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1 | INTRODUCTION

The neurodegeneration of neurodegenerative diseases is accompa-
nied by progressive loss of neurons, synapses, dendrites, myelin and
brain tissue. However, there are very few dead or dying cells in the
neurodegenerating brain, and there is little evidence that neurode-
generation is caused by neuronal death, that is that blocking neuro-
nal death prevents neurodegeneration (Fricker et al., 2018; Yang &
Wang, 2018). This raises the possibility that brain tissue is removed
alive by phagocytes such as microglia during neurodegenerative dis-
ease (Rajendran & Paolicelli, 2018; Vilalta & Brown, 2018). In effect,
the brain may eat itself. If so, this changes our whole concept of
neurodegeneration, and suggests radically different ways of tackling
these devastating diseases.

Microglia are the brain's main phagocytes (cells capable of en-
gulfing and digesting large extracellular particles), and protect the
brain by phagocytosing bacteria, aggregated proteins and cellular de-
bris (Galloway et al., 2019; Vilalta & Brown, 2018; Wolf et al., 2017).
Microglia derived from the yolk sac, invade the brain prior to birth
and are maintained by self-renewal within the adult brain (Ginhoux
et al., 2010; Hashimoto et al., 2013). During normal brain develop-
ment, microglia shape neuronal circuits by phagocytosing excess
synapses, dendrites, axons, myelin, neurons and neuronal precur-
sors (Vilalta & Brown, 2018). The developmental loss of synapses is
known as ‘synaptic pruning’, and this is partly mediated by microg-
lial phagocytosis of such synapses (Paolicelli et al., 2011). Microglia
also phagocytose live neuronal precursors during development to
regulate neuronal numbers (Anderson et al., 2019; Cunningham
et al, 2013).

After development, microglia are normally sessile and ramified
within brain parenchyma, but their long processes are constantly
moving to scan synapses, neurons and other cells for any changes,
damage or pathogens (Nimmerjahn et al., 2005). Signs of substantial
damage or pathogens, result in inflammatory activation of microglia,
including: chemotaxis of microglial processes and the whole microg-
lia to the site of activation, retraction of other processes to the cell
body to form more-or-less amoeboid microglia, NF-kB-dependent
expression of inflammatory genes including phagocytic receptors,
and release of opsonins and cytokines.

Activated microglia can kill neurons by releasing TNF-q,
glutamate, cathepsin B, superoxide or nitric oxide (Brown &
Vilalta, 2015). Proinflammatory cytokines such as IL-1p and
TNF-a can induce neuronal cell death in culture and in vivo (Glass
et al., 2010; McCoy & Tansey, 2008), but in general, this is indi-
rect toxicity mediated by activation of glia (Neniskyte et al., 2014;
Taylor et al., 2005). TNF-a can induce glutaminase release from
neurons, generating glutamate from glutamine extracellularly, re-
sulting in excitotoxicity (Ye et al., 2013). Similarly, activated mi-
croglia can release glutaminase to induce excitotoxicity (Huang
et al., 2011). Cathepsin B can be released by activated microglia to
mediate the neurotoxicity of AB (Gan et al., 2004) and chromogr-
anin A (Kingham & Pocock, 2001). The microglial NADPH oxidase

(PHOX) generates superoxide and hydrogen peroxide, which may
mediate neuronal death induced by LPS (Cheret et al., 2008),
6-hydroxy-dopamine (Hernandes et al., 2013), transient ischaemia
(Yoshioka et al., 2010) and retinal degeneration (Zeng et al., 2014).
Activated microglia can express iNOS (inducible nitric oxide syn-
thetase) producing nitric oxide (NO) that: can kill neurons under
hypoxic conditions (Mander et al., 2005), or reacts with superox-
ide to produce neurotoxic peroxynitrite (Mander & Brown, 2005).
High doses of TNF-a, glutamate, superoxide, nitric oxide or per-
oxynitrite may cause direct death of neurons in culture, however,
low doses of each of these agents can stress neurons such that
they are phagocytosed by microglia (Hornik et al., 2016; Neher
et al., 2011; Neniskyte et al., ,2014, 2016), as reviewed below.

Under inflammatory conditions, neurons may be damaged/
stressed such that they expose eat-me signals, lose don't-eat-me
signals or bind opsonins, which leads to increased microglial phago-
cytosis of stressed-but-viable neurons or synapses (Fricker, Neher,
et al., 2012; Fricker, Olive-Martin, et al., 2012; Hornik et al., 2016;
Neher et al., 2011). However, phagocytosis of live neurons results
in the death of the neuron, and such cell death by phagocytosis is
known as primary phagocytosis or phagoptosis. Whereas phagop-
tosis during brain development contributes to neuronal network de-
velopment, the aberrant removal of live neurons during pathological
conditions such as chronic inflammation can be detrimental and re-
sult in neuronal loss and neurodegeneration.

How can we determine whether microglial phagocytosis of neu-
rons contributes to neuronal death? One way is to look for microglia
phagocytosing neurons; however: this provides only correlational
data, is difficult to do in vivo, and cannot distinguish between phago-
cytosis of live, dying and dead neurons. More useful conclusions can
be drawn from blocking microglial phagocytosis, for example by in-
hibition or knock-out of phagocytic receptors, and then determining
whether neuronal death or loss is prevented. If microglia are phago-
cytosing only dead or dying neurons, then blocking phagocytosis of
these will not prevent any neuronal death, and just cause an accu-
mulation of dead neurons. Whereas, if microglia are phagocytosing
stressed-but-viable neurons, then blocking phagocytosis of these
will prevent their death, resulting in reduced neuronal loss. This is
the critical test to distinguish between phagocytosis of dead and
dying neurons versus phagocytosis of live and viable neurons.

By ‘stressed-but-viable neurons’ we mean here neurons that
have been perturbed by neurodegeneration sufficiently to signal (or
be targeted) for phagocytosis, but not sufficiently to induce neuro-
nal death in the absence of phagocytosis. Examples of such stressed
neurons might include: (1) neurons exposed to subtoxic doses of
glutamate (Neher et al., 2013), and (2) neurons with tau aggregates
(Brelstaff et al., 2018). By ‘live neurons’ we simply mean neurons that
are not dead. Microglial phagocytosis of degenerating/dying neu-
rons could be beneficial by removing debris or dysfunctional neu-
rons, but it could be detrimental by prematurely removing otherwise
functional neurons, even-though they are destined to die. In con-

trast to degenerating/dying neuron, ‘stressed-but-viable neurons’
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are destined to live as long as they are not phagocytosed, and thus it
is likely to be beneficial to prevent this phagocytosis.

In this review, we will focus on the new evidence that phago-
cytosis contributes to neurodegeneration, and new insights into
the mechanisms involved. Below, we start by reviewing the sig-
nalling between neurons and microglia that determines whether a
neuron, neurite or synapse is phagocytosed or not. Dysfunctional
signalling could cause excessive phagocytosis in pathological condi-
tions, providing us with new potential therapeutic targets to prevent

neurodegeneration.

2 | PHAGOCYTIC SIGNALLING

Whether one cell eats another depends on signals expressed or re-
leased by the target cell (in this case neurons). These signals include
find-me signals, eat-me signals, don't-eat-me signals and opsonins
(Ravichandran, 2010; Figure 1).

JNC
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2.1 | Find-me signals: fractalkine and nucleotides
(ATP and ADP)

CX3CL1 (fractalkine) is a protein released from neurons or syn-
apses, which chemoattracts microglia via the CX3CR1 receptor
(Truman et al., 2008). Several groups have shown that in CX3CR1
knock-out mice, the microglia migrate less, resulting in reduced or
delayed phagocytosis of synapses during development (Fuhrmann
et al., 2010; Pagani et al., 2015). This delayed synaptic pruning can
result in autism-like behaviour in mice, suggesting the possibility that
autism results from insufficient phagocytosis of synapses (Paolicelli
et al., 2011; Peca et al., 2011; Tang, Gudsnuk, et al., 2014). CX3CL1
is expressed on cortical neurons and the metalloprotease ADAM10
cleaves CX3CL1 into a secreted form that chemoattracts micro-
glia. Interestingly, it has been shown that inhibition of ADAM10,
knock-out of CX3CL1 or knock-out of CX3CR1 prevent synaptic
pruning by microglia induced by reduced sensory and synaptic ac-

tivity (Gunner et al., 2019). One could speculate that synaptic loss

message “find-me” “eat-me” “don’t-eat-me”
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FIGURE 1 Overview of find-me, eat-me, don't-eat-me signals and opsonins, that regulate microglia phagocytosis of neurons. Find-

me signals are chemotactic signals, such as ADP and CX3CL1 (fractalkine) released from neurons and binding to microglial P2Y12 and
CX3CR1 receptors, respectively, resulting in chemotaxis of microglia to these neurons. Eat-me signals are released by stressed or dying
neurons, and induce phagocytosis of neurons expressing them. Such signals include UDP, which activates the P2Yé receptor on microglia.
Phosphatidylserine, when exposed on the surface of neurons, can either bind directly to microglia receptors triggering receptor expressed
on myeloid cells 2 (TREM2) and G-protein-coupled receptor 56 (GPR56), or indirectly via binding opsonins, Gas-6, apolipoprotein E (APOE),
milk fat globule-EGF factor 8 (MFG-E8) and complement component C1q (C1q), which then bind to microglial receptors: receptor tyrosine
kinase (MerTK), TREM2, vitronectin (VNR) and multiple EGF-like-domains 10 (MEGF10) respectively. Glycosylated proteins and lipids
which have been desialylated (had the terminal sialic acid residues removed) can bind opsonins galectin-3 (Gal-3), calreticulin (CRT), Clq
and complement protein 3b (C3b), which bind to microglial receptors MERTK, low-density lipoprotein receptor-related protein 1 (LRP1)
and complement receptors 1/3/4 respectively. Don't-eat-me signals inhibit phagocytosis, and include sialylated glycoproteins and lipids
(with terminal sialic acid residue present, recognized by sialic acid binding immunoglobulin-type lectin (Siglecs) receptors) and the protein
CD47, which can bind the microglial receptor signal-regulatory protein alpha (SIRP«) to inhibit phagocytosis. Together these signals regulate

microglial phagocytosis of neurons
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synaptic pruning, and one stimulus for this might be loss of synaptic
activity.

Nucleotides, including adenosine triphosphate (ATP) and uridine
triphosphate (UTP) can be released by: (1) active neuronal synapses
as co-transmitters, or (2) apoptotic or stressed cells via Pannexin-1
channels (Chekeni et al., 2010; Yamaguchi et al., 2014). ATP and
UTP can chemoattract macrophages by activating P2Y2 receptors
(Elliott et al., 2009). However, extracellular ATP is rapidly converted
to adenosine diphosphate (ADP), which induces microglial migration
and chemotaxis towards neural injury in vivo via activating P2Y12
receptors (Haynes et al., 2006). The P2Y12 receptor (P2Y12R) also
appears to mediate microglial recruitment to synapses, so that
knock-out of P2Y12R delays activity-dependent synaptic pruning by
microglia during development (Sipe et al., 2016). P2Y12R also seems
to regulate microglial phagocytosis of myelinated axons in the spinal
cord in vivo (Maeda et al., 2010). More recently, it was found that mi-
croglial processes spend most of their time on neuronal cell bodies,
recruited by ATP release from the neurons via activating microglial
P2Y12R (Cserép et al., 2020).

A variety of other find-me signals have been identified outside
the central nervous system (CNS), including: lysophosphatidylcho-
line (LPC), sphingosine-1-phosphate (S1P), dimerized ribosomal
protein S19 (RP S19), endothelial monocyte-activating polypeptide
Il (EMAP 1), tyrosyl tRNA synthetase (TyrRS) and formyl peptides
(Fond & Ravichandran, 2016). However, these have generally been
identified as find-me signals released by apoptotic cells recruiting
macrophages, and their roles in recruiting microglia to neurons, if

any, remains unknown.

2.2 | Eat-me signals: phosphatidylserine,
calreticulin and UDP

The best characterized eat-me signal is phosphatidylserine, which
is usually present on the inner leaflet of the plasma membrane,
because ATP-driven aminophospholipid translocases ATP8A1 and
ATP8A2 pump phosphatidylserine from the outer to inner side of the
membrane (Sapar et al., 2018). However, phosphatidylserine can be
exposed on the cell surface, either: (1) reversibly on live cells because
of calcium-activated phosphatidylserine scramblases, such as phos-
pholipid scramblase 1 (PLSCR1) and transmembrane protein 16F
(TMEM16F) (Shin & Takatsu, 2020; Zhang, Pan, et al., 2020), or (2)
irreversibly on apoptotic cells because of caspase-activated scram-
blase Xk-related protein 8 (XKR8) (Suzuki et al., 2013). Glutamate
or oxidants can induce reversible phosphatidylserine exposure on
live neurons, which induces their phagocytosis by microglia (Neher
et al., 2011; Sapar et al., 2018). Exposed phosphatidylserine can be
re-internalized by ATP-driven translocases, and inactivating muta-
tions or knock-out of such phosphatidylserine translocases can cause
neurodegeneration in animals via phosphatidylserine exposure on
live neurons (Sapar et al., 2018; Zhu et al., 2012). Phosphatidylserine

exposed on neurons induces microglial phagocytosis either directly

by microglial receptors triggering receptor expressed on myeloid
cells 2 (TREM2) or G-protein coupled receptor 56 (GPR56), or in-
directly by binding opsonins Gasé6 or milk fat globule-EGF factor
8 protein (MFG-E8), which induce phagocytosis via the microglial
phagocytic receptors proto-oncogene tyrosine-protein kinase MER
(MerTK) or the vitronectin receptor (VR, integrin o 8, or a, fs) re-
spectively (Fricker, Neher, et al., 2012; Kasikara et al., 2017; Li,
Chiou, et al., 2020; Wang et al., 2015; Wijeyesakere et al., 2016).
Phosphatidylserine is also exposed on synapses during developmen-
tal synaptic pruning and induces microglial phagocytosis of such syn-
apses by activating microglial GPR56 (Li, Chiou, et al., 2020).

In primary mixed neuronal-glial cultures, the addition of amy-
loid beta (Ap) induces phosphatidylserine exposure on live neurons,
and the consequent microglial phagocytosis of live neurons can be
prevented by blocking phosphatidylserine, MFG-E8, MerTK or VR
(Fricker, Neher, et al., 2012; Hornik et al., 2016; Neher et al., 2011,
2013; Neniskyte et al., ,2011, 2016). Extracellular tau can also in-
duce phosphatidylserine exposure on live neurons, inducing neu-
ronal loss by microglial phagocytosis, which can be prevented by
inhibiting the phagocytic receptor MerTK, or by eliminating microg-
lia (Pampuscenko et al., 2019).

In Drosophila, phosphatidylserine exposure has been imaged
on dendrites during developmental dendritic pruning or neuro-
nal injury (Sapar et al., 2018). Forced phosphatidylserine expo-
sure induced by knock-out of phosphatidylserine translocase or
over-expression of the phosphatidylserine scramblase resulted
in microglial phagocytosis of dendrites and axons in vivo (Sapar
et al., 2018). Similarly, over-expression of the phagocytic glial re-
ceptors, Simu and Drpr, in Drosophila caused loss of dopaminergic
and GABAergic neurons. Interestingly, only the GABAergic neu-
rons exposed phosphatidylserine in vivo, and masking the exposed
phosphatidylserine prevented the loss of GABAergic neurons, but
not the dopaminergic neurons (Hakim-Mishnaevski et al., 2019),
suggesting that the GABAergic neuronal loss was because of mi-
croglial phagocytosis of live phosphatidylserine-exposed neurons,
but phagocytosis of dopaminergic neurons was mediated by other
signals.Cell surface calreticulin can act as an eat-me signal induc-
ing phagocytes to phagocytose such cells via the low-density li-
poprotein receptor-related protein 1 (LRP1) (Gardai et al., 2005).
Calreticulin is normally confined to the endoplasmic reticulum but
can be released to the surface by endoplasmic reticulum stress or
inflammatory signalling (Feng et al., 2015). Interestingly, blocking
calreticulin on the surface of neurons and/or its receptor LRP1 on
the surface of microglia was sufficient to block lipopolysaccharide
(LPS) and Ap-induced phagocytosis of live neurons by microglia
(Fricker, Oliva-Martin, et al., 2012). This suggests that calretic-
ulin can act as an eat-me signal for neurons. However, calretic-
ulin can also be regarded as an opsonin that binds cell-surface
galactose and other sugar residues exposed by desialylation (Feng
et al.,, 2018) and gram-negative bacteria (Cockram et al., 2019).
In this context, cell-surface exposed galactose residues can be
regarded as an eat-me signal, which can bind opsonins including

calreticulin, C1qg and galectin-3.
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FIGURE 2 Complement mediated phagocytosis of neurons and synapses. Aggregates of extracellular amyloid beta (AB) or intracellular
tau may stress neurons, causing exposure of phosphatidylserine (PS) or asialoglycans that bind complement C1q. Bound C1q can (indirectly)
cause deposition of complement C3 as opsonins C3b and iC3b, which can induce phagocytosis of synapses or neurons by microglia via
complement receptors 1 and 3 (CR1 and CR3). Alternatively, membranes opsonized with C1q can bind calreticulin and be phagocytosed via
microglial LRP1. Exposure of phosphatidylserine on stressed neurons may also induce microglial phagocytosis of stressed neurons via other

opsonins and receptors

Uridine diphosphate (UDP) can act as a soluble eat-me signal,
when released by damaged or stressed neurons, activating P2Yé
receptors (P2Y6R) on microglia which triggers phagocytosis of the
neurons (Koizumi et al., 2007). Pharmacological inhibition of P2Y6
receptor was sufficient to prevent microglial phagocytosis of live
neurons in vitro and in vivo (Emmrich et al., 2013; Neher et al., 2014;
Neniskyte et al., 2014), suggesting that its inhibition may prevent
neurodegeneration. However, the activation of P2Y6R may be pro-
tective in ischaemia and radiation-induced brain injury, and the role

of P2Y6R may vary with brain pathology (Anwar et al., 2020).

2.3 | Don't-eat-me signals: CD47 and sialic acid

CD47 is a transmembrane protein expressed on most mammalian
cells, including neurons, and inhibits phagocytosis of such cells via
engaging signal-regulatory protein alpha (SIRPa) on phagocytes to
inhibit phagocytosis (Brown & Frazier, 2001; Gardai et al., 2005).
CD47 was also found to be expressed on synapses during devel-
opment, where it inhibits microglia-mediated synapse removal
(Lehrman et al., 2018). CD47 expression on myelin debris has also
been shown to inhibit its phagocytosis via SIRPa (Elberg et al., 2019).

The surface of neurons is highly sialylated, that is there is a high
density of sialic acid residues on its glycoproteins and glycolipids.
These sialic acid residues prevent microglial phagocytosis of such
neurons by (1) activating Siglec (sialic acid-binding immunoglobulin-
type lectin) receptors on microglia that inhibit microglial phagocyto-
sis, and (2) blocking the binding of opsonins C1q, C3b and galectin-3
(reviewed by Puigdellivol et al., 2020). Similar to SIRPa, most mi-
croglial Siglec receptors signal via immunoreceptor tyrosine-based
inhibition motif (ITIM) domains, which activate src homology 2
domain-containing protein tyrosine phosphatases 1 and 2 (SHP-1/
SHP-2), inhibiting microglial phagocytosis (Crocker & Varki, 2001;
Ulyanova et al, 1999). Thus, for example murine Siglec-E and

human Siglec-11 were found to recognize sialic acid residues on

the neuronal glycocalyx and inhibit phagocytosis of such sialylated
neurons (Claude et al., 2013; Wang & Neumann, 2010). Activated
microglia released a sialidase that desialylated co-cultured PC12
cells, enabling their phagocytosis by microglia (Nomura et al., 2017).
Sialylated PC12 cells did not bind the opsonin galectin-3, but de-
sialylated PC12 cells bound galectin-3, enabling galectin-3 medi-
ated phagocytosis of live cells (Nomura et al., 2017). Heterozygous
knock-out of a sialylating enzyme in mice caused a mild (~20%-
30%) reduction in sialylation, followed by progressive loss of syn-
apses and neurons, prevented by complement C3 knock-out (Klaus
et al., 2020). This all indicates that neuronal sialylation inhibits mi-

croglial phagocytosis of neurons.

2.4 | Opsonins: complement, galectin-3 and
apolipoprotein E

Complement proteins can be deposited on dendrites and synapses
to promote their removal by microglial cells (Schafer et al., 2012;
Stevens et al., 2007). The key step in complement activation is pro-
teolytic cleavage of C3 to C3a and C3b, where C3a can recruit and
activate microglia, whereas C3b opsonizes synapses and neurons
(complement roles in the brain reviewed in Lee et al., 2019). The
classical pathway of complement activation starts with complement
protein C1 (Clq, r and s) being deposited on a cell surface and en-
zymatically cleaving C2 to C2a and C2b, and cleaving C4 to C4a and
C4b, then C2a binds to C4b to form a ‘classical C3 convertase’ that
cleaves C3 to C3a and C3b (reviewed in Bajic et al., 2015). In the
alternative pathway, C3 spontaneously hydrolyses and binds fac-
tor B (which is cleaved by factor D to Bb) to form an alternative C3
convertase that cleaves C3. In addition, C3b can bind factor B and
properdin to form an amplifying C3 convertase cleaving more C3 to
C3aand C3b. C3b and C4b covalently attach to cell surface hydroxyl
groups, typically on sugars, opsonizing such surfaces for phagocyto-

sis. Sialylation has been shown to inhibit C1q and C3b deposition on
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dendrites in vitro (Linnartz et al., 2012). In addition, C1q can bind to
exposed phosphatidylserine (Paidassi et al., 2008), and is required to
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remove apoptotic neurons by microglia in vitro (Fraser et al., 2010).
Clg-opsonized targets can be removed by LRP1 plus calreticulin
(Ogden et al., 2001), C4b-opsonized targets by CR1, and C3b- or
iC3b-opsonized targets by complement receptor 1 (CR1), comple-
ment receptor 3 (CR3) or complement receptor (CR4) (Reviewed in
Ricklin et al., 2010) (Figure 2).

Knock-out of Clqg, C3 or CR3 in mice reduces synaptic prun-
ing during development, resulting in excess synapses, indicating
that complement proteins mediate microglial phagocytosis of syn-
apses (Hong et al., 2016; Schafer et al., 2012; Stevens et al., 2007).
Complement also mediates microglial phagocytosis of weak syn-
apses in adults, for example during forgetting of memories (Wang
et al., 2020), suggesting the possibility that excessive phagocytosis
may disrupt cognition (Miyanishi et al., 2020).

One of the main genetic risk factors for schizophrenia is variants
of C4, and there is evidence that C4 may drive excessive microg-
lial phagocytosis of synapses in schizophrenia (Sekar et al., 2016).
New-born retinal ganglion neurons in mouse retina were found to
be tagged with C1q and selectively phagocytosed alive by microglia,
so retinal ganglion cell numbers were increased by microglial deple-
tion or CR3 knock-out (Anderson et al., 2019). This indicates that
complement contributes to phagocytosis of live neurons as well as
synapses.

Cleavage of C3 generates both C3a and C3b, and C3a apparently
activates microglia via C3a receptors (C3aR), which acutely stimu-
lates phagocytosis (Lian et al., 2016) and may be chemotactic for
microglia (Surugiu et al., 2019). C3aR antagonists prevented microg-
lial phagocytosis of neurons in vivo (Surugiu et al., 2019), and C3aR
knock-out prevented microglial phagocytosis of synapses (Vasek
etal., 2016). C3aR antagonists or knock-out were beneficial in mouse
models of CNS lupus (Jacob et al., 2010), multiple sclerosis (MS) (Boos
et al., 2004), ischaemia/reperfusion injury (Ducruet et al., 2008), am-
yloid Alzheimer's disease (AD) models (Lian et al., 2015, 2016), a tau
AD model (Litvinchuk et al., 2018) and vascular white matter disease
(Zhang, Pan, et al., 2020).

Galectin-3 can act as an opsonin by binding to galactose residues
on the cell surface and MerTK on phagocytes (Caberoy et al., 2012;
Nomura et al., 2017). Galectin-3 was found to be released by acti-
vated microglia and bound to desialylated PC12 neurons and pro-
moted their phagocytosis by microglia via microglial MerTK receptor
in vitro (Nomura et al., 2017). Traumatic brain injury in mice induced
galectin-3 release into cerebral spinal fluid (CSF) and neuronal loss
was prevented by galectin-3 knock-out or antibodies, consistent
with galectin-3 role in mediating neuronal loss (Yip et al., 2017).

Apolipoprotein E (ApoE) can opsonize apoptotic cells (Grainger
et al., 2004), probably by binding phosphatidyserine on apoptotic
cells and a variety of ApoE receptors on phagocytes. ApoE has been
shown to bind and opsonize apoptotic (N2a) neurons for phagocyto-
sis via the microglial TREM2 receptor, which directly binds to ApoE
(Atagi et al., 2015). Expressing ApoE4 (but not ApoE2 or ApoE3) in

a microglial cell line increased phagocytosis of apoptotic neurons
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FIGURE 3 Factors regulating microglial phagocytosis. Microglial
phagocytosis is activated by: (a) binding of cytokines TGFp, TNFa,
IFNp and IFNYy, (b) desialylation of the microglial cell surface, (c)
up-regulation of phagocytic genes, such as Itgax, Clec7a, Axl, TREM2
and Apoe, or (d) epigenetic changes regulating transcription of
phagocytic genes

(Muth et al., 2019). ApoE can bind to C1q to block complement acti-
vation (Yin et al., 2019). ApoE has also been implicated in synapse re-
moval by astrocytes in vitro and in rodent brain development (Chung
et al., 2016). However, it is still unclear whether ApoE can directly

opsonize live synapses or neurons for microglial phagocytosis.

3 | MICROGLIAL STATES REGULATING
PHAGOCYTOSIS

Microglial phagocytosis of neurons does not just depend on the
state of the neurons, but also the state of the microglia, as microglia
in different states express different phagocytic genes and have dif-
ferent phagocytic capacity (Figure 3).

3.1 | Cytokines

Michelucci et al. (2009) reported that IFNy inhibited microglial
phagocytosis, whereas IL-10 increased phagocytosis, and IL-4 did lit-
tle or nothing to phagocytosis. However, it should be noted that cy-
tokine effects on phagocytosis are often time-dependent, and Haga
et al. (2016), using somewhat more physiological conditions, found
that IFNy increased microglial phagocytosis, and IL-4 inhibited mi-
croglial phagocytosis. We found that the pro-inflammatory cytokine
TNFa stimulated microglial phagocytosis of beads and live neurons,
resulting in neuronal loss in mixed glial-neuronal cultures, which
was prevented by inhibiting phagocytosis (Neniskyte et al., 2014).
Interestingly, the anti-inflammatory cytokine TGF-p was found to
stimulate neuronal expression of C1lqg and Clq tagging of synapses,
promoting microglial synaptic pruning during development (Bialas &
Stevens, 2013). Type 1 interferons (IFN), such as IFN-p, increased
microglial phagocytosis (Chan et al., 2003), and mediated the expres-

sion of phagocytic genes in prion-infected mouse brain, such that
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blocking this response reduced neuronal and synaptic loss in this
model (Nazmi et al., 2019). IFN-B and IFN-y were found to increase
expression of SIRP-p1, which increased microglial phagocytosis of
neuronal debris, beads and Ap through binding an unknown ligand
on neurons (Gaikwad et al., 2009). Thus, a variety of cytokines can

regulate microglial phagocytosis.

3.2 | Sialylation of microglia

The microglial cell surface is sialylated, but LPS, Ap and tau can in-
duce desialylation (Allendorf et al., 2020), which is mediated by the
cell surface expression and release of neuraminidase 1 (Allendorf
et al., 2020; Sumida et al., 2015). Microglial desialylation increases
microglial phagocytosis, partly via reduced activation of Siglec-2
(CD22) (Pluvinage et al., 2019). Microglial desialylation also increased
microglial phagocytosis via activating CR3, and induced microglia to
phagocytose healthy neurons (Allendorf, Puigdellivol, et al., 2020).
Addition of LPS or Ap to glial-neuronal cultures induced neuronal
loss that could be blocked by inhibiting sialidases or CR3 (Allendorf,
Puigdellivol, et al., 2020). Thus, inflammatory stimuli can induce de-
sialylation of both microglia and neurons, which stimulates microglial
phagocytosis of neurons, which might contribute to neurodegenera-

tion (reviewed in Puigdellivol et al., 2020).

3.3 | Disease-Associated Microglia (DAM)

Single-cell transcriptional profiling of microglia identified common
transcriptional changes in microglia from mouse models of AD (APP/
PS1), amyotrophic lateral sclerosis (ALS) (SOD1) and ageing (Holtman
et al., 2015). Other research groups found a similar microglial tran-
scriptional profile from mouse models of AD (APP/PS1 and 5xFAD)
(Keren-Shaul et al., 2017; Krasemann et al., 2017), tauopathy (Tau
P301L) and ageing (Kang et al., 2018). Microglia with this expression
profile have been called various names, including ‘disease-associated
microglia’ (DAM) and ‘microglial neurodegenerative phenotype’
(MGnND). This common transcriptional profile included up-regulated
expression of Itgax, Clec7a, Axl, TREM2 and Apoe. The Itgax gene
codes for CD11c, a component of the phagocytic receptor CR4,
which mediates phagocytosis of iC3b-opsonized cells. The Clec7a
gene codes for a phagocytic receptor Dectin-1, mediating phago-
cytosis of cells exposing the glucose polymer beta-glucan. The AxI
gene codes for the phagocytic receptor Axl, which mediates phago-
cytosis of phosphatidylserine-exposed cells (Tondo et al., 2019). The
TREM2 gene codes for the phagocytic receptor TREM2, which me-
diates phagocytosis of phosphatidylserine-exposed cells (Takahashi
et al., 2005). The Lgals3 gene codes for galectin-3, an opsonin medi-
ating phagocytosis of galactose-exposing cells (see Opsonin section).
The Apoe gene codes for ApoE, which regulates phagocytosis of
synapses and neurons, and inhibits C1q opsonization, but also helps
transport of lipids and cholesterol, necessary for digestion of targets

(see Opsonin section). This up-regulation of phagocytosis genes in

JNC

DAM microglia is likely to increase their phagocytic capacity, and
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indeed DAM microglia have been shown to cluster around amyloid
plaques and to contain an increased amyloid load, consistent with
up-regulated phagocytosis (Keren-Shaul et al., 2017). Unfortunately,
we do not know whether DAM microglia are beneficial, detrimental,

both or neutral for neurodegeneration.

3.4 | Microglial phagocytosis of neurons can change
microglial state

Microglia that have phagocytosed apoptotic neurons have an al-
tered transcriptional profile that may resemble the DAM profile
(Krasemann et al., 2017). Knock-out of the phagocytic receptor
TREM2 prevents part of the DAM profile (Krasemann et al., 2017),
suggesting that phagocytosis itself could partially trigger this switch
into a microglial DAM profile. Microglial phagocytosis of dying cells
causes multiple transcriptional changes, including up-regulation
of phagocytic genes, mediated by epigenetic changes (Ayata
et al., 2018). Microglia that have phagocytosed apoptotic neurons
also secrete different cytokines, chemokines and other factors,
and one consequence of this is an inhibition of neurogenesis (Diaz-
Aparicio et al., 2020). Microglial phagocytosis of apoptotic T cells
suppressed microglial activation and antigen presentation (Magnus
et al., 2001). It remains unclear whether microglial phagocytosis of
live-but-stressed neurons or synapses is pro- or anti-inflammatory,
and whether microglia can present antigens from phagocytosed live
neurons, synapses or myelin—but this is important to know, as it

could contribute to disease.

3.5 | Epigenetics

Microglia from cortex and striatum were found to be less phagocytic
than microglia from cerebellum, apparently because of the expres-
sion of polycomb repressive complex 2 (PRC2), which methylates his-
tones (H3K27me3) repressing phagocytic genes (Ayata et al., 2018).
Knock-out of PRC2 in microglia up-regulated phagocytic genes in
cortical and striatal microglia, and resulted in synaptic loss and be-
havioural deficits, attributed to excessive microglial phagocytosis
(Ayata et al., 2018). Similarly, Jumonji domain-containing 3 (Jmjd3) is
a histone H3K27 demethylase, which suppresses microglial activa-
tion and neuronal loss in a 1-methyl-4-phenyl-1,2,3,6-tetrahydrop
yridine (MPTP)-model of Parkinson's disease (Tang, Li, et al., 2014).
Systemic inflammation induced by repeated LPS i.p. injection into
mice induced sustained epigenetic and transcriptional changes in
brain microglia, including increased expression of complement and
phagosome genes (Bodea et al., 2014; Wendeln et al., 2018). This
resulted in loss of dopaminergic neurons in the substantia nigra
that was prevented in complement C3 knock-out mice (Bodea
et al., 2014), suggesting that the activated microglia had phagocy-
tosed live C3-tagged neurons. Microglial activation induced by LPS

and other stimuli can also be mediated by DNA methylation, and
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(Carrillo-Jimenez et al., 2019). Altogether, these studies indicate that
epigenetics regulates microglial phagocytosis, and this may contrib-

ute to brain-region-specific differences in microglial phagocytosis.

4 | PHAGOCYTOSIS OF NEURONS AND
SYNAPSES IN NEURODEGENERATION

4.1 | Alzheimer's disease (AD) and tauopathies

AD is the most common cause of dementia, characterized by extra-
cellular plaques of aggregated AP, intracellular neurofibrillary tau
tangles, synapse loss, neuronal loss, brain atrophy, microglial activa-
tion and memory loss (Bondi et al., 2017; Hamos et al., 1989; Nestor
et al., 2008).

Early-onset AD is caused by mutations in the genes encoding
APP (amyloid precursor protein) or presenilin 1 or 2 (PS1, PS2),
which cleave APP to generate Ap (O'Brien & Wong, 2011). Thus,
early-onset AD is thought to be driven by the accumulation and ag-
gregation of A with age. In an amyloid model of AD, expression of
human mutant APP and PS1 results in progressive loss of synapses,
neurons and memory, which are all prevented by complement C3
knock-out, apparently because of reduced microglial phagocytosis
of synapses and neurons (Shi et al., 2017). Similarly, in amyloid mod-
els of AD, Clq tagged synapses for phagocytosis by microglia, and
synaptic loss was prevented by knock-out of C1qg, C3 or CR3 (Hong
et al., 2016; Wu et al., 2019). Thus, complement seems to be central
to synaptic loss in amyloid models of neurodegeneration (Figure 2).
Note, however, that complement factors can induce inflammation
and cell death, independent of phagocytosis, although the require-
ment for CR3 favours phagocytosis being required in this case.

Two-photon imaging of intact brains of mice with APP, PS1 and
tau mutations revealed that neuronal loss was accompanied by
microglial recruitment and process mobility prior to neuronal loss,
and preventing microglial recruitment by knock-out of Cx3cr1 pre-
vented neuronal loss (Fuhrmann et al., 2010). In a similar 5xFAD
mouse model, microglia were found to preferentially interact with
amyloid-laden neurons, and microglia exposed to amyloid in vivo
phagocytosed neurites, even before plaque formation (Von Saucken
et al., 2020).

Insoluble intracellular inclusions of hyperphosphorylated tau,
known as neurofibrillary tangles are a hallmark of AD, frontotem-
poral dementia (FTD) and several other neurodegenerative diseases,
known as tauopathies (Crowther & Goedert, 2000). Tau variants
are associated with AD and FTD by genome-wide association stud-
ies (GWAS), implicating tau as causal in disease. Expression of FTD
mutant tau (P301S or P301L) in mice results in synaptic and neu-
ronal loss, prevented by Clq antibodies (Dejanovic et al., 2018),
CR3 knock-out (Litvinchuk et al., 2018) and C3 knock-out (Wu
et al., 2019), suggesting that tau-induced synaptic and neuronal
loss is via complement-mediated microglial phagocytosis. Synapses

and neurons in P301L tau mice exposed phosphatidylserine prior to

phagocytosis by microglia, and a phosphatase and tensin homolog
(PTEN) inhibitor prevented this phagocytosis (Benetatos et al., 2020).
Apparently tau normally suppresses PTEN, but aggregated tau does
not, resulting in phosphatidylserine exposure, which induces phago-
cytosis by microglia (Benetatos et al., 2020). Consistent with this,
only neurons with tau aggregates from P301S tau mice exposed
to phosphatidylserine in culture, were specifically phagocytosed
by co-cultured microglia. This phagocytosis could be prevented by
blocking phosphatidylserine (Brelstaff et al., 2018). Similarly, the ap-
plication of extracellular tau caused phosphatidylserine exposure on
the neurons and microglial phagocytosis of such neurons, and block-
ing microglial phagocytosis prevented the tau-induced neuronal loss
(Pampuscenko et al., 2019, 2021).

Some FTDs can be caused by mutations of the GRN gene encod-
ing progranulin and granulin. Progranulin can inhibit phagocytosis
of apoptotic cells, synapses and axons (Kao et al., 2011; Petoukhov
et al., 2013). Thus, it is possible that loss-of-function mutations of
GRN promote excessive microglial phagocytosis of neurons and
synapses.

In late-onset AD most of the genetic inheritability is linked to
variants of ApoE (Lambert et al., 2013). Using ApoE variant-specific
knock-in mice there is in vivo and in vitro evidence for differential
phagocytic capability of astrocytes to phagocytose synapses (Chung
et al., 2016). ApoE also inhibits Clg-mediated phagocytosis (Yin
et al., 2019). Variants of the phagocytic receptor TREM2 are also
linked to AD risk, and in a tau mouse model, TREM2 knock-out pre-
vented neuronal loss (Leyns et al., 2017), which is compatible with
the idea that neuronal loss may be because of TREM2-mediated
phagocytosis.

Aggregates of TDP-43 (TAR DNA-binding protein 43) are the
main constituent of glial and neuronal inclusions in amyotrophic lat-
eral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD)
patients, and TDP-43 has pathological roles in other neurodegener-
ative diseases including AD (Gao et al., 2018). Interestingly, Paolicelli
et al. (2017) demonstrated that knock-out of TDP-43 in mouse mi-
croglia increased microglial phagocytosis of both Ap and synapses,
resulting in reduced amyloid plaques but increased synaptic loss in
an amyloid mouse model, illustrating the protective and detrimental
roles of microglial phagocytosis.

Note, however, that TDP-43, GRN, APOE, TREM2 and com-
plement affect functions other than phagocytosis, so it can be
difficult to disentangle the mechanisms by which they affect

neurodegeneration.

4.2 | Parkinson's disease (PD)

PD is a neurodegenerative disease characterized by the follow-
ing: motor dysfunction, the presence of Lewy bodies and the loss
of dopaminergic neurons in the substantia nigra (Jankovic, 2008).
PD-risk genes known to affect microglial phagocytosis include
leucine-rich repeat kinase 2 (LRRK2). LRRK2 is a cytoplasmic pro-

tein, with GTPase and protein kinase domains, that regulates
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microglial phagocytosis and other processes (Kim et al., 2018; Lee
et al., 2020; Marker et al., 2012). Activation of LRRK2 in BV-2 mi-
croglia increased phagocytosis of live neuronal axons and dendrites,
which was prevented by LRRK2 knock-down or blocking exposed
phosphatidylserine (Marker et al., 2012). LRRK2 directly phospho-
rylates the WAVE2 complex that mediates the actin remodelling of
phagocytosis. The LRRK2-G2019S variant that increases PD risk also
increased microglial phagocytosis of live dopaminergic neurons, and
this was prevented by blocking phagocytosis at WAVE2 or Arp2/3
(Kim et al., 2018). LRRK2-G2019S knock-in mice had increased do-
paminergic neuronal loss in the substantia nigra in response to LPS
injection, prevented by WAVE2 knock-down (Kim et al., 2018).
Similar results were found in a Drosophila model (Kim et al., 2018;
Maksoud et al., 2019). This indicates that the PD-risk variant of
LRRK2 (G2019S) increases inflammatory microglial phagocytosis
of dopaminergic neurons, directly identifying the mechanism of
neurodegeneration.

Anotherimportant PDriskgene codesfora-synuclein. a-synuclein
is the main component of Lewy bodies and may mediate the spread-
ing of the disease (Spillantini et al., 1997). Extracellular a-synuclein
can activate microglia and induces complex changes in phagocyto-
sis, dependent on time and aggregation state of a-synuclein (Janda
et al., 2018). However, soluble and fibrillar a-synuclein can stimu-
late microglial phagocytosis (Fellner et al., 2013), and microglia from
a-synuclein gene-ablated mice have reduced phagocytosis (Austin
et al., 2006). Transgenic mice expressing aggregate-prone A53T a-
synuclein had increased microglial expression of the phagocytic re-
ceptors Axl and MerTK, and knock-out of these receptors extended
survival (Fourgeaud et al., 2016), suggesting that microglial phagocy-
tosis of neurons contributed to the pathology.

It is well established that degeneration of dopaminergic neurons
of the substantia nigra plays a key role in the pathogenesis of PD
and those neurons contain high levels of the protein neuromelanin
(Sulzer et al., 2000). Extracellular neuromelanin activates microg-
lia in vitro and injection into the substantia nigra caused neuroin-
flammation and loss of neurons in vivo (Zecca et al., 2008; Zhang
etal., 2011). In culture, neuromelanin resulted in neuronal loss which
was then prevented by knock-out of the phagocytic receptor CR3
(Zhang et al., 2011), suggesting that microglial phagocytosis of live
neurons may cause this neuronal loss. Accordingly, iC3b was found
on melanized neurons in the substantia nigra of PD patients (Loeffler
et al., 2006), supporting the idea that complement activation may
contribute to PD neuronal loss.

Gut dysfunction occurs early in PD, which may result in elevated
serum endotoxin (LPS) (Brown, 2019). In mice, chronic peripheral LPS
causes activation of microglia in the substantia nigra, up-regulation of
complement factors and neuronal loss, prevented by complement
C3 knock-out (Bodea et al., 2014). MPTP and rotenone are environ-
mental toxins that can induce microglial activation and degeneration
of dopaminergic neurons in vivo (Cztonkowska et al., 1996; Sherer
et al., 2003). Rotenone has been shown to induce loss of neurons
in neuronal-glial co-cultures, and this neuronal loss was blocked by

inhibition of microglial phagocytic receptors (Emmrich et al., 2013).
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Similarly, MPTP induced microglia to phagocytose whole degen-
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erating dopaminergic neurons in vivo, implicating phagocytosis in
dopaminergic degeneration (Barcia et al., 2011, 2012). Injection of
6-hydroxydopamine into mouse striatum induced microglial phago-
cytosis of dopaminergic neurons in the substantia nigra, consistent
with the neuronal loss being because of microglial phagocytosis
(Marinova-Mutafchieva et al., 2009; Virgone-Carlotta et al., 2013).

Thus, there is accumulating evidence that microglial phagocyto-
sis of neurons may be responsible for neuronal loss in PD. However,
the evidence remains circumstantial, and microglial phagocytosis
may also have protective roles in PD (Janda et al., 2018; Tremblay
etal., 2019).

4.3 | Multiple sclerosis (MS)

MS is a neuroinflammatory disease with characteristic demyelinated
lesions in cortical grey and subcortical white matter, and neurode-
generation at chronic stages (Pinto & Fernandes, 2020). Microglial
phagocytosis of myelin classically activates and makes them neu-
rotoxic in culture (Pinteaux-Jones et al., 2008). On the other hand,
there is abundant evidence that increasing microglial phagocytosis
of myelin debris is beneficial during remyelination, as myelin debris
inhibits oligodendrocyte differentiation and remyelination (Pinto &
Fernandes, 2020). Whether microglia could strip myelin off axons
from live neurons remains unclear, but microglia do appear to survey
myelin sheath in vivo (Zhang et al., 2019), and anti-myelin antibod-
ies or complement might promote such myelin stripping (DeJong
& Smith, 1997; Vargas et al.,, 2010). Complement is activated in
MS (Watkins et al., 2016), and C1q knock-out mice were protected
against white matter loss in a mouse obesity model, suggesting that
C1g may mediate microglial phagocytosis of live myelin (Graham
et al., 2020). Recently, it has been shown that C3, but not C1q, local-
ize with synapses in several models of MS (Werneburg et al., 2020).
Following C3 deposition, microglia have been shown to eat presyn-
aptic inputs in these models. Over-expression of the complement in-
hibitor Crry at synapses successfully reduced microglial engulfment
of synapses (Werneburg et al., 2020). This study focused on synapse
loss, but suggests that myelin and neuronal loss in MS might result
from excessive microglial phagocytosis. Mouse models of MS also
have ‘neuronophagia’, that is evidence of glia phagocytosing neurons
(Guo et al.,, 2004; Lee et al., 2007).

4.4 | Retinal degeneration

Age-related macular degeneration (AMD) is a degenerative disease
of the retina, and a leading cause of blindness. Complement com-
ponents C3, complement factor B (CFB) and complement factor H
(CFH) are elevated in AMD, and variants of complement genes (CFH,
CFB, C2, SERPING1 and C3) have been shown to increase the risk of
AMD (Geerlings et al., 2017). Inhibition of complement components
C3a and C5a (Nozaki et al., 2006), or complement regulators CFB
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and membrane attack complex (MAC) (Lipo et al., 2013), or adminis-
tration of complement regulators CD59 (Bora et al., 2010) and CFH
(Kim et al., 2013) can reduce pathology in animal models of AMD.
A C3 inhibitor, APL-2, reduced retinal atrophy in a phase 2 clinical
trial for AMD (Kassa et al., 2019). Another retinal degenerative dis-
ease, retinitis pigmentosa (RP), is characterized by progressive loss
of retinal rod cells and consequently peripheral and night vision. In a
mouse model of RP, the loss of rod cells was found to be because of
microglial phagocytosis of live rod cells, and inhibition of this phago-
cytosis prevented retinal degeneration (Zhao et al., 2015). This evi-
dence supports the concept of microglia and complement mediating

phagocytosis of live cells.

4.5 | Ischaemia and stroke

Ischaemia causes acute and delayed neuronal loss in stroke, and
chronic or intermittent ischaemia is central to vascular dementias.
Following stroke or cerebral ischaemia, activated microglia rapidly
phagocytose dead or degenerating neurons which is beneficial for
recovery after ischaemic stroke (reviewed in Li, Huang, et al., 2020).
However, in the penumbra and the peri-infarct regions, loss of
stressed-but-viable neurons is delayed, and inhibition of microglial
phagocytosis can be beneficial. Thus, knock-out of the phagocytic
receptor MerTK or opsonin MFG-E8 (that binds exposed phos-
phatidylserine) prevented neuronal loss and long-term functional
deficits after cerebral ischaemia (Neher et al., 2013), suggesting
that microglial-mediated phagocytosis contributes to neuronal loss
after transient cerebral ischaemia. Such transient ischaemia induces
reversible phosphatidylserine exposure on neurons in mice (Mari
et al., 2004). Similarly, neurons exposed to ischaemia were shown
to reversibly expose phosphatidylserine via the calcium-activated
phosphatidylserine scramblase TMEM16F, and TMEM16F knock-
down prevented microglial phagocytosis of stressed neurons and
functional deficits after ischaemia-reperfusion in mice (Zhang, Li,
et al., 2020). Complement component C3 is also an opsonin guid-
ing phagocytosis of neurons and synapses by microglia. Thus, a
targeted inhibitor of C3 activation, B4Crry, prevented phagocyto-
sis of stressed-but-viable neurons in the ischaemic penumbra area
(Alawieh et al., 2018), reduced phagocytosis of synapses and im-
proved overall cognitive function in a model of embolic stroke in
mice (Alawieh et al., 2020).

4.6 | Brain viral infections

Brain infection with West Nile Virus caused complement deposi-
tion on synapses, microglial phagocytosis of synapses and memory
loss, which was prevented by eliminating microglia, C3 or C3aR
(Vasek et al., 2016). Viral infection of neurons by the hand-foot-and-
mouth disease enterovirus 71 caused exposure of calreticulin on
neurons that were apparently eaten alive by glia (Hu et al., 2017).

Virally-infected cells can also expose phosphatidylserine and be

phagocytosed alive by microglia via the phagocytic receptor MerTK
(Chua et al., 2018; Miner et al., 2015; Tufail et al., 2017). This sug-
gests the possibility that infected neurons (or synapses) signal to be
phagocytosed in order to limit further infection, but if too many neu-
rons become infected this phagocytosis may be responsible for the

neuronal loss.

4.7 | Brain ageing

Ageing is one of the main risk factors for developing neurodegenera-
tive diseases such as Alzheimer's disease, but in the absence of such
diseases, ageing itself may cause neurodegeneration. During ageing
of mice and rats, there is a slow but progressive loss of synapses
and neurons (Morterda & Herculano-Houzel, 2012; Shi et al., 2015,
2017). In aged mice, there is loss of synapses and neurons in the
CA3 region of the hippocampus, but this loss is prevented in C3-
deficient mice, implicating complement-mediated phagocytosis in
such loss (Shi et al., 2015). Similarly, mice lacking an enzyme required
for cell surface sialylation had accelerated loss of synapses and neu-
rons in CA3 and this loss was prevented in C3-deficient mice (Klaus
et al., 2020), suggesting that sialylation can protect against this loss,
potentially by inhibiting phagocytosis. Ageing-induced neuronal
loss in mouse hippocampus and substantia nigra was also prevented
in TREM2 knock-out mice, supporting a central role of microglial
phagocytosis in this loss (Linnartz-Gerlach et al., 2019). However,
the anti-phagocytic receptor CD22 (Siglec-2) is up-regulated in aged
microglia, and CD22-blocking antibodies improved cognitive perfor-
mance in aged mice, possibly because of increased microglial phago-
cytosis of debris and protein aggregates (Pluvinage et al., 2019). This
reminds us that microglial phagocytosis has both beneficial and det-
rimental roles in brain pathology. Moreover, it highlights the need
for a better understanding of the role that microglial receptors have
in phagocytosing particular ligands, as this could be crucial to design
therapeutic strategies that promote phagocytic clearance of apop-
totic cells, abnormal protein aggregates and debris, while avoiding
phagocytosis of stressed-but-viable neurons and/or synapses.

4.8 | Human data

Evidence for microglial phagocytosis of live neurons contributing
to neurodegeneration is more limited in humans, compared to the
mouse models and culture systems described above, but a variety of
supporting evidence is reported below.

The general idea of glial phagocytosis of neurons contrib-
uting to human pathology originates in 1890’s Paris from the
research of Georges Marinesco on human neuropathology
(Marinesco, 1907). Marinesco observed glial cells phagocytosing
neurons in fixed brain sections from neurology patients, and re-
ferred to this phenomena as ‘neuronophagia’. Neuropathologists
have since reported observing neuronophagia in many different
pathologies, including PD (Kremer & Bots, 1993), ALS (Troost
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et al., 1993), ageing (Rath-Wolfson et al., 2017), Gaucher disease
(Pampols et al., 1999), epilepsy (Boyd et al., 2010), stroke with dia-
betes (Li et al., 2011), and most recently SARS-CoV2 (Al-Dalahmah
et al., 2020). This is consistent with microglial phagocytosis of
neurons, but does not tell us whether the neurons were eaten
dead or alive. Note, however, that there is no evidence in AD of
neuronophagia or microglia clustering around tau neurofibrillary
tangles. This may be because AD is a slow disease and therefore
neuronal removal is a rare event, or it may be that different pro-
cesses are involved in neuronal loss in AD.

There is an increase in phagocytic (CD68-positive) microglia in
FTD and AD (Woollacott et al., 2020); and expression profiling of
plaque-associated microglia from AD brains showed up-regulation
of genes for phagocytosis and immune response (Yin et al., 2017).
Microglia freshly isolated from AD brains, release more Clqg and
nitric oxide derivatives potentially causing more phagocytosis (Lue
et al., 2001). Furthermore, there is evidence that: microglia from AD
brains contain more synaptic material than microglia from healthy
brains, and synapses from AD brains are more readily phagocytosed
by microglia (Tzioras et al., 2019). Ohm et al. (2021) reported that in
stereological analysis of brain sections from AD patients, activated
microglia were positively associated with neuronal loss, consistent
with activated microglia being responsible for the neuronal loss.
Intriguingly, in post-mortem brains from MS patients, there was
increased microglial phagocytosis and evidence for myelin mRNA
transcripts inside microglia, suggesting microglial phagocytosis of
myelin and transfer of mRNA (Schirmer et al., 2019).

As outlined previously, genome-wide association studies (GWAS)
have linked a number of genes regulating microglial phagocytosis to
risk of AD, including opsonins APOE and CLU/APOJ, phagocytic
receptors TREM2, CR1, CD33 and PILRA, and downstream sig-
nalling PLCG2, CD2AP, ZYX and ABI3 (Hollingworth et al., 2011;
Malik et al., 2013; Naj et al., 2011; Podlesny-Drabiniok et al., 2020;
Ramanan et al., 2015). LRRK2 variants, such as G2019S, increase
PD risk, and increase microglial phagocytosis (Kim et al., 2018), and
reactive microglia are found in the substantia nigra of PD patients
(McGeer et al., 1988). Variants of the TDP-43 gene affect ALS risk,
and TDP-43 is known to regulate microglial phagocytosis (Paolicelli
et al. 2017). Variants of the GRN gene affect FTD risk, and the
gene product progranulin regulates microglial phagocytosis (Kao
et al., 2011; Petoukhov et al., 2013). Thus, GWAS indicates that mi-
croglial phagocytosis is important in neurodegenerative disease, but
in general does not tell us whether it is beneficial, detrimental or
both in pathology.

5 | KNOWLEDGE GAPS, CHALLENGES
AND POTENTIAL THERAPEUTIC TARGETS

The hypothesis that microglial phagocytosis of live neurons contrib-
utes to neurodegeneration in human brain pathologies remains a hy-
pothesis, and below we outline some of the key issues that need to

be resolved to test this hypothesis.

Neurochemistry

1. Observation of microglial phagocytosis of neurons in vivo.
Current methods for imaging microglia dynamics in vivo (such as
two-photon imaging) are poor at imaging phagocytosis, and cannot
distinguish between phagocytosis of live and dead neurons in vivo.
Clearly, better methods are required, as well as markers for healthy,
stressed, degenerating, dying and dead neurons in vivo.

2. Neuropathology of human disease. We need markers of mi-
croglial phagocytosis of neurons or synapses that can be used on
fixed sections of human brain, and last for days or weeks after the
phagocytic event, and ideally distinguish between phagocytosis of
live and dead neurons.

3. Inflammation and phagocytosis are linked in that inflammatory
activation of microglia generally increases microglial phagocytosis.
As both inflammation and phagocytosis may independently contrib-
ute to neurodegeneration, it can be difficult to distinguish these con-
tributions. Thus, we need drugs, knock-outs and markers that clearly
distinguish microglial inflammation and phagocytosis.

It appears that microglial phagocytosis has multiple beneficial
and detrimental roles in neurodegeneration, and these may change
during the course of neurodegeneration. Microglial phagocytosis
may be beneficial by clearing debris and protein aggregates, but
may be detrimental by clearing live synapses and neurons. Hence,
it is inadvisable to simply block or boost microglial phagocytosis.
Rather it may be necessary to block the phagocytosis of specific
targets (synapses and neurons) at specific stages of disease, which
presents significant challenges. Potential therapeutic targets to
prevent excessive microglial phagocytosis of neurons and synapses
may include: complement components C1 (Williams et al., 2016),
C3 (Alawieh et al., 2018; Werneburg et al., 2020) and C3aR (Ahmad
et al., 2019; Jacob et al., 2010; Litvinchuk et al., 2018;), the opso-
nin Galectin-3 (Boza-Serrano et al., 2019; Puigdellivol et al., 2020;
Srejovic et al., 2020; Yip et al., 2017), the phagocytic receptors P2Y6
(Anwar et al., 2020; Neher et al., 2014 ), MerTK (Neher et al., 2013)
and TREM2 (Deczkowska et al., 2020), and the desialylating en-
zyme neuraminadase 1 (Allendorf, Franssen, et al., 2020; Allendorf,
Puigdellivol, et al., 2020; Puigdellivol et al., 2020).

6 | SUPPORTING MATERIALS
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