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Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and 
synapses contributes to multiple brain pathologies. RNA- seq and genome- wide asso-
ciation (GWAS) studies have linked multiple phagocytic genes to neurodegenerative 
diseases, and knock- out of phagocytic genes has been found to protect against neu-
rodegeneration in animal models, suggesting that excessive microglial phagocytosis 
contributes to neurodegeneration. Here, we review recent evidence that microglial 
phagocytosis of live neurons and synapses causes neurodegeneration in animal mod-
els of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal 
dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced 
by ischaemia, infection or ageing. We also review factors regulating microglial phago-
cytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreti-
culin, UDP, CD47, sialylation, complement, galectin- 3, Apolipoprotein E, phagocytic 
receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. 
Some of these factors may be potential treatment targets to prevent neurodegen-
eration mediated by excessive microglial phagocytosis of live neurons and synapses.
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1  | INTRODUC TION

The neurodegeneration of neurodegenerative diseases is accompa-
nied by progressive loss of neurons, synapses, dendrites, myelin and 
brain tissue. However, there are very few dead or dying cells in the 
neurodegenerating brain, and there is little evidence that neurode-
generation is caused by neuronal death, that is that blocking neuro-
nal death prevents neurodegeneration (Fricker et al., 2018; Yang & 
Wang, 2018). This raises the possibility that brain tissue is removed 
alive by phagocytes such as microglia during neurodegenerative dis-
ease (Rajendran & Paolicelli, 2018; Vilalta & Brown, 2018). In effect, 
the brain may eat itself. If so, this changes our whole concept of 
neurodegeneration, and suggests radically different ways of tackling 
these devastating diseases.

Microglia are the brain's main phagocytes (cells capable of en-
gulfing and digesting large extracellular particles), and protect the 
brain by phagocytosing bacteria, aggregated proteins and cellular de-
bris (Galloway et al., 2019; Vilalta & Brown, 2018; Wolf et al., 2017). 
Microglia derived from the yolk sac, invade the brain prior to birth 
and are maintained by self- renewal within the adult brain (Ginhoux 
et al., 2010; Hashimoto et al., 2013). During normal brain develop-
ment, microglia shape neuronal circuits by phagocytosing excess 
synapses, dendrites, axons, myelin, neurons and neuronal precur-
sors (Vilalta & Brown, 2018). The developmental loss of synapses is 
known as ‘synaptic pruning’, and this is partly mediated by microg-
lial phagocytosis of such synapses (Paolicelli et al., 2011). Microglia 
also phagocytose live neuronal precursors during development to 
regulate neuronal numbers (Anderson et al., 2019; Cunningham 
et al., 2013).

After development, microglia are normally sessile and ramified 
within brain parenchyma, but their long processes are constantly 
moving to scan synapses, neurons and other cells for any changes, 
damage or pathogens (Nimmerjahn et al., 2005). Signs of substantial 
damage or pathogens, result in inflammatory activation of microglia, 
including: chemotaxis of microglial processes and the whole microg-
lia to the site of activation, retraction of other processes to the cell 
body to form more- or- less amoeboid microglia, NF- κB- dependent 
expression of inflammatory genes including phagocytic receptors, 
and release of opsonins and cytokines.

Activated microglia can kill neurons by releasing TNF- α, 
glutamate, cathepsin B, superoxide or nitric oxide (Brown & 
Vilalta, 2015). Proinflammatory cytokines such as IL- 1β and 
TNF- α can induce neuronal cell death in culture and in vivo (Glass 
et al., 2010; McCoy & Tansey, 2008), but in general, this is indi-
rect toxicity mediated by activation of glia (Neniskyte et al., 2014; 
Taylor et al., 2005). TNF- α can induce glutaminase release from 
neurons, generating glutamate from glutamine extracellularly, re-
sulting in excitotoxicity (Ye et al., 2013). Similarly, activated mi-
croglia can release glutaminase to induce excitotoxicity (Huang 
et al., 2011). Cathepsin B can be released by activated microglia to 
mediate the neurotoxicity of Aβ (Gan et al., 2004) and chromogr-
anin A (Kingham & Pocock, 2001). The microglial NADPH oxidase 

(PHOX) generates superoxide and hydrogen peroxide, which may 
mediate neuronal death induced by LPS (Cheret et al., 2008), 
6- hydroxy- dopamine (Hernandes et al., 2013), transient ischaemia 
(Yoshioka et al., 2010) and retinal degeneration (Zeng et al., 2014). 
Activated microglia can express iNOS (inducible nitric oxide syn-
thetase) producing nitric oxide (NO) that: can kill neurons under 
hypoxic conditions (Mander et al., 2005), or reacts with superox-
ide to produce neurotoxic peroxynitrite (Mander & Brown, 2005). 
High doses of TNF- α, glutamate, superoxide, nitric oxide or per-
oxynitrite may cause direct death of neurons in culture, however, 
low doses of each of these agents can stress neurons such that 
they are phagocytosed by microglia (Hornik et al., 2016; Neher 
et al., 2011; Neniskyte et al., ,2014, 2016), as reviewed below.

Under inflammatory conditions, neurons may be damaged/
stressed such that they expose eat- me signals, lose don't- eat- me 
signals or bind opsonins, which leads to increased microglial phago-
cytosis of stressed- but- viable neurons or synapses (Fricker, Neher, 
et al., 2012; Fricker, Olive- Martin, et al., 2012; Hornik et al., 2016; 
Neher et al., 2011). However, phagocytosis of live neurons results 
in the death of the neuron, and such cell death by phagocytosis is 
known as primary phagocytosis or phagoptosis. Whereas phagop-
tosis during brain development contributes to neuronal network de-
velopment, the aberrant removal of live neurons during pathological 
conditions such as chronic inflammation can be detrimental and re-
sult in neuronal loss and neurodegeneration.

How can we determine whether microglial phagocytosis of neu-
rons contributes to neuronal death? One way is to look for microglia 
phagocytosing neurons; however: this provides only correlational 
data, is difficult to do in vivo, and cannot distinguish between phago-
cytosis of live, dying and dead neurons. More useful conclusions can 
be drawn from blocking microglial phagocytosis, for example by in-
hibition or knock- out of phagocytic receptors, and then determining 
whether neuronal death or loss is prevented. If microglia are phago-
cytosing only dead or dying neurons, then blocking phagocytosis of 
these will not prevent any neuronal death, and just cause an accu-
mulation of dead neurons. Whereas, if microglia are phagocytosing 
stressed- but- viable neurons, then blocking phagocytosis of these 
will prevent their death, resulting in reduced neuronal loss. This is 
the critical test to distinguish between phagocytosis of dead and 
dying neurons versus phagocytosis of live and viable neurons.

By ‘stressed- but- viable neurons’ we mean here neurons that 
have been perturbed by neurodegeneration sufficiently to signal (or 
be targeted) for phagocytosis, but not sufficiently to induce neuro-
nal death in the absence of phagocytosis. Examples of such stressed 
neurons might include: (1) neurons exposed to subtoxic doses of 
glutamate (Neher et al., 2013), and (2) neurons with tau aggregates 
(Brelstaff et al., 2018). By ‘live neurons’ we simply mean neurons that 
are not dead. Microglial phagocytosis of degenerating/dying neu-
rons could be beneficial by removing debris or dysfunctional neu-
rons, but it could be detrimental by prematurely removing otherwise 
functional neurons, even- though they are destined to die. In con-
trast to degenerating/dying neuron, ‘stressed- but- viable neurons’ 
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are destined to live as long as they are not phagocytosed, and thus it 
is likely to be beneficial to prevent this phagocytosis.

In this review, we will focus on the new evidence that phago-
cytosis contributes to neurodegeneration, and new insights into 
the mechanisms involved. Below, we start by reviewing the sig-
nalling between neurons and microglia that determines whether a 
neuron, neurite or synapse is phagocytosed or not. Dysfunctional 
signalling could cause excessive phagocytosis in pathological condi-
tions, providing us with new potential therapeutic targets to prevent 
neurodegeneration.

2  | PHAGOCY TIC SIGNALLING

Whether one cell eats another depends on signals expressed or re-
leased by the target cell (in this case neurons). These signals include 
find- me signals, eat- me signals, don't- eat- me signals and opsonins 
(Ravichandran, 2010; Figure 1).

2.1 | Find- me signals: fractalkine and nucleotides 
(ATP and ADP)

CX3CL1 (fractalkine) is a protein released from neurons or syn-
apses, which chemoattracts microglia via the CX3CR1 receptor 
(Truman et al., 2008). Several groups have shown that in CX3CR1 
knock- out mice, the microglia migrate less, resulting in reduced or 
delayed phagocytosis of synapses during development (Fuhrmann 
et al., 2010; Pagani et al., 2015). This delayed synaptic pruning can 
result in autism- like behaviour in mice, suggesting the possibility that 
autism results from insufficient phagocytosis of synapses (Paolicelli 
et al., 2011; Peça et al., 2011; Tang, Gudsnuk, et al., 2014). CX3CL1 
is expressed on cortical neurons and the metalloprotease ADAM10 
cleaves CX3CL1 into a secreted form that chemoattracts micro-
glia. Interestingly, it has been shown that inhibition of ADAM10, 
knock- out of CX3CL1 or knock- out of CX3CR1 prevent synaptic 
pruning by microglia induced by reduced sensory and synaptic ac-
tivity (Gunner et al., 2019). One could speculate that synaptic loss 

F I G U R E  1   Overview of find- me, eat- me, don't- eat- me signals and opsonins, that regulate microglia phagocytosis of neurons. Find- 
me signals are chemotactic signals, such as ADP and CX3CL1 (fractalkine) released from neurons and binding to microglial P2Y12 and 
CX3CR1 receptors, respectively, resulting in chemotaxis of microglia to these neurons. Eat- me signals are released by stressed or dying 
neurons, and induce phagocytosis of neurons expressing them. Such signals include UDP, which activates the P2Y6 receptor on microglia. 
Phosphatidylserine, when exposed on the surface of neurons, can either bind directly to microglia receptors triggering receptor expressed 
on myeloid cells 2 (TREM2) and G- protein- coupled receptor 56 (GPR56), or indirectly via binding opsonins, Gas- 6, apolipoprotein E (APOE), 
milk fat globule- EGF factor 8 (MFG- E8) and complement component C1q (C1q), which then bind to microglial receptors: receptor tyrosine 
kinase (MerTK), TREM2, vitronectin (VNR) and multiple EGF- like- domains 10 (MEGF10) respectively. Glycosylated proteins and lipids 
which have been desialylated (had the terminal sialic acid residues removed) can bind opsonins galectin- 3 (Gal- 3), calreticulin (CRT), C1q 
and complement protein 3b (C3b), which bind to microglial receptors MERTK, low- density lipoprotein receptor- related protein 1 (LRP1) 
and complement receptors 1/3/4 respectively. Don't- eat- me signals inhibit phagocytosis, and include sialylated glycoproteins and lipids 
(with terminal sialic acid residue present, recognized by sialic acid binding immunoglobulin- type lectin (Siglecs) receptors) and the protein 
CD47, which can bind the microglial receptor signal- regulatory protein alpha (SIRPα) to inhibit phagocytosis. Together these signals regulate 
microglial phagocytosis of neurons
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in neurodegeneration is a pathological extension of developmental 
synaptic pruning, and one stimulus for this might be loss of synaptic 
activity.

Nucleotides, including adenosine triphosphate (ATP) and uridine 
triphosphate (UTP) can be released by: (1) active neuronal synapses 
as co- transmitters, or (2) apoptotic or stressed cells via Pannexin- 1 
channels (Chekeni et al., 2010; Yamaguchi et al., 2014). ATP and 
UTP can chemoattract macrophages by activating P2Y2 receptors 
(Elliott et al., 2009). However, extracellular ATP is rapidly converted 
to adenosine diphosphate (ADP), which induces microglial migration 
and chemotaxis towards neural injury in vivo via activating P2Y12 
receptors (Haynes et al., 2006). The P2Y12 receptor (P2Y12R) also 
appears to mediate microglial recruitment to synapses, so that 
knock- out of P2Y12R delays activity- dependent synaptic pruning by 
microglia during development (Sipe et al., 2016). P2Y12R also seems 
to regulate microglial phagocytosis of myelinated axons in the spinal 
cord in vivo (Maeda et al., 2010). More recently, it was found that mi-
croglial processes spend most of their time on neuronal cell bodies, 
recruited by ATP release from the neurons via activating microglial 
P2Y12R (Cserép et al., 2020).

A variety of other find- me signals have been identified outside 
the central nervous system (CNS), including: lysophosphatidylcho-
line (LPC), sphingosine- 1- phosphate (S1P), dimerized ribosomal 
protein S19 (RP S19), endothelial monocyte- activating polypeptide 
II (EMAP II), tyrosyl tRNA synthetase (TyrRS) and formyl peptides 
(Fond & Ravichandran, 2016). However, these have generally been 
identified as find- me signals released by apoptotic cells recruiting 
macrophages, and their roles in recruiting microglia to neurons, if 
any, remains unknown.

2.2 | Eat- me signals: phosphatidylserine, 
calreticulin and UDP

The best characterized eat- me signal is phosphatidylserine, which 
is usually present on the inner leaflet of the plasma membrane, 
because ATP- driven aminophospholipid translocases ATP8A1 and 
ATP8A2 pump phosphatidylserine from the outer to inner side of the 
membrane (Sapar et al., 2018). However, phosphatidylserine can be 
exposed on the cell surface, either: (1) reversibly on live cells because 
of calcium- activated phosphatidylserine scramblases, such as phos-
pholipid scramblase 1 (PLSCR1) and transmembrane protein 16F 
(TMEM16F) (Shin & Takatsu, 2020; Zhang, Pan, et al., 2020), or (2) 
irreversibly on apoptotic cells because of caspase- activated scram-
blase Xk- related protein 8 (XKR8) (Suzuki et al., 2013). Glutamate 
or oxidants can induce reversible phosphatidylserine exposure on 
live neurons, which induces their phagocytosis by microglia (Neher 
et al., 2011; Sapar et al., 2018). Exposed phosphatidylserine can be 
re- internalized by ATP- driven translocases, and inactivating muta-
tions or knock- out of such phosphatidylserine translocases can cause 
neurodegeneration in animals via phosphatidylserine exposure on 
live neurons (Sapar et al., 2018; Zhu et al., 2012). Phosphatidylserine 
exposed on neurons induces microglial phagocytosis either directly 

by microglial receptors triggering receptor expressed on myeloid 
cells 2 (TREM2) or G- protein coupled receptor 56 (GPR56), or in-
directly by binding opsonins Gas6 or milk fat globule- EGF factor 
8 protein (MFG- E8), which induce phagocytosis via the microglial 
phagocytic receptors proto- oncogene tyrosine- protein kinase MER 
(MerTK) or the vitronectin receptor (VR, integrin αvβ3 or αvβ5) re-
spectively (Fricker, Neher, et al., 2012; Kasikara et al., 2017; Li, 
Chiou, et al., 2020; Wang et al., 2015; Wijeyesakere et al., 2016). 
Phosphatidylserine is also exposed on synapses during developmen-
tal synaptic pruning and induces microglial phagocytosis of such syn-
apses by activating microglial GPR56 (Li, Chiou, et al., 2020).

In primary mixed neuronal- glial cultures, the addition of amy-
loid beta (Aβ) induces phosphatidylserine exposure on live neurons, 
and the consequent microglial phagocytosis of live neurons can be 
prevented by blocking phosphatidylserine, MFG- E8, MerTK or VR 
(Fricker, Neher, et al., 2012; Hornik et al., 2016; Neher et al., 2011, 
2013; Neniskyte et al., ,2011, 2016). Extracellular tau can also in-
duce phosphatidylserine exposure on live neurons, inducing neu-
ronal loss by microglial phagocytosis, which can be prevented by 
inhibiting the phagocytic receptor MerTK, or by eliminating microg-
lia (Pampuscenko et al., 2019).

In Drosophila, phosphatidylserine exposure has been imaged 
on dendrites during developmental dendritic pruning or neuro-
nal injury (Sapar et al., 2018). Forced phosphatidylserine expo-
sure induced by knock- out of phosphatidylserine translocase or 
over- expression of the phosphatidylserine scramblase resulted 
in microglial phagocytosis of dendrites and axons in vivo (Sapar 
et al., 2018). Similarly, over- expression of the phagocytic glial re-
ceptors, Simu and Drpr, in Drosophila caused loss of dopaminergic 
and GABAergic neurons. Interestingly, only the GABAergic neu-
rons exposed phosphatidylserine in vivo, and masking the exposed 
phosphatidylserine prevented the loss of GABAergic neurons, but 
not the dopaminergic neurons (Hakim- Mishnaevski et al., 2019), 
suggesting that the GABAergic neuronal loss was because of mi-
croglial phagocytosis of live phosphatidylserine- exposed neurons, 
but phagocytosis of dopaminergic neurons was mediated by other 
signals.Cell surface calreticulin can act as an eat- me signal induc-
ing phagocytes to phagocytose such cells via the low- density li-
poprotein receptor- related protein 1 (LRP1) (Gardai et al., 2005). 
Calreticulin is normally confined to the endoplasmic reticulum but 
can be released to the surface by endoplasmic reticulum stress or 
inflammatory signalling (Feng et al., 2015). Interestingly, blocking 
calreticulin on the surface of neurons and/or its receptor LRP1 on 
the surface of microglia was sufficient to block lipopolysaccharide 
(LPS) and Aβ- induced phagocytosis of live neurons by microglia 
(Fricker, Oliva- Martín, et al., 2012). This suggests that calretic-
ulin can act as an eat- me signal for neurons. However, calretic-
ulin can also be regarded as an opsonin that binds cell- surface 
galactose and other sugar residues exposed by desialylation (Feng 
et al., 2018) and gram- negative bacteria (Cockram et al., 2019). 
In this context, cell- surface exposed galactose residues can be 
regarded as an eat- me signal, which can bind opsonins including 
calreticulin, C1q and galectin- 3.
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Uridine diphosphate (UDP) can act as a soluble eat- me signal, 
when released by damaged or stressed neurons, activating P2Y6 
receptors (P2Y6R) on microglia which triggers phagocytosis of the 
neurons (Koizumi et al., 2007). Pharmacological inhibition of P2Y6 
receptor was sufficient to prevent microglial phagocytosis of live 
neurons in vitro and in vivo (Emmrich et al., 2013; Neher et al., 2014; 
Neniskyte et al., 2014), suggesting that its inhibition may prevent 
neurodegeneration. However, the activation of P2Y6R may be pro-
tective in ischaemia and radiation- induced brain injury, and the role 
of P2Y6R may vary with brain pathology (Anwar et al., 2020).

2.3 | Don't- eat- me signals: CD47 and sialic acid

CD47 is a transmembrane protein expressed on most mammalian 
cells, including neurons, and inhibits phagocytosis of such cells via 
engaging signal- regulatory protein alpha (SIRPα) on phagocytes to 
inhibit phagocytosis (Brown & Frazier, 2001; Gardai et al., 2005). 
CD47 was also found to be expressed on synapses during devel-
opment, where it inhibits microglia- mediated synapse removal 
(Lehrman et al., 2018). CD47 expression on myelin debris has also 
been shown to inhibit its phagocytosis via SIRPα (Elberg et al., 2019).

The surface of neurons is highly sialylated, that is there is a high 
density of sialic acid residues on its glycoproteins and glycolipids. 
These sialic acid residues prevent microglial phagocytosis of such 
neurons by (1) activating Siglec (sialic acid- binding immunoglobulin- 
type lectin) receptors on microglia that inhibit microglial phagocyto-
sis, and (2) blocking the binding of opsonins C1q, C3b and galectin- 3 
(reviewed by Puigdellivol et al., 2020). Similar to SIRPα, most mi-
croglial Siglec receptors signal via immunoreceptor tyrosine- based 
inhibition motif (ITIM) domains, which activate src homology 2 
domain- containing protein tyrosine phosphatases 1 and 2 (SHP- 1/
SHP- 2), inhibiting microglial phagocytosis (Crocker & Varki, 2001; 
Ulyanova et al., 1999). Thus, for example murine Siglec- E and 
human Siglec- 11 were found to recognize sialic acid residues on 

the neuronal glycocalyx and inhibit phagocytosis of such sialylated 
neurons (Claude et al., 2013; Wang & Neumann, 2010). Activated 
microglia released a sialidase that desialylated co- cultured PC12 
cells, enabling their phagocytosis by microglia (Nomura et al., 2017). 
Sialylated PC12 cells did not bind the opsonin galectin- 3, but de-
sialylated PC12 cells bound galectin- 3, enabling galectin- 3 medi-
ated phagocytosis of live cells (Nomura et al., 2017). Heterozygous 
knock- out of a sialylating enzyme in mice caused a mild (~20%– 
30%) reduction in sialylation, followed by progressive loss of syn-
apses and neurons, prevented by complement C3 knock- out (Klaus 
et al., 2020). This all indicates that neuronal sialylation inhibits mi-
croglial phagocytosis of neurons.

2.4 | Opsonins: complement, galectin- 3 and 
apolipoprotein E

Complement proteins can be deposited on dendrites and synapses 
to promote their removal by microglial cells (Schafer et al., 2012; 
Stevens et al., 2007). The key step in complement activation is pro-
teolytic cleavage of C3 to C3a and C3b, where C3a can recruit and 
activate microglia, whereas C3b opsonizes synapses and neurons 
(complement roles in the brain reviewed in Lee et al., 2019). The 
classical pathway of complement activation starts with complement 
protein C1 (C1q, r and s) being deposited on a cell surface and en-
zymatically cleaving C2 to C2a and C2b, and cleaving C4 to C4a and 
C4b, then C2a binds to C4b to form a ‘classical C3 convertase’ that 
cleaves C3 to C3a and C3b (reviewed in Bajic et al., 2015). In the 
alternative pathway, C3 spontaneously hydrolyses and binds fac-
tor B (which is cleaved by factor D to Bb) to form an alternative C3 
convertase that cleaves C3. In addition, C3b can bind factor B and 
properdin to form an amplifying C3 convertase cleaving more C3 to 
C3a and C3b. C3b and C4b covalently attach to cell surface hydroxyl 
groups, typically on sugars, opsonizing such surfaces for phagocyto-
sis. Sialylation has been shown to inhibit C1q and C3b deposition on 

F I G U R E  2   Complement mediated phagocytosis of neurons and synapses. Aggregates of extracellular amyloid beta (Aβ) or intracellular 
tau may stress neurons, causing exposure of phosphatidylserine (PS) or asialoglycans that bind complement C1q. Bound C1q can (indirectly) 
cause deposition of complement C3 as opsonins C3b and iC3b, which can induce phagocytosis of synapses or neurons by microglia via 
complement receptors 1 and 3 (CR1 and CR3). Alternatively, membranes opsonized with C1q can bind calreticulin and be phagocytosed via 
microglial LRP1. Exposure of phosphatidylserine on stressed neurons may also induce microglial phagocytosis of stressed neurons via other 
opsonins and receptors
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dendrites in vitro (Linnartz et al., 2012). In addition, C1q can bind to 
exposed phosphatidylserine (Paidassi et al., 2008), and is required to 
remove apoptotic neurons by microglia in vitro (Fraser et al., 2010). 
C1q- opsonized targets can be removed by LRP1 plus calreticulin 
(Ogden et al., 2001), C4b- opsonized targets by CR1, and C3b-  or 
iC3b- opsonized targets by complement receptor 1 (CR1), comple-
ment receptor 3 (CR3) or complement receptor (CR4) (Reviewed in 
Ricklin et al., 2010) (Figure 2).

Knock- out of C1q, C3 or CR3 in mice reduces synaptic prun-
ing during development, resulting in excess synapses, indicating 
that complement proteins mediate microglial phagocytosis of syn-
apses (Hong et al., 2016; Schafer et al., 2012; Stevens et al., 2007). 
Complement also mediates microglial phagocytosis of weak syn-
apses in adults, for example during forgetting of memories (Wang 
et al., 2020), suggesting the possibility that excessive phagocytosis 
may disrupt cognition (Miyanishi et al., 2020).

One of the main genetic risk factors for schizophrenia is variants 
of C4, and there is evidence that C4 may drive excessive microg-
lial phagocytosis of synapses in schizophrenia (Sekar et al., 2016). 
New- born retinal ganglion neurons in mouse retina were found to 
be tagged with C1q and selectively phagocytosed alive by microglia, 
so retinal ganglion cell numbers were increased by microglial deple-
tion or CR3 knock- out (Anderson et al., 2019). This indicates that 
complement contributes to phagocytosis of live neurons as well as 
synapses.

Cleavage of C3 generates both C3a and C3b, and C3a apparently 
activates microglia via C3a receptors (C3aR), which acutely stimu-
lates phagocytosis (Lian et al., 2016) and may be chemotactic for 
microglia (Surugiu et al., 2019). C3aR antagonists prevented microg-
lial phagocytosis of neurons in vivo (Surugiu et al., 2019), and C3aR 
knock- out prevented microglial phagocytosis of synapses (Vasek 
et al., 2016). C3aR antagonists or knock- out were beneficial in mouse 
models of CNS lupus (Jacob et al., 2010), multiple sclerosis (MS) (Boos 
et al., 2004), ischaemia/reperfusion injury (Ducruet et al., 2008), am-
yloid Alzheimer's disease (AD) models (Lian et al., 2015, 2016), a tau 
AD model (Litvinchuk et al., 2018) and vascular white matter disease 
(Zhang, Pan, et al., 2020).

Galectin- 3 can act as an opsonin by binding to galactose residues 
on the cell surface and MerTK on phagocytes (Caberoy et al., 2012; 
Nomura et al., 2017). Galectin- 3 was found to be released by acti-
vated microglia and bound to desialylated PC12 neurons and pro-
moted their phagocytosis by microglia via microglial MerTK receptor 
in vitro (Nomura et al., 2017). Traumatic brain injury in mice induced 
galectin- 3 release into cerebral spinal fluid (CSF) and neuronal loss 
was prevented by galectin- 3 knock- out or antibodies, consistent 
with galectin- 3 role in mediating neuronal loss (Yip et al., 2017).

Apolipoprotein E (ApoE) can opsonize apoptotic cells (Grainger 
et al., 2004), probably by binding phosphatidyserine on apoptotic 
cells and a variety of ApoE receptors on phagocytes. ApoE has been 
shown to bind and opsonize apoptotic (N2a) neurons for phagocyto-
sis via the microglial TREM2 receptor, which directly binds to ApoE 
(Atagi et al., 2015). Expressing ApoE4 (but not ApoE2 or ApoE3) in 
a microglial cell line increased phagocytosis of apoptotic neurons 

(Muth et al., 2019). ApoE can bind to C1q to block complement acti-
vation (Yin et al., 2019). ApoE has also been implicated in synapse re-
moval by astrocytes in vitro and in rodent brain development (Chung 
et al., 2016). However, it is still unclear whether ApoE can directly 
opsonize live synapses or neurons for microglial phagocytosis.

3  | MICROGLIAL STATES REGUL ATING 
PHAGOCY TOSIS

Microglial phagocytosis of neurons does not just depend on the 
state of the neurons, but also the state of the microglia, as microglia 
in different states express different phagocytic genes and have dif-
ferent phagocytic capacity (Figure 3).

3.1 | Cytokines

Michelucci et al. (2009) reported that IFNγ inhibited microglial 
phagocytosis, whereas IL- 10 increased phagocytosis, and IL- 4 did lit-
tle or nothing to phagocytosis. However, it should be noted that cy-
tokine effects on phagocytosis are often time- dependent, and Haga 
et al. (2016), using somewhat more physiological conditions, found 
that IFNγ increased microglial phagocytosis, and IL- 4 inhibited mi-
croglial phagocytosis. We found that the pro- inflammatory cytokine 
TNFα stimulated microglial phagocytosis of beads and live neurons, 
resulting in neuronal loss in mixed glial- neuronal cultures, which 
was prevented by inhibiting phagocytosis (Neniskyte et al., 2014). 
Interestingly, the anti- inflammatory cytokine TGF- β was found to 
stimulate neuronal expression of C1q and C1q tagging of synapses, 
promoting microglial synaptic pruning during development (Bialas & 
Stevens, 2013). Type 1 interferons (IFN), such as IFN- β, increased 
microglial phagocytosis (Chan et al., 2003), and mediated the expres-
sion of phagocytic genes in prion- infected mouse brain, such that 

F I G U R E  3   Factors regulating microglial phagocytosis. Microglial 
phagocytosis is activated by: (a) binding of cytokines TGFβ, TNFα, 
IFNβ and IFNγ, (b) desialylation of the microglial cell surface, (c) 
up- regulation of phagocytic genes, such as Itgax, Clec7a, Axl, TREM2 
and Apoe, or (d) epigenetic changes regulating transcription of 
phagocytic genes
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blocking this response reduced neuronal and synaptic loss in this 
model (Nazmi et al., 2019). IFN- β and IFN- γ were found to increase 
expression of SIRP- β1, which increased microglial phagocytosis of 
neuronal debris, beads and Aβ through binding an unknown ligand 
on neurons (Gaikwad et al., 2009). Thus, a variety of cytokines can 
regulate microglial phagocytosis.

3.2 | Sialylation of microglia

The microglial cell surface is sialylated, but LPS, Aβ and tau can in-
duce desialylation (Allendorf et al., 2020), which is mediated by the 
cell surface expression and release of neuraminidase 1 (Allendorf 
et al., 2020; Sumida et al., 2015). Microglial desialylation increases 
microglial phagocytosis, partly via reduced activation of Siglec- 2 
(CD22) (Pluvinage et al., 2019). Microglial desialylation also increased 
microglial phagocytosis via activating CR3, and induced microglia to 
phagocytose healthy neurons (Allendorf, Puigdellívol, et al., 2020). 
Addition of LPS or Aβ to glial- neuronal cultures induced neuronal 
loss that could be blocked by inhibiting sialidases or CR3 (Allendorf, 
Puigdellívol, et al., 2020). Thus, inflammatory stimuli can induce de-
sialylation of both microglia and neurons, which stimulates microglial 
phagocytosis of neurons, which might contribute to neurodegenera-
tion (reviewed in Puigdellivol et al., 2020).

3.3 | Disease- Associated Microglia (DAM)

Single- cell transcriptional profiling of microglia identified common 
transcriptional changes in microglia from mouse models of AD (APP/
PS1), amyotrophic lateral sclerosis (ALS) (SOD1) and ageing (Holtman 
et al., 2015). Other research groups found a similar microglial tran-
scriptional profile from mouse models of AD (APP/PS1 and 5xFAD) 
(Keren- Shaul et al., 2017; Krasemann et al., 2017), tauopathy (Tau 
P301L) and ageing (Kang et al., 2018). Microglia with this expression 
profile have been called various names, including ‘disease- associated 
microglia’ (DAM) and ‘microglial neurodegenerative phenotype’ 
(MGnD). This common transcriptional profile included up- regulated 
expression of Itgax, Clec7a, Axl, TREM2 and Apoe. The Itgax gene 
codes for CD11c, a component of the phagocytic receptor CR4, 
which mediates phagocytosis of iC3b- opsonized cells. The Clec7a 
gene codes for a phagocytic receptor Dectin- 1, mediating phago-
cytosis of cells exposing the glucose polymer beta- glucan. The Axl 
gene codes for the phagocytic receptor Axl, which mediates phago-
cytosis of phosphatidylserine- exposed cells (Tondo et al., 2019). The 
TREM2 gene codes for the phagocytic receptor TREM2, which me-
diates phagocytosis of phosphatidylserine- exposed cells (Takahashi 
et al., 2005). The Lgals3 gene codes for galectin- 3, an opsonin medi-
ating phagocytosis of galactose- exposing cells (see Opsonin section). 
The Apoe gene codes for ApoE, which regulates phagocytosis of 
synapses and neurons, and inhibits C1q opsonization, but also helps 
transport of lipids and cholesterol, necessary for digestion of targets 
(see Opsonin section). This up- regulation of phagocytosis genes in 

DAM microglia is likely to increase their phagocytic capacity, and 
indeed DAM microglia have been shown to cluster around amyloid 
plaques and to contain an increased amyloid load, consistent with 
up- regulated phagocytosis (Keren- Shaul et al., 2017). Unfortunately, 
we do not know whether DAM microglia are beneficial, detrimental, 
both or neutral for neurodegeneration.

3.4 | Microglial phagocytosis of neurons can change 
microglial state

Microglia that have phagocytosed apoptotic neurons have an al-
tered transcriptional profile that may resemble the DAM profile 
(Krasemann et al., 2017). Knock- out of the phagocytic receptor 
TREM2 prevents part of the DAM profile (Krasemann et al., 2017), 
suggesting that phagocytosis itself could partially trigger this switch 
into a microglial DAM profile. Microglial phagocytosis of dying cells 
causes multiple transcriptional changes, including up- regulation 
of phagocytic genes, mediated by epigenetic changes (Ayata 
et al., 2018). Microglia that have phagocytosed apoptotic neurons 
also secrete different cytokines, chemokines and other factors, 
and one consequence of this is an inhibition of neurogenesis (Diaz- 
Aparicio et al., 2020). Microglial phagocytosis of apoptotic T cells 
suppressed microglial activation and antigen presentation (Magnus 
et al., 2001). It remains unclear whether microglial phagocytosis of 
live- but- stressed neurons or synapses is pro-  or anti- inflammatory, 
and whether microglia can present antigens from phagocytosed live 
neurons, synapses or myelin— but this is important to know, as it 
could contribute to disease.

3.5 | Epigenetics

Microglia from cortex and striatum were found to be less phagocytic 
than microglia from cerebellum, apparently because of the expres-
sion of polycomb repressive complex 2 (PRC2), which methylates his-
tones (H3K27me3) repressing phagocytic genes (Ayata et al., 2018). 
Knock- out of PRC2 in microglia up- regulated phagocytic genes in 
cortical and striatal microglia, and resulted in synaptic loss and be-
havioural deficits, attributed to excessive microglial phagocytosis 
(Ayata et al., 2018). Similarly, Jumonji domain- containing 3 (Jmjd3) is 
a histone H3K27 demethylase, which suppresses microglial activa-
tion and neuronal loss in a 1- methyl- 4- phenyl- 1,2,3,6- tetrahydrop
yridine (MPTP)- model of Parkinson's disease (Tang, Li, et al., 2014). 
Systemic inflammation induced by repeated LPS i.p. injection into 
mice induced sustained epigenetic and transcriptional changes in 
brain microglia, including increased expression of complement and 
phagosome genes (Bodea et al., 2014; Wendeln et al., 2018). This 
resulted in loss of dopaminergic neurons in the substantia nigra 
that was prevented in complement C3 knock- out mice (Bodea 
et al., 2014), suggesting that the activated microglia had phagocy-
tosed live C3- tagged neurons. Microglial activation induced by LPS 
and other stimuli can also be mediated by DNA methylation, and 
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the methylcytosine dioxygenase Ten- eleven translocation 2 (TET2) 
(Carrillo- Jimenez et al., 2019). Altogether, these studies indicate that 
epigenetics regulates microglial phagocytosis, and this may contrib-
ute to brain- region- specific differences in microglial phagocytosis.

4  | PHAGOCY TOSIS OF NEURONS AND 
SYNAPSES IN NEURODEGENER ATION

4.1 | Alzheimer's disease (AD) and tauopathies

AD is the most common cause of dementia, characterized by extra-
cellular plaques of aggregated Aβ, intracellular neurofibrillary tau 
tangles, synapse loss, neuronal loss, brain atrophy, microglial activa-
tion and memory loss (Bondi et al., 2017; Hamos et al., 1989; Nestor 
et al., 2008).

Early- onset AD is caused by mutations in the genes encoding 
APP (amyloid precursor protein) or presenilin 1 or 2 (PS1, PS2), 
which cleave APP to generate Aβ (O’Brien & Wong, 2011). Thus, 
early- onset AD is thought to be driven by the accumulation and ag-
gregation of Aβ with age. In an amyloid model of AD, expression of 
human mutant APP and PS1 results in progressive loss of synapses, 
neurons and memory, which are all prevented by complement C3 
knock- out, apparently because of reduced microglial phagocytosis 
of synapses and neurons (Shi et al., 2017). Similarly, in amyloid mod-
els of AD, C1q tagged synapses for phagocytosis by microglia, and 
synaptic loss was prevented by knock- out of C1q, C3 or CR3 (Hong 
et al., 2016; Wu et al., 2019). Thus, complement seems to be central 
to synaptic loss in amyloid models of neurodegeneration (Figure 2). 
Note, however, that complement factors can induce inflammation 
and cell death, independent of phagocytosis, although the require-
ment for CR3 favours phagocytosis being required in this case.

Two- photon imaging of intact brains of mice with APP, PS1 and 
tau mutations revealed that neuronal loss was accompanied by 
microglial recruitment and process mobility prior to neuronal loss, 
and preventing microglial recruitment by knock- out of Cx3cr1 pre-
vented neuronal loss (Fuhrmann et al., 2010). In a similar 5xFAD 
mouse model, microglia were found to preferentially interact with 
amyloid- laden neurons, and microglia exposed to amyloid in vivo 
phagocytosed neurites, even before plaque formation (Von Saucken 
et al., 2020).

Insoluble intracellular inclusions of hyperphosphorylated tau, 
known as neurofibrillary tangles are a hallmark of AD, frontotem-
poral dementia (FTD) and several other neurodegenerative diseases, 
known as tauopathies (Crowther & Goedert, 2000). Tau variants 
are associated with AD and FTD by genome- wide association stud-
ies (GWAS), implicating tau as causal in disease. Expression of FTD 
mutant tau (P301S or P301L) in mice results in synaptic and neu-
ronal loss, prevented by C1q antibodies (Dejanovic et al., 2018), 
CR3 knock- out (Litvinchuk et al., 2018) and C3 knock- out (Wu 
et al., 2019), suggesting that tau- induced synaptic and neuronal 
loss is via complement- mediated microglial phagocytosis. Synapses 
and neurons in P301L tau mice exposed phosphatidylserine prior to 

phagocytosis by microglia, and a phosphatase and tensin homolog 
(PTEN) inhibitor prevented this phagocytosis (Benetatos et al., 2020). 
Apparently tau normally suppresses PTEN, but aggregated tau does 
not, resulting in phosphatidylserine exposure, which induces phago-
cytosis by microglia (Benetatos et al., 2020). Consistent with this, 
only neurons with tau aggregates from P301S tau mice exposed 
to phosphatidylserine in culture, were specifically phagocytosed 
by co- cultured microglia. This phagocytosis could be prevented by 
blocking phosphatidylserine (Brelstaff et al., 2018). Similarly, the ap-
plication of extracellular tau caused phosphatidylserine exposure on 
the neurons and microglial phagocytosis of such neurons, and block-
ing microglial phagocytosis prevented the tau- induced neuronal loss 
(Pampuscenko et al., 2019, 2021).

Some FTDs can be caused by mutations of the GRN gene encod-
ing progranulin and granulin. Progranulin can inhibit phagocytosis 
of apoptotic cells, synapses and axons (Kao et al., 2011; Petoukhov 
et al., 2013). Thus, it is possible that loss- of- function mutations of 
GRN promote excessive microglial phagocytosis of neurons and 
synapses.

In late- onset AD most of the genetic inheritability is linked to 
variants of ApoE (Lambert et al., 2013). Using ApoE variant- specific 
knock- in mice there is in vivo and in vitro evidence for differential 
phagocytic capability of astrocytes to phagocytose synapses (Chung 
et al., 2016). ApoE also inhibits C1q- mediated phagocytosis (Yin 
et al., 2019). Variants of the phagocytic receptor TREM2 are also 
linked to AD risk, and in a tau mouse model, TREM2 knock- out pre-
vented neuronal loss (Leyns et al., 2017), which is compatible with 
the idea that neuronal loss may be because of TREM2- mediated 
phagocytosis.

Aggregates of TDP- 43 (TAR DNA- binding protein 43) are the 
main constituent of glial and neuronal inclusions in amyotrophic lat-
eral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) 
patients, and TDP- 43 has pathological roles in other neurodegener-
ative diseases including AD (Gao et al., 2018). Interestingly, Paolicelli 
et al. (2017) demonstrated that knock- out of TDP- 43 in mouse mi-
croglia increased microglial phagocytosis of both Aβ and synapses, 
resulting in reduced amyloid plaques but increased synaptic loss in 
an amyloid mouse model, illustrating the protective and detrimental 
roles of microglial phagocytosis.

Note, however, that TDP- 43, GRN, APOE, TREM2 and com-
plement affect functions other than phagocytosis, so it can be 
difficult to disentangle the mechanisms by which they affect 
neurodegeneration.

4.2 | Parkinson's disease (PD)

PD is a neurodegenerative disease characterized by the follow-
ing: motor dysfunction, the presence of Lewy bodies and the loss 
of dopaminergic neurons in the substantia nigra (Jankovic, 2008). 
PD- risk genes known to affect microglial phagocytosis include 
leucine- rich repeat kinase 2 (LRRK2). LRRK2 is a cytoplasmic pro-
tein, with GTPase and protein kinase domains, that regulates 
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microglial phagocytosis and other processes (Kim et al., 2018; Lee 
et al., 2020; Marker et al., 2012). Activation of LRRK2 in BV- 2 mi-
croglia increased phagocytosis of live neuronal axons and dendrites, 
which was prevented by LRRK2 knock- down or blocking exposed 
phosphatidylserine (Marker et al., 2012). LRRK2 directly phospho-
rylates the WAVE2 complex that mediates the actin remodelling of 
phagocytosis. The LRRK2- G2019S variant that increases PD risk also 
increased microglial phagocytosis of live dopaminergic neurons, and 
this was prevented by blocking phagocytosis at WAVE2 or Arp2/3 
(Kim et al., 2018). LRRK2- G2019S knock- in mice had increased do-
paminergic neuronal loss in the substantia nigra in response to LPS 
injection, prevented by WAVE2 knock- down (Kim et al., 2018). 
Similar results were found in a Drosophila model (Kim et al., 2018; 
Maksoud et al., 2019). This indicates that the PD- risk variant of 
LRRK2 (G2019S) increases inflammatory microglial phagocytosis 
of dopaminergic neurons, directly identifying the mechanism of 
neurodegeneration.

Another important PD risk gene codes for α- synuclein. α- synuclein 
is the main component of Lewy bodies and may mediate the spread-
ing of the disease (Spillantini et al., 1997). Extracellular α- synuclein 
can activate microglia and induces complex changes in phagocyto-
sis, dependent on time and aggregation state of α- synuclein (Janda 
et al., 2018). However, soluble and fibrillar α- synuclein can stimu-
late microglial phagocytosis (Fellner et al., 2013), and microglia from 
α- synuclein gene- ablated mice have reduced phagocytosis (Austin 
et al., 2006). Transgenic mice expressing aggregate- prone A53T α- 
synuclein had increased microglial expression of the phagocytic re-
ceptors Axl and MerTK, and knock- out of these receptors extended 
survival (Fourgeaud et al., 2016), suggesting that microglial phagocy-
tosis of neurons contributed to the pathology.

It is well established that degeneration of dopaminergic neurons 
of the substantia nigra plays a key role in the pathogenesis of PD 
and those neurons contain high levels of the protein neuromelanin 
(Sulzer et al., 2000). Extracellular neuromelanin activates microg-
lia in vitro and injection into the substantia nigra caused neuroin-
flammation and loss of neurons in vivo (Zecca et al., 2008; Zhang 
et al., 2011). In culture, neuromelanin resulted in neuronal loss which 
was then prevented by knock- out of the phagocytic receptor CR3 
(Zhang et al., 2011), suggesting that microglial phagocytosis of live 
neurons may cause this neuronal loss. Accordingly, iC3b was found 
on melanized neurons in the substantia nigra of PD patients (Loeffler 
et al., 2006), supporting the idea that complement activation may 
contribute to PD neuronal loss.

Gut dysfunction occurs early in PD, which may result in elevated 
serum endotoxin (LPS) (Brown, 2019). In mice, chronic peripheral LPS 
causes activation of microglia in the substantia nigra, up- regulation of 
complement factors and neuronal loss, prevented by complement 
C3 knock- out (Bodea et al., 2014). MPTP and rotenone are environ-
mental toxins that can induce microglial activation and degeneration 
of dopaminergic neurons in vivo (Członkowska et al., 1996; Sherer 
et al., 2003). Rotenone has been shown to induce loss of neurons 
in neuronal- glial co- cultures, and this neuronal loss was blocked by 
inhibition of microglial phagocytic receptors (Emmrich et al., 2013). 

Similarly, MPTP induced microglia to phagocytose whole degen-
erating dopaminergic neurons in vivo, implicating phagocytosis in 
dopaminergic degeneration (Barcia et al., 2011, 2012). Injection of 
6- hydroxydopamine into mouse striatum induced microglial phago-
cytosis of dopaminergic neurons in the substantia nigra, consistent 
with the neuronal loss being because of microglial phagocytosis 
(Marinova- Mutafchieva et al., 2009; Virgone- Carlotta et al., 2013).

Thus, there is accumulating evidence that microglial phagocyto-
sis of neurons may be responsible for neuronal loss in PD. However, 
the evidence remains circumstantial, and microglial phagocytosis 
may also have protective roles in PD (Janda et al., 2018; Tremblay 
et al., 2019).

4.3 | Multiple sclerosis (MS)

MS is a neuroinflammatory disease with characteristic demyelinated 
lesions in cortical grey and subcortical white matter, and neurode-
generation at chronic stages (Pinto & Fernandes, 2020). Microglial 
phagocytosis of myelin classically activates and makes them neu-
rotoxic in culture (Pinteaux- Jones et al., 2008). On the other hand, 
there is abundant evidence that increasing microglial phagocytosis 
of myelin debris is beneficial during remyelination, as myelin debris 
inhibits oligodendrocyte differentiation and remyelination (Pinto & 
Fernandes, 2020). Whether microglia could strip myelin off axons 
from live neurons remains unclear, but microglia do appear to survey 
myelin sheath in vivo (Zhang et al., 2019), and anti- myelin antibod-
ies or complement might promote such myelin stripping (DeJong 
& Smith, 1997; Vargas et al., 2010). Complement is activated in 
MS (Watkins et al., 2016), and C1q knock- out mice were protected 
against white matter loss in a mouse obesity model, suggesting that 
C1q may mediate microglial phagocytosis of live myelin (Graham 
et al., 2020). Recently, it has been shown that C3, but not C1q, local-
ize with synapses in several models of MS (Werneburg et al., 2020). 
Following C3 deposition, microglia have been shown to eat presyn-
aptic inputs in these models. Over- expression of the complement in-
hibitor Crry at synapses successfully reduced microglial engulfment 
of synapses (Werneburg et al., 2020). This study focused on synapse 
loss, but suggests that myelin and neuronal loss in MS might result 
from excessive microglial phagocytosis. Mouse models of MS also 
have ‘neuronophagia’, that is evidence of glia phagocytosing neurons 
(Guo et al., 2004; Lee et al., 2007).

4.4 | Retinal degeneration

Age- related macular degeneration (AMD) is a degenerative disease 
of the retina, and a leading cause of blindness. Complement com-
ponents C3, complement factor B (CFB) and complement factor H 
(CFH) are elevated in AMD, and variants of complement genes (CFH, 
CFB, C2, SERPING1 and C3) have been shown to increase the risk of 
AMD (Geerlings et al., 2017). Inhibition of complement components 
C3a and C5a (Nozaki et al., 2006), or complement regulators CFB 
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and membrane attack complex (MAC) (Lipo et al., 2013), or adminis-
tration of complement regulators CD59 (Bora et al., 2010) and CFH 
(Kim et al., 2013) can reduce pathology in animal models of AMD. 
A C3 inhibitor, APL- 2, reduced retinal atrophy in a phase 2 clinical 
trial for AMD (Kassa et al., 2019). Another retinal degenerative dis-
ease, retinitis pigmentosa (RP), is characterized by progressive loss 
of retinal rod cells and consequently peripheral and night vision. In a 
mouse model of RP, the loss of rod cells was found to be because of 
microglial phagocytosis of live rod cells, and inhibition of this phago-
cytosis prevented retinal degeneration (Zhao et al., 2015). This evi-
dence supports the concept of microglia and complement mediating 
phagocytosis of live cells.

4.5 | Ischaemia and stroke

Ischaemia causes acute and delayed neuronal loss in stroke, and 
chronic or intermittent ischaemia is central to vascular dementias. 
Following stroke or cerebral ischaemia, activated microglia rapidly 
phagocytose dead or degenerating neurons which is beneficial for 
recovery after ischaemic stroke (reviewed in Li, Huang, et al., 2020). 
However, in the penumbra and the peri- infarct regions, loss of 
stressed- but- viable neurons is delayed, and inhibition of microglial 
phagocytosis can be beneficial. Thus, knock- out of the phagocytic 
receptor MerTK or opsonin MFG- E8 (that binds exposed phos-
phatidylserine) prevented neuronal loss and long- term functional 
deficits after cerebral ischaemia (Neher et al., 2013), suggesting 
that microglial- mediated phagocytosis contributes to neuronal loss 
after transient cerebral ischaemia. Such transient ischaemia induces 
reversible phosphatidylserine exposure on neurons in mice (Mari 
et al., 2004). Similarly, neurons exposed to ischaemia were shown 
to reversibly expose phosphatidylserine via the calcium- activated 
phosphatidylserine scramblase TMEM16F, and TMEM16F knock- 
down prevented microglial phagocytosis of stressed neurons and 
functional deficits after ischaemia– reperfusion in mice (Zhang, Li, 
et al., 2020). Complement component C3 is also an opsonin guid-
ing phagocytosis of neurons and synapses by microglia. Thus, a 
targeted inhibitor of C3 activation, B4Crry, prevented phagocyto-
sis of stressed- but- viable neurons in the ischaemic penumbra area 
(Alawieh et al., 2018), reduced phagocytosis of synapses and im-
proved overall cognitive function in a model of embolic stroke in 
mice (Alawieh et al., 2020).

4.6 | Brain viral infections

Brain infection with West Nile Virus caused complement deposi-
tion on synapses, microglial phagocytosis of synapses and memory 
loss, which was prevented by eliminating microglia, C3 or C3aR 
(Vasek et al., 2016). Viral infection of neurons by the hand- foot- and- 
mouth disease enterovirus 71 caused exposure of calreticulin on 
neurons that were apparently eaten alive by glia (Hu et al., 2017). 
Virally- infected cells can also expose phosphatidylserine and be 

phagocytosed alive by microglia via the phagocytic receptor MerTK 
(Chua et al., 2018; Miner et al., 2015; Tufail et al., 2017). This sug-
gests the possibility that infected neurons (or synapses) signal to be 
phagocytosed in order to limit further infection, but if too many neu-
rons become infected this phagocytosis may be responsible for the 
neuronal loss.

4.7 | Brain ageing

Ageing is one of the main risk factors for developing neurodegenera-
tive diseases such as Alzheimer's disease, but in the absence of such 
diseases, ageing itself may cause neurodegeneration. During ageing 
of mice and rats, there is a slow but progressive loss of synapses 
and neurons (Morterá & Herculano- Houzel, 2012; Shi et al., 2015, 
2017). In aged mice, there is loss of synapses and neurons in the 
CA3 region of the hippocampus, but this loss is prevented in C3- 
deficient mice, implicating complement- mediated phagocytosis in 
such loss (Shi et al., 2015). Similarly, mice lacking an enzyme required 
for cell surface sialylation had accelerated loss of synapses and neu-
rons in CA3 and this loss was prevented in C3- deficient mice (Klaus 
et al., 2020), suggesting that sialylation can protect against this loss, 
potentially by inhibiting phagocytosis. Ageing- induced neuronal 
loss in mouse hippocampus and substantia nigra was also prevented 
in TREM2 knock- out mice, supporting a central role of microglial 
phagocytosis in this loss (Linnartz- Gerlach et al., 2019). However, 
the anti- phagocytic receptor CD22 (Siglec- 2) is up- regulated in aged 
microglia, and CD22- blocking antibodies improved cognitive perfor-
mance in aged mice, possibly because of increased microglial phago-
cytosis of debris and protein aggregates (Pluvinage et al., 2019). This 
reminds us that microglial phagocytosis has both beneficial and det-
rimental roles in brain pathology. Moreover, it highlights the need 
for a better understanding of the role that microglial receptors have 
in phagocytosing particular ligands, as this could be crucial to design 
therapeutic strategies that promote phagocytic clearance of apop-
totic cells, abnormal protein aggregates and debris, while avoiding 
phagocytosis of stressed- but- viable neurons and/or synapses.

4.8 | Human data

Evidence for microglial phagocytosis of live neurons contributing 
to neurodegeneration is more limited in humans, compared to the 
mouse models and culture systems described above, but a variety of 
supporting evidence is reported below.

The general idea of glial phagocytosis of neurons contrib-
uting to human pathology originates in 1890’s Paris from the 
research of Georges Marinesco on human neuropathology 
(Marinesco, 1907). Marinesco observed glial cells phagocytosing 
neurons in fixed brain sections from neurology patients, and re-
ferred to this phenomena as ‘neuronophagia’. Neuropathologists 
have since reported observing neuronophagia in many different 
pathologies, including PD (Kremer & Bots, 1993), ALS (Troost 



     |  11BUTLER ET aL.

et al., 1993), ageing (Rath- Wolfson et al., 2017), Gaucher disease 
(Pàmpols et al., 1999), epilepsy (Boyd et al., 2010), stroke with dia-
betes (Li et al., 2011), and most recently SARS- CoV2 (Al- Dalahmah 
et al., 2020). This is consistent with microglial phagocytosis of 
neurons, but does not tell us whether the neurons were eaten 
dead or alive. Note, however, that there is no evidence in AD of 
neuronophagia or microglia clustering around tau neurofibrillary 
tangles. This may be because AD is a slow disease and therefore 
neuronal removal is a rare event, or it may be that different pro-
cesses are involved in neuronal loss in AD.

There is an increase in phagocytic (CD68- positive) microglia in 
FTD and AD (Woollacott et al., 2020); and expression profiling of 
plaque- associated microglia from AD brains showed up- regulation 
of genes for phagocytosis and immune response (Yin et al., 2017). 
Microglia freshly isolated from AD brains, release more C1q and 
nitric oxide derivatives potentially causing more phagocytosis (Lue 
et al., 2001). Furthermore, there is evidence that: microglia from AD 
brains contain more synaptic material than microglia from healthy 
brains, and synapses from AD brains are more readily phagocytosed 
by microglia (Tzioras et al., 2019). Ohm et al. (2021) reported that in 
stereological analysis of brain sections from AD patients, activated 
microglia were positively associated with neuronal loss, consistent 
with activated microglia being responsible for the neuronal loss. 
Intriguingly, in post- mortem brains from MS patients, there was 
increased microglial phagocytosis and evidence for myelin mRNA 
transcripts inside microglia, suggesting microglial phagocytosis of 
myelin and transfer of mRNA (Schirmer et al., 2019).

As outlined previously, genome- wide association studies (GWAS) 
have linked a number of genes regulating microglial phagocytosis to 
risk of AD, including opsonins APOE and CLU/APOJ, phagocytic 
receptors TREM2, CR1, CD33 and PILRA, and downstream sig-
nalling PLCG2, CD2AP, ZYX and ABI3 (Hollingworth et al., 2011; 
Malik et al., 2013; Naj et al., 2011; Podleśny- Drabiniok et al., 2020; 
Ramanan et al., 2015). LRRK2 variants, such as G2019S, increase 
PD risk, and increase microglial phagocytosis (Kim et al., 2018), and 
reactive microglia are found in the substantia nigra of PD patients 
(McGeer et al., 1988). Variants of the TDP- 43 gene affect ALS risk, 
and TDP- 43 is known to regulate microglial phagocytosis (Paolicelli 
et al. 2017). Variants of the GRN gene affect FTD risk, and the 
gene product progranulin regulates microglial phagocytosis (Kao 
et al., 2011; Petoukhov et al., 2013). Thus, GWAS indicates that mi-
croglial phagocytosis is important in neurodegenerative disease, but 
in general does not tell us whether it is beneficial, detrimental or 
both in pathology.

5  | KNOWLEDGE GAPS,  CHALLENGES 
AND POTENTIAL THER APEUTIC TARGETS

The hypothesis that microglial phagocytosis of live neurons contrib-
utes to neurodegeneration in human brain pathologies remains a hy-
pothesis, and below we outline some of the key issues that need to 
be resolved to test this hypothesis.

1. Observation of microglial phagocytosis of neurons in vivo. 
Current methods for imaging microglia dynamics in vivo (such as 
two- photon imaging) are poor at imaging phagocytosis, and cannot 
distinguish between phagocytosis of live and dead neurons in vivo. 
Clearly, better methods are required, as well as markers for healthy, 
stressed, degenerating, dying and dead neurons in vivo.

2. Neuropathology of human disease. We need markers of mi-
croglial phagocytosis of neurons or synapses that can be used on 
fixed sections of human brain, and last for days or weeks after the 
phagocytic event, and ideally distinguish between phagocytosis of 
live and dead neurons.

3. Inflammation and phagocytosis are linked in that inflammatory 
activation of microglia generally increases microglial phagocytosis. 
As both inflammation and phagocytosis may independently contrib-
ute to neurodegeneration, it can be difficult to distinguish these con-
tributions. Thus, we need drugs, knock- outs and markers that clearly 
distinguish microglial inflammation and phagocytosis.

It appears that microglial phagocytosis has multiple beneficial 
and detrimental roles in neurodegeneration, and these may change 
during the course of neurodegeneration. Microglial phagocytosis 
may be beneficial by clearing debris and protein aggregates, but 
may be detrimental by clearing live synapses and neurons. Hence, 
it is inadvisable to simply block or boost microglial phagocytosis. 
Rather it may be necessary to block the phagocytosis of specific 
targets (synapses and neurons) at specific stages of disease, which 
presents significant challenges. Potential therapeutic targets to 
prevent excessive microglial phagocytosis of neurons and synapses 
may include: complement components C1 (Williams et al., 2016), 
C3 (Alawieh et al., 2018; Werneburg et al., 2020) and C3aR (Ahmad 
et al., 2019; Jacob et al., 2010; Litvinchuk et al., 2018;), the opso-
nin Galectin- 3 (Boza- Serrano et al., 2019; Puigdellívol et al., 2020; 
Srejovic et al., 2020; Yip et al., 2017), the phagocytic receptors P2Y6 
(Anwar et al., 2020; Neher et al., 2014 ), MerTK (Neher et al., 2013) 
and TREM2 (Deczkowska et al., 2020), and the desialylating en-
zyme neuraminadase 1 (Allendorf, Franssen, et al., 2020; Allendorf, 
Puigdellívol, et al., 2020; Puigdellívol et al., 2020).

6  | SUPPORTING MATERIAL S
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