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Abstract—This paper proposes a neural network model for
visual perception in the context of autonomous driving inspired
by the human cognition. Despite the growing research aimed
at implementing self-driving cars, no artificial system can claim
to have reached the driving performance of humans, yet. We
believe that the theories about the human mind and its neural
organization may reveal precious insights on how to design a
more refined perceptual system for driving automation.

I. THE COGNITIVE INSPIRATION

The first neurocognitive theory we take inspiration from con-

cerns how sensory information is coded into low-dimensional

perceptual representations in the brain. These representations

preserve information about the actions that caused the per-

ceptual stimulus. In this way, the brain can recreate the

original stimulus in an approximated form, during a phe-

nomenon called mental imagery [1]. The first evidence of

these internal representations has led to develop a broader

theory [2] identifying more sophisticated neural structures

called convergence-divergence zones (CDZs). In this case,

the very same neuron ensembles perform convergent and

divergent projections depending on the current action the

brain is engaged with: the convergent flow is dominant during

perceptual recognition, while the divergent flow occurs during

mental imagery. For this reason, CDZs have been recognized

as a crucial component in the formation of concepts in the

brain. Therefore, we believe fruitful to design an artificial

model with a similar hierarchical architecture for learning the

abstract concepts relevant to the driving context.

The second theoretical idea concerns the nature of the neural

representations in the brain. In most cases, neural representa-

tions are not abstract representations of the environment but

neural states functional to predicting the future states of the

environment. There is evidence in the brain of various circuits

that provide prediction from perceptual representations. One

of the most popular theories interprets the mental mechanism

of prediction in mathematical terms [3]. This theory, called

predictive brain, explains the behavior of the brain as the

minimization of free-energy, a quantity that can be expressed

in mathematical form. Therefore, we decide to adopt this

formulation as the loss function to train our artificial neural

network.

II. THE ARTIFICIAL IMPLEMENTATION

We identify two methods within the framework of artificial

neural networks (ANNs) that appear, at least in part, rough

algorithmic counterparts of the neurocognitive theories just

described. The CDZs may find a correspondence in the idea

of convolutional autoencoders [4], while the predictive brain

theory resonates with the adoption of variational Bayesian

inference in combination with autoencoders [5], [6].

Our method learns conceptual representations of the driv-

ing scenario from visual information. In line with the two

neurocognitive theories, we propose an approach that forces

the representations to be oriented to the driving tasks, under

two distinct perspectives.

1) From a static perspective, we force separate groups

of neural units to encode specific concepts crucial in

the driving task distinctly. Specifically, we use as few

as 16 neurons for each of the two basic concepts we

adopt: cars and lanes. The latent space is explicitly

partitioned in regions that encode different concepts so

that they can be manipulated individually.

2) From a dynamic perspective, we bias the compact repre-

sentations to predict how the current road scene would

change in the future. Albeit this work does not fully

develop visual mental imagery, it constitutes progress

from mere perception to the creation of manipulable

concepts that may increase the cognition abilities of

intelligent vehicles.

The overall model is composed of two networks. A first

network (Fig. 1a) learns to represent visual scenarios into

compact vectors that are at once semantically organized and

temporally coherent. By exploiting semantic segmentation

as a supporting task, the model forces separate groups of

neurons to distinctly represent the basic concepts of cars and

lanes, while self-supervision is adopted to bias the internal

representation towards the ability to predict the dynamics

of objects in the scene. A second neural network uses the

compact representations to perform imagery and predict long-

term future frames (Fig. 1b).

Our approach differs from other related works precisely in

the learning of the representations: first, there is a semantic

organization in the sense that distinct parts of the representa-
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Fig. 1. The idea behind our approach: a first model perceives the
driving scenario in terms of conceptual representations, and a second
model exploits the representations to predict changes in the scenario.

tion are explicitly associated with specific concepts useful in

the context of driving; second, the temporal coherence that is

achieved through self-supervision allows the representation to

be exploited for mental imagery and prediction of plausible

future scenarios.

III. RESULTS AND FUTURE WORKS

For training and testing our models, we adopt the SYN-

THIA dataset [7], a large collection of photo-realistic video

sequences rendered using the game engine Unity. The dataset

comprises about 100, 000 images of urban scenarios recorded

from a simulated camera placed on the windshield of the ego

car. Each video sequence is acquired at 5 FPS and comes

with semantic annotations or several classes including lane

markings, which are not commonly found in other datasets.

In the final version of the architecture, the latent space

representation uses just 128 neurons, of which 16 encoding

the car concept and another 16 for the lane marking
concept. Since the images fed to the network have dimension

of 256 × 128 × 3 and the latent space dimension is 128, the

compression performed by our network is almost of 4 orders

of magnitude. This is a considerable achievement compared

to related works adopting variational autoencoder [8], [9],

which limit the compression of the encoder to only 1 order of

magnitude.

We measure the goodness of the learned representations us-

ing quantitative metrics like the IoU and a statistical evaluation

of the latent representations measuring the consistency for the

temporal dynamics and their predictability. We also evaluate

the quality of the representations using some visual tests,

like interpolating and swapping components between latent

spaces, and replicating the phenomenon of mental imagery by

calling the network iteratively and feeding the output back

as the input of the next iteration. In all the cases, the model

successfully produces new plausible driving scenarios not seen

before during the learning. For a complete presentation of

qualitative and quantitative results, please refer to [10].

Here we have described the example of predicting long-term

future frames in a video sequence. However, once learned, the

representations can be deployed in many possible contexts.

For example, we are currently working on using the repre-

sentations to predict future occupancy grid maps. Moreover,

since we achieve to assign only 16 neurons to each concept

in the representation, it is possible to include in future works

more concepts inside the latent representations. It would be

interesting, for example, to include concepts of vulnerable road

users, such as pedestrians and bikes. One more future

development we have planned is the adoption of a dataset of

real-world video recordings. One of the reasons we adopted

the SYNTHIA dataset at the beginning of our research, besides

its large size and variety, was the availability of lane marking

annotations, which are very rare among the popular datasets

for autonomous driving. Recently, UC Berkeley introduced

the BDD100K dataset [11], which includes high-quality video

sequences with several types of lane marking annotations.

Hence, the adoption of this novel dataset could be an promis-

ing addition to our work.
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