, Rasmussen M, Frische A, Charlotta PS, Rasmussen TB, et al (preliminary author list). SARS-CoV-2 spike mutations arising in Danish mink and their spread to humans. Statens Serum Institut, Copenhagen S, Denmark, 2020. [Preliminary report].
  • 61. Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, et al. SARS-CoV-2 Transmission between Mink (Neovison vison) and Humans, Denmark. Emerg Infect Dis 2021; 27(2): 547-51.
  • 62. Katz IT, Weintraub R, Bekker LG, Brandt AM. From Vaccine Nationalism to Vaccine Equity — Finding a Path Forward. N Engl J Med 2021; NEJMp2103614.