Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Conference paper Open Access

A Human-Aware Method to Plan Complex Cooperative and Autonomous Tasks using Behavior Trees

Fusaro, Fabio; Lamon, Edoardo; De Momi, Elena; Ajoudani, Arash

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <controlfield tag="005">20210521134810.0</controlfield>
  <controlfield tag="001">4778513</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Lamon, Edoardo</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Polytechnic of Milan</subfield>
    <subfield code="a">De Momi, Elena</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="0">(orcid)0000-0002-1261-737X</subfield>
    <subfield code="a">Ajoudani, Arash</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">28459859</subfield>
    <subfield code="z">md5:9ce678cacf3ccdf0ff3eb3a77cbf02f3</subfield>
    <subfield code="u">https://zenodo.org/record/4778513/files/RAL___Humanoids_2020___A_Human_Aware_Method_To_Plan_Complex_Cooperative_And_Autonomous_Tasks_Using_Behavior_Trees_NEW.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-07-21</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ergolean</subfield>
    <subfield code="p">user-h2020-sophia</subfield>
    <subfield code="o">oai:zenodo.org:4778513</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Istituto Italiano di Tecnologia</subfield>
    <subfield code="a">Fusaro, Fabio</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Human-Aware Method to Plan Complex Cooperative and Autonomous Tasks using Behavior Trees</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ergolean</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020-sophia</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">850932</subfield>
    <subfield code="a">Rethinking Human Ergonomics in Lean Manufacturing and Service Industry: Towards Adaptive Robots with Anticipatory Behaviors</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">871237</subfield>
    <subfield code="a">Socio-physical Interaction Skills for Cooperative Human-Robot Systems in Agile Production</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper proposes a novel human-aware method that generates robot plans for autonomous and human-robot cooperative tasks in industrial environments.&lt;br&gt;
We modify the standard Behavior Trees (BTs) formulation in order to take into account the action-related costs, and design suitable metrics and cost functions to account for the cooperation with a worker considering human availability, decisions, and ergonomics. The developed approach allows the robot to online adapt its plan to the human partner, by choosing the tasks that minimize the execution cost(s).&lt;br&gt;
Through simulations, we first tuned the weights of the cost function for a realistic scenario. Subsequently, the developed method is validated through a proof-of-concept experiment representing the boxing of 4 different objects.&lt;br&gt;
The results show that the proposed cost-based BTs, along with the defined costs, enable the robot to online react and plan new tasks according to the dynamic changes of the environment, in terms of human presence and intentions.&amp;nbsp;&lt;br&gt;
Our results indicate that the proposed solution demonstrates high potential in increasing robot reactivity and flexibility while, at the same time, in optimizing the decision-making process according to human actions.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4778512</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4778513</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 7878
Downloads 184184
Data volume 5.2 GB5.2 GB
Unique views 6666
Unique downloads 179179


Cite as