Pydriller - MSR. 2021 tutorial

May 18, 2021

1 PyDriller — Ready to grow together (MSR 2021 Tutorial)

Mauricio Aniche, Alberto Bacchelli (and Davide Spadini)
https://pydriller.readthedocs.io/en/latest /index.html

2 1. Why PyDriller?

o Extracting data from Git directly via git commands and bash scripts was just too complex.

e Little reuse, hard to comprehend scripts.

o Using JGit or GitPython directly requires lots of lines of code and similar tasks are repeated
over and over again.

o Pydriller simplifies all that with a beautiful and coherent API!

3 2. Getting Started With PyDriller

We first make sure that we have the right version of Python installed (it requires Python 3.5 or
newer)

[1]: import sys
print (sys.version)

basic imports
from datetime import datetime
from collections import Counter

visualization
import matplotlib.pyplot as plt
%matplotlib inline

numpy
import numpy as np

3.7.10 (default, May 3 2021, 02:48:31)
[GCC 7.5.0]

[2]:

[3]:

Then we can use pip to install pydriller in our system if we do not have it already. As simple as
running the following command (the leading ! is only to be used within jupyter notebook):

!pip install pydriller

Collecting pydriller
Downloading https://files.pythonhosted.org/packages/bb/1f/c2d96d8c047313
bc4a799fda2c1194c7895430d1d8d62ec7a751538e58ee/PyDriller-2.0-py3-none-any.whl
(65kB)
| | 71kB 5.0MB/s
Collecting gitpython
Downloading https://files.pythonhosted.org/packages/27/da/6£6224fdfc47da
b57881£e20c0d1bc3122be290198ba0bf26a953a045d92/GitPython-3.1.17-py3-none-any.whl
(166kB)
| | 174kB 10.7MB/s
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-
packages (from pydriller) (2018.9)
Collecting lizard
Downloading https://files.pythonhosted.org/packages/97/a5/66a8d0f148714e
75087a4505f3b45£22c2766b18558e9a619660b2686bbl/1lizard-1.17.7-py2.py3-none-
any.whl (62kB)
| | 71kB 7.1MB/s
Collecting gitdb<5,>=4.0.1
Downloading https://files.pythonhosted.org/packages/ea/e8/f414d1a4f0bbc6
68ed441£f74f44c116d49816833a48b£81d22b697090dba8/gitdb-4.0.7-py3-none-any.whl
(63kB)
I | 71kB 7.6MB/s
Requirement already satisfied: typing-extensions>=3.7.4.0; python_version
< "3.8" in /usr/local/lib/python3.7/dist-packages (from gitpython->pydriller)
(3.7.4.3)
Collecting smmap<5,>=3.0.1
Downloading https://files.pythonhosted.org/packages/68/ee/d540eb5e5996eb81c26c
effac6ee49041d473bc5125f2aa995cf51eclicfl/smmap-4.0.0-py2.py3-none-any.whl
Installing collected packages: smmap, gitdb, gitpython, lizard, pydriller
Successfully installed gitdb-4.0.7 gitpython-3.1.17 lizard-1.17.7 pydriller-2.0
smmap-4.0.0

We load pydriller in our python instance

import pydriller

The first step is to have the repository you want to analyze cloned somewhere in your local machine.
You can easily do that by git clone <repo url>.

We are using Google Collab to write this tutorial. Google Collab does not allow us to use Git
Clone. We therefore put the entire Mockito’s Git repository in our Google Drive, and will connect
to it.

[4]: from google.colab import drive
drive.mount('/content/drive', force_remount=True)
'1s '/content/drive/MyDrive/mockito’

Mounted at /content/drive

build.gradle gradle LICENSE src
check_reproducibility.sh gradle.properties README.md subprojects
config gradlew SECURITY.md

doc gradlew.bat settings.gradle.kts

3.1 2.1 Basics: The Repository object

The starting point to use pydriller is to create an object of class Repository that contains the git
repository that you want to analyze.

[1: # you should replace the /content/drive/... with the path to the repository you,
—want to analyse
repo = pydriller.Repository('/content/drive/MyDrive/mockito')

Once you have your Repository object, you can use it to obtain all kind of information about the
repository, as to run your study.

Let’s say you want to collect all the commit hashes and their respective authors. We simply need
to traverse all the commits in this repository (for space reasons, here we stop after 100 commits):

[1: for count,commit in enumerate(repo.traverse_commits()):
print('Hash {}, author {}'.format(commit.hash, commit.author.name))
if count == 20:
break

Hash 7c£6470d88491fe472e28493b50eba8ab6fbf0433, author Szczepan Faber
Hash ebf51472bf814148a922753bb1fb21aaaf652671, author Szczepan Faber
Hash 0b24d886d94c9c53eb3c0c0658bd63269eb2elda, author Szczepan Faber
Hash 2bfc39b9d66e139686e1777063cb5e4adcc8d6cb, author Szczepan Faber
Hash 970285776a134889da73014£7d7e53b30be08d0e, author Szczepan Faber
Hash dd168ccf8306aee43f9b0e0ccbdb4155d9047081, author Szczepan Faber
Hash 0cc204151071c920248b39d490£4573b96db8e05, author Szczepan Faber
Hash ¢59de64363ab47d285865ed32101d721532a3£5b, author Szczepan Faber
Hash b627d3cb99263cae31ad177a23a7019fa692cb39, author Szczepan Faber
Hash d49006b862d05790eaf9e3ac919ac11972dd81ca, author Szczepan Faber
Hash d67d2557dfebb05e8e5b79dfdcf4£2dd77517e0c, author Igor Czechowski
Hash 4e765949356f1a47d7639f8e90acb29bd32c9bac, author Igor Czechowski
Hash b08£1b982d0171f0ab6cel18£5584da2b7bf4261d, author Szczepan Faber
Hash 8b4719c88a39d53d0a3a7c05a67ca0466a8a5547, author Szczepan Faber
Hash ac070bb27868d5549426fce3bcbefde36cd81183, author Szczepan Faber
Hash 6dc36bab96d42800a30e90fcl16db6cdcfad2e0bf, author Szczepan Faber
Hash 11df£2268547£21539604£59c4cal05b56b7311e8, author Szczepan Faber
Hash ce623bdadaa7f12e4d29b19d0fee876e42279e00, author Szczepan Faber

[1:

Hash 2c02cdaa7fab49c31dfa22827ac9fc3f£9dcf798, author Szczepan Faber
Hash 3be4964cd73de5b6bc2006d269c4b3c89490fa7a, author Szczepan Faber
Hash 70d40c3c2e2e33ca7009d95359ca9cdb4£5d0a69, author Szczepan Faber

3.2 2.2 Basics: The Commit and the ModifiedFile objects

The Commit object contains all the information about a commit, for example, the time of the
commit or all the files that were modified. Each modified file is stored in a ModifiedFile objet.

Let see in the following how we can access this information and print it out.

repo = pydriller.Repository('/content/drive/MyDrive/mockito',,
—single="'8a19d46c19fc00c56bfcaa01274bb2195d9ac6fe’)
for commit in repo.traverse_commits():
for modification in commit.modified_files:
print('Modified file {}'.format(modification.filename))
print (modification.diff)

Modified file InlineBytecodeGenerator.java
00 -269,9 +269,6 Q@ public class InlineBytecodeGenerator implements
BytecodeGenerator, ClassFileTran
throw t;
b

- // The object type does not ever need instrumentation.
- targets.remove(Object.class);

if ('targets.isEmpty()) {
try {
assureCanReadMockito(targets) ;

Modified file InlineByteBuddyMockMakerTest. java
@@ -220,6 +220,20 @@ public class InlineByteBuddyMockMakerTest
assertThat (proxy.toString()) .isEqualTo("foo");

}
+ VETS
+ * Q@see https://gi
thub.com/mockito/mockito/issues/2154
*/
QTest

public void should_mock_class_to_string() {
MockSettingsImpl<Object> mockSettings = new MockSettingsImpl<Object>();
mockSettings.setTypeToMock(Object.class);
mockSettings.defaultAnswer(new Returns("foo"));
Object proxy =
mockMaker.createMock(mockSettings, new
MockHandlerImpl<Object>(mockSettings));

+ + + + + + + +

[1:

assertThat (proxy.toString()) .isEqualTo("foo");

+ + + +
(-]

QTest
public void should_remove_recursive_self_call_from_stack_trace() throws
Exception {
StackTraceElement[] stack =

3.3 2.3 Basics: Filter

Sometimes you do not need to visit every single commit of the repository. Pydriller allows you to
filter on, e.g., the types of file. Say, all commits where a .xml was modified.

This configuration goes in the Repository:

repo_ep = pydriller.Repository('/content/drive/MyDrive/mockito’,
only modifications_with_file_types=['.xml'],
since=datetime (2020, 1, 1, 0, 0, 0))

for commit in repo_ep.traverse_commits():
print (commit.hash)

4elaeb155f5e67f5afb1934£95bc8af9283da76b
662017026£1cb0ab0bc28cb32e4b5806dfbdb552

3.4 2.4 Basics: Documentation

You can find more information about all these classes in the docs:

o https://pydriller.readthedocs.io/en/latest /repository.html
o https://pydriller.readthedocs.io/en/latest/commit.html
o https://pydriller.readthedocs.io/en/latest /modifiedfile.html

4 3. Mining Software Repositories Examples

Now that we have seen the very basics of pydriller (specifically the Repository, Commit, and
ModifiedFile), we can use it to easily script analyses a la MSR, which are at the basis of many
papers.

In the following, we see basic ways in which files can be tracked. In particular, we do not consider
renaming of files. A good reference on how to handle them is available in the codebase of pydriller
itself here.

https://github.com/ishepard/pydriller/blob/master/pydriller/metrics/process/commits_count.py#L25-L26

4.1 3.1 Who are the committers of a project?

Sometimes, even for selecting the projects we want to analyze, we need to know how diverse is the
population of committers (is it a project run by a single developer, by a pair, or by a larger effort?).
There is a number of ways in which diversity can be ensured in the selection of project (e.g., see
the work by Nagappan et al. for an important take on this point), but number of developers is the
one that is included most of the time

How can we get the list of committers using pydriller? Based on the examples we have seen so far,
we can do it rather quickly. Let us see how.

repo = pydriller.Repository('/content/drive/MyDrive/mockito')

committers = set([commit.author.name for commit in repo.traverse_commits()])
print(committers)

{'Urs Metz', 'Danny Moésch', 'Artem Prigoda', 'Gaétan Muller', 'alberskib',
'Daniel Kroening', 'Eitan Adler', 'Marius Volkhart', 'Anuraag Agrawal',6 'Jakub
Vrana', 'ceduardo.melo', 'Michal Kordas', 'Patouche', 'Gunnar Wagenknecht', 'Per
Lundberg', 'Philipp Jardas', 'TDurak', 'Michal', 'Naoki Takezoe', 'Bartosz
Miller', 'Jan Tarnowski', 'Johnny Lim', 'Bruno Bonanno', 'Ville Saukkonen',
'Divyansh Gupta', 'Jan Mosig', 'Jason Brown', 'Tokuhiro Matsuno', 'Ariel-
isaacm', 'Dennis Cheung', 'Igor Kostenko', 'Jamie Tanna', 'Garfield Tan',
'Raymond Augé', 'Fr Jeremy Krieg', 'bric3', 'Sangwoo Lee', 'David Gageot',
'dependabot [bot] ', 'bruce', 'Brice Dutheil', 'Joseph Walton', 'Marc Philipp',
'sullis', 'Roman Elizarov', 'Hynek Mlnarik', 'Dr. Thomas Tautenhahn', 'Tom
Ball', 'Bastien Jansen', 'David Xia', 'paulduffin', 'zoujinhe', 'Myrle Krantz',
'Christoph Dreis', 'ahmadmoawad', 'Christian Persson', 'Bartosz Bankowski',
'Shaun Abram', 'Alex Simkin', 'Vinicius Scheidegger', 'Michael Pinnegar', 'Lucas
Cavalcanti & Caires Vinicius & Victor Kendy',6 'David Wallace', 'Serge Bishyr',
'Tim Cooke', 'ludovic.meurillon@gmail.com', 'Felix Dekker', 'rberghegger',
'Marconol1234', 'Mateusz Mrozewski', 'Hugh Hamill', 'Erhard Pointl', 'Continuous
Delivery Drone', 'diguage', 'Wojtek Wilk', 'Shyam Sundar J', 'Roi Atalla',
'"Ilmir Usmanov', 'Sinan Kozak', 'Philip P. Moltmann', 'Roland Hauser',
'murat.knecht@gmail.com', 'Onder sezgin', 'wenwu', 'Marcin Grzejszczak',
'Kuangshi Yan', 'Ben Yu', 'Lovro Pandzic', 'Jesse Englert', 'Stefano Cordio',
'Andrey', 'Frank Pavageau', 'Jazzepi', 'devinO40', 'Kurt Alfred Kluever',
'Andrei Silviu Dragnea', 'David M', 'Rafael Winterhalter', 'Marcin Mikotajczyk',
'Marcin.Grzejszczak', 'Radim Kubacki', 'Dmitriy Zaitsev', 'Kim In Hoi', 'Valery
Yatsynovich', 'marcingrzejszczak', 'jakobjo', 'mickroll', 'Scott Markwell',
'"fluentfuture', 'kuckse@dellopt-73.pragmatics.com', 'Liam Clark', 'Vivian
Pennel', 'William Collishaw', 'LiamClark', 'Denis Zharkov', 'thesnowgoose',
'Yusuf Kemal Ozcan', 'Allan Wang', 'Markus Wiistenberg', 'Lukasz Szewc', 'Evgeny
Astafev', 'Ismaél Mejia', 'lukasz-szewc', 'Oliver Gierke', 'ashleyfrieze',
'Marcin Zajaczkowski', 'Niklas Baudy', 'epeee', 'Dhruv Arora', 'mgrafl’',
'NanjanChung', 'adrianriley', 'christian.schwarz', 'Krzysztof Wolny', 'Sergey',
'dean-burdaky', 'mockito.hudson@aa2aecf3-ea3e-0410-9d70-716747e7c967', 'Dominik
Stadler', 'Dmytro Chyzhykov', 'andre.rigon@gmail.com', 'Pawei Pamuta', 'Emory

https://doi.org/10.1145/2491411.2491415

Merryman', 'Pavel Roskin', 'Slawomir Jaranowski', 'Marcin Stachniuk', 'L-KID',

'Christoph Wagner', 'Guillermo Pascual', 'Jean-Michel Leclercq', 'Venkata
Jaswanth', 'Pascal Schumacher', 'Raptis', 'Christian Schwarz', 'José Paumard',
'VChirp', 'Krisztian Milesz', 'alberski', 'Kamil Szymanski', 'shipkit-org',
'Jeffrey Falgout', 'Ivo Smid', 'tombrown52', 'Allon Murienik', 'wesandevie',

'Bruno Krebs', 'pimterry', 'lloydjm77', 'Stephan Schroevers', 'Max Zhu',
'LihMeh', 'fredster33', 'Gabor Liptak', 'Mockito Release Tools', 'Ravi van

Rooijen', 'Ross Black', 'Brice', 'mkuster', 'Dmitry Timofeev', 'r-smirnov', 'Ken
Dombeck', 'theogimonde', 'Nikolas Falco', 'Fabian Mendez', 'Geoff Schoeman',
'Tsuyoshi Murakami', ' ', 'Matthew Dean', 'Michal Borek', 'Szczepan Faber',
'Philip Aston', 'sfaber', 'Michael Schieder', 'Tim Perry', 'Holger', 'Igor C. A.
de Lima', 'Hans Joachim Desserud', 'yyvess', 'brettchabot', 'Matthew Ouyang',
'David Genesis Geniza Cruz', 'Clark Brewer', 'Alex Wilson', 'Ryan Pickett',

'netbeansuser2019', 'Kengo TODA', 'Eugene Ivakhno', 'Ryan Tandy', 'pbielicki',
'Igor Czechowski', 'david', 'Allon Mureinik', 'Nirvanall', 'Michael Keppler',

' jmetertea', 'Tim van der Lippe', 'Sanne Grinovero', 'A248', 'kriegfrj', 'Erik
Bakker', 'Kayvan Najafzadeh', 'Arend v. Reinersdorff', 'Stuart Blair', 'Stefan
Bohn', 'Piotrek Zygielo', 'Paul Klauser', 'Eric Lefevre-Ardant', 'rafwin',
'Theodore Ni', 'szpakQ@users.sourceforge.net', 'Ismael Juma', 'akluball', 'Walter

Johnson', 'Joe Shannon', 'Federico Fissore', 'Michael Vitz', 'Ian Parkinson',
'Max Grabenhorst', 'Jesse Wilson', 'Andrei Solntsev', 'Robert Stupp', 'psiqgta’,
'jrrickard', 'MEDDAH Julien', 'U-Michal-Komputer\\Michal', 'Vineet Kumar',

'Andrew Ash', 'Robert Chmielowiec', 'Ludovic Chane Won In', 'Ivan Vershinin',
'Carlos Aguayo', 'Serz Kwiatkowski', 'Simen Bekkhus', 'jerzykrlk', 'shestee',
'Werner Beroux', 'Alberto Scotto', 'Michal Szestowicki', 'Dinesh Bolkensteyn',
"tmurakami', 'David Maciver', 'Marcin Zajgczkowski'}

Another question one could ask now is who are the most/least prolific authors in this repository.
Let’s see how quickly this can be found with pydriller and python.

[]:|repo = pydriller.Repository('/content/drive/MyDrive/mockito"')
committers = Counter([commit.author.name for commit in repo.traverse_commits()])

print(committers.most_common(10))

[('Szczepan Faber', 2974), ('Brice Dutheil', 559), ('Continuous Delivery Drome',
431), ('Rafael Winterhalter', 278), ('shipkit-org', 213), ('Tim van der Lippe',
176), ('Mockito Release Tools', 55), ('dependabot[bot]', 54), ('Pascal
Schumacher', 40), ('Christian Schwarz', 37)]

[1: plt.rcParams['figure.figsize'] = [10, 8]
top_committers = dict(committers.most_common(15))
#plt.style.use('ggplot')

plt.bar(top_committers.keys(), top_committers.values(), color='blue')

plt.xticks(rotation = 90)

plt.xlabel ("Author")

plt.ylabel("Number of commits")

plt.title("Commit output from the 15 most prolific authors")

plt.show()

Commit output from the 15 most prolific authors

3000

2500

2000 1

1500 +

Number of commits

1000 1

500 A

Brice

shipkit-org

Brice Dutheil
Erhard Pointl 4

e
i
0
i
=
m
)
P
=)
P
ul

Rafael Winterhalter
Tim van der Lippe
Mockito Release Tools
dependabot]bot]
Pascal Schumacher
Christian Schwarz
Igor Czechowski 4
Marcin Zajaczkowski 4
Bartosz Bankowski

Continuous Delivery Drone

Author

Now let’s find authors with single contributions:

[1: single_contributions = [name for name, num_of_commits in committers.items() if,
—num_of_commits == 1]
print('We have {} authors (out of {}) who committed only once'.format(
len(single_contributions), len(committers)))

[]1:

[1:

[1:

print("First 10:")
print(single_contributions[0:10])

We have 158 authors (out of 261) who committed only once

First 10:

['David Gageot', 'andre.rigon@gmail.com', 'Krisztian Milesz',
'kuckse@dellopt-73.pragmatics.com', 'Erik Bakker', 'MEDDAH Julien', 'José
Paumard', 'szpakQusers.sourceforge.net', 'Eric Lefevre-Ardant', 'Ludovic Chane
Won In']

4.2 3.2 What are the hotspots of the system?

Files that are changed several times are often considered to be hotspots or problematic parts in a
software systems. Let us see how we can find these files using pydriller. We need to keep track of
which files have been changed in every commit.

This time we use a dictionary so that it is easier to see the double loop.

from collections import defaultdict
from datetime import datetime

mod_files = defaultdict(int)

we limit ourselves to the changes in the last year
dtl = datetime(2020, 5, 18, 0, 0, 0)
repo_java = pydriller.Repository('/content/drive/MyDrive/mockito’,
since=dtl1,
only_modifications_with_file_types=['.java'])

for commit in repo_java.traverse_commits():

for modification in commit.modified_files:
if modification.filename.endswith('.java'):

mod_files[modification.filename] += 1

print (("number of modified files collected: %d" % len(mod_files)))

number of modified files collected: 723
Let us draw a graph with the 20 most commonly changed files.

plt.rcParams['figure.figsize'] = [15, 8]
hotspots = dict(Counter(mod_files) .most_common(20))
#plt.style.use('ggplot')

plt.bar(hotspots.keys(), hotspots.values(), color='green')

plt.xticks(rotation = 90)

plt.xlabel("File")

plt.ylabel("Number of changes")

plt.title("Commits to the 15 most changed files (last 12 months)")

plt.show()

Commits to the 15 most changed files (last 12 months)

14 4

Number of changes

Mockito java
MockMethodAdvice java
MockMethodDispatcher java
MockUtil java

Reporter java
Mockito]UnitRunner.java
MaockMaker java
MockedStatic_ java
MaockedStaticlmpl java
MockitoCore java
ByteBuddyMockMaker java
Instantiator.java

@
<
@
§
c
]
c
@
o
]
=
I
o
£
=]
]
£
£

InlineByteBuddyMackMaker java
InjectingAnnotationEngine java
SubclassBytecodeGenerator java

InlineByteBuddyMockMakerTest java
InstrumentationMemberAccessor java
IndependentAnnotationEngine java
TypeCachingBytecodeGenerator java

File

4.3 3.3 Logical coupling

Logical coupling happens when two files are committed together. Lots of work have been dedicated
to this topic in the past.

Let us now write a simple pydriller script that measures logical coupling. (Please note that this is
a very naive implementation of logical coupling; this example is meant to show that you can code
whatever algorithm you want when using pydriller!)

[9]: since2020 = datetime(2020, 1, 1, 0, 0, 0)
repo_lc = pydriller.Repository('/content/drive/MyDrive/mockito’,
—since=since2020)

10

coupling = Counter ()

for commit in repo_lc.traverse_commits():
we keep a list of logical coupled files inm this commit,
so that we can properly +1 them, without counting them twice.
coupling_in_this_commit = []

for ml1 in commit.modified_files:

loop through all changes again to couple this file
with all the other files in this commit
for m2 in commit.modified_files:
skip the same file
if ml.filename == m2.filename:
continue

two files together, consider logical coupling!

we sort the names of the classes to ensure that (4, B) and (B, A)
point to the same key

sorted_class_names = sorted([ml.filename, m2.filename])

f1f2 = sorted_class _names[0] + "-" + sorted_class_names[1]

if we did not count this one yet, we do tt now
if f1f2 not in coupling_in_this_commit:
coupling[f1£f2] += 1
coupling _in_this_commit.append(£1£2)

print the the most coupled files
print(coupling.most_common (20))

[('official.md-version.properties', 48), ('InlineByteBuddyMockMaker.java-
InlineBytecodeGenerator.java', 7), ('InlineByteBuddyMockMaker.java-
Mockito.java', 6), ('InlineByteBuddyMockMaker.java-MockMethodAdvice.java', 6),
('InlineBytecodeGenerator. java-MockMethodAdvice.java', 6), ('Mockito.java-
MockitoCore. java', 5), ('Mockito.java-TypeCachingBytecodeGenerator.java', 5),
('Mockito.java-MockitoJUnitRunner. java', 5), ('MockitoCore.java-
TypeCachingBytecodeGenerator.java', 5), ('InlineByteBuddyMockMaker.java-
MockMethodDispatcher. java', 5), ('InlineByteBuddyMockMaker.java-MockUtil.java',
5), ('InlineByteBuddyMockMaker.java-MockMaker.java', 5),
('InlineBytecodeGenerator. java-MockMethodDispatcher. java', 5),
('InlineBytecodeGenerator. java-MockUtil. java', 5),
('InlineBytecodeGenerator.java-MockMaker. java', 5), ('MockMethodAdvice.java-
MockMethodDispatcher. java', 5), ('MockMethodAdvice.java-MockUtil.java', 5),
('MockMaker. java-MockMethodAdvice. java', 5), ('MockMaker.java-MockUtil.java',
5), ('MockedStatic.java-MockedStaticImpl.java', 5)]

11

[10]:

[]1:

plot <t
plt.rcParams['figure.figsize'] = [10, 8]

hotspots = dict(coupling.most_common(20))
pairs = list(hotspots.keys())
times = list(hotspots.values())

plt.barh(pairs, times, color='green')
plt.ylabel("File pairs")
plt.xlabel("Times committed together")
plt.title("Logical coupling")

plt.show()

Logical coupling

MockedStatic java-MockedStaticlmpl java

MockMaker java-MockUtil java

MockMaker java-MockMethedAdvice java
MockMethodAdvice java-MockUtil java

MockMethodAdvice java-MockMethodDispatcher java
InlineBytecodeGenerator. java-MockMaker java
InlineBytecodeGenerator java-MockUtil java
InlineBytecodeGenerator. java-MockMethodDispatcher java
InlineByteBuddyMackMaker java-MockMaker java
InlineByteBuddyMockMaker java-MockUtil java
InlineByteBuddyMaockMaker java-MockMethodDispatcherjava

File pairs

MockitoCore java-TypeCachingBytecodeGenerator java
Mackito_java-Mockito)UnitRunner java

Mockito_java TypeCachingBytecodeGenerator java

Mockito java-MockitoCore java

InlineBytecodeGenerator java-MockMethodAdvice java
InlineByteBuddyMaockMaker java-MockMethodAdvice java
InlineByteBuddyMockMaker java-Mockito java
InlineByteBuddyMackMaker java-InlineBytecodeGenerator java

official. md-version. properties

0 10 0 0 10 50
Times committed together

Of course, note that if you were going to do this in scale, you may want to optimize a few things.
For example, keeping this huge dictionary in memory may not be a good idea. Maybe you want to
go for a database instead?

4.4 3.4 Complexity growth of a file

Pydriller also calculates some code metrics out-of-the-box for you. For that, Pydriller relies on
Lizard, a code analyzer that support different languages.

See the example below: we get the complexity of the MockitoCore class over time.

repo_cc = pydriller.Repository('/content/drive/MyDrive/mockito’,,
—,since=datetime (2018, 1, 1, 0, 0, 0))

12

https://pypi.org/project/lizard/

(]

complexity

(]

for commit in repo_cc.traverse_commits():

commit list =

for m in commit.modified_files:
if "MockitoCore.java" in m.filename:

complexity.append(m.complexity)

ppend (commit .hash)

commit_list.a

break

print (complexity)

[37, 36, 37, 38, 38, 42, 42, 42, 44, 46, 47, 47]

[15, 5]

plt.rcParams['figure.figsize'] =

[]:

plt.bar(commit_list, complexity)

plt.xlabel("Time")

plt.ylabel("Complexity")

plt.xticks(rotation = 90)

plt.title("Complexity of MockitoCore over time")

plt.show()

Complexity of MockitoCore over time

R 8
fyxadwon

ILI8GI0FEPSTEEP92ERA900P0SETOTREYFLEDE

LSFMTFOBEEPALE=002F9F2TFIOMR0TTIZIEER

TESEFEILABASFPEIEI[ATROFTITTLRLGE2L3DTT

BOEENZHOFTEIBRIBPONTEI Y20 T 53836 FEIE]

CETISE0L2TAY9672FE2PS0TAL 29 6IE06600PPOR

FO0TEEI0ZIIBERIPERDAI[BIB3RIBOTIETENTY

Time
13

BIEFIE0BEMETISTESIANIZFFTI=EPSTAZERLPM

PEIOTRELTLPRO9E06LTLEGPERTTRI35HETEIIRE

FSERCIOPETITI2RI03 L PI90SEIPPEaSaTPELTLET

FOZI9LBPEQM=IFLELIIBSIIIREFSAGP3T6289

OFZ0JERI20FaP 90 BB FTERTRGRBEESTTOTAR

5033 TeFeS=PaTF2PRRIERR)OEGUZIRTR 202

4.5 3.5 Other out-of-the-box functionality

Pydriller has many other out-of-the-box functionalities, and we recommend you to look at its
manual.

Some of them:

o We showed some ways to filter which commits to analyze, but pydriller offers more of them:
https://pydriller.readthedocs.io/en/latest /repository.html#filtering-commits

o We only extract basic information about the commit, but Pydriller’s Commit object is quite
a rich one: https://pydriller.readthedocs.io/en/latest/commit.html

e The same for the ModificationFile object. It gives you lots of information about the specific
change, e.g., diff, lines added, lines removed, source code before, source after, code metrics:
https://pydriller.readthedocs.io/en/latest /modifiedfile.html

o Different classes to help you in extract some well-known process metrics, such as
churn, line count, commit count, contributor count, contributor experience, and etc:
https://pydriller.readthedocs.io/en/latest /processmetrics.html

Are you missing something? Let’s send us a PR! How? See the next section.

5 4. Contributing to Pydriller

5.1 4.1 Adding traversing configuration flags

We have seen in the previous examples that we can tell pydriller how to traverse the history of the
given git repository. For example, we can filter in or out certain files, branches, and periods.

If Git offers traversing functionalities that are not (yet) integrated in pydriller or if a special
traversing is necessary, it is possible to expand pydriller to support them!

The software entity to consider in this case is the file repository.py, which also contains the
definition of the class Repository (i.e., the entry point of any pydriller analysis).

As a practical example of a change to pydriller in this context, we have a look at the pull request
#112, which was accepted and integrated in pydriller last year.

The goal of this pull request is to enable support for the options --all and --remotes within
pydriller. These two flags enable the following behavior (from the git documentation):

--all: Pretend as if all the refs in refs/, along with HEAD, are listed on the command
line as <commit>.

--remotes [=<pattern>]: Pretend as if all the refs in refs/remotes are listed on the
command line as <commit>. If <pattern> is given, limit remote-tracking branches to
ones matching given shell glob. If pattern lacks 7, *, or [, /* at the end is implied.

We do not go deeper into the meaning of these changes, because they are very specific git behavior,
thus go beyond the scope of this tutorial. Rather we see how this was implemented in pydriller in
the pull request.

14

https://github.com/ishepard/pydriller/pull/112
https://github.com/ishepard/pydriller/pull/112
https://git-scm.com/docs/git-rev-list

The pull request changes three files: - pydriller/repository_mining.py (renamed
as pydriller/repository.py in the latest version) - pydriller/utils/conf.py -
tests/integration/test_commit_filters.py

The first file is changed to allow users to use the new option with pydriller, while the conf . py builds
the argument for git rev-list. We recommend to have a look at the changes itself to understand which
parts they touch. In general, it is a good idea to look for previous pull requests that implement
changes that are similar to the one you are interested in implemeting, as to understand which parts
need to be changed and how.

5.1.1 4.1.1 Testing In Pydriller

An important aspect of this pull request is the last file, which implements tests that ensure the
proper working of the new change. This is an important part because it is required for changes to
pydriller to have accompanying tests in order to be approved and merged in the main repository.

Let us have a look at these tests: https://github.com/ishepard/pydriller/pull/112/files#diff-
Obf1bd4738d219fd5a423e3086299895b2e5e13d3cb0cablaab9a016a474dceb

We note that—Tfor each feature—there is at least one test case that exercises the behavior and
checks for its correctness.

Since pydriller works on git repositories, these are often part of the testing process. For this reason,
you can find a file named test-repos.zip that is an archive with a number of repositories that
can be used for testing. These can be directly invoked from the tests and used as part of your
testing activities. Of course, you can contribute with more examples also to the test repositories,
if you need to check unseen behavior.

All in all, make sure that you test your changes if you want to see them integrated in pydriller!
Having tests greatly improves the reliability of this tool and, in turn, of all the analyses that are
done based on it, therefore we have to keep up with this important practice!

5.2 4.2 Supporting more git commands

Another common extension that you may want to implement in pydriller is changing the way
in which certain entities are traversed. Such an extension would involve changes in both the
Repository and the Git entities.

Let us see how this was done in a real-world pull request. In particular, we see the pull request
that added the possibility to traverse through the commits through a single file’s history.

An interesting, process related aspect of this change is that it started with the creation of an issue.
This issue was created to ask and discuss with the main maintainers whether this feature was a
good idea to have in pydriller and implement it. Unless you are sure that the feature you want to
have is not implemented and you know that it follows the philosophy of pydriller, it is a good idea
to open an issue and discuss it with the maintainers. This way you may even discover where to
start in the code with what you want to do!

Once the issue was confirmed as interesting, the developer implemented the changes in the pull
request. In this case, too, we see that the changes are accompanied by tests, implemented in two

15

https://github.com/ishepard/pydriller/pull/31
https://github.com/ishepard/pydriller/issues/30

files: tests/test_repository mining.py and tests/test_ git_repository.py.

The change itself makes sure that the Repository instance can accept this new feature when created
and that the Git instance uses the --follow option when invoking the underlying GitPython
library(*).

The main function to consider is the one named get_commits_modified_file(), which includes
most of the modifications and the main logic.

(*) In fact, pydriller uses GitPython as a layer on top of git, to ensure that it supports as many
operative systems as possible and that changes to git are supported as quickly as possible (which
would not be feasible if pydriller invoked git directly).

5.3 4.3 Further changes

Other common changes in pydriller may regard the way in which commits are analyzed. For
example to add more metrics or different comparisons of diffs.

As a good starting example of this, we recommend the pull request that introduced the possiblity
to see which methods were changed in a commit. This modification makes use of the library Lizard
that allows one to perform code analyses in a number of languages.

It is important to know that pydriller is “lazy by default”. Therefore, it is very quick to traverse
commits that get basic information, because it relies on quick calls to git through GitPython. As
the information that is required is more complicated to compute, the execution time of pydriller
will slow down accordingly. We have to trade-off power with speed!

Another good example of a pull request that added further functionalities to pydriller is the pull
request that changes the way in which git blame is used and allows for further refinements in this
area. This is a more complex change, so we recommend to read it only after you have become
familiar with the rest of the system.

6 5. Closing

You have now reached the end of this tutorial, congratulations! We hope that it grew your interest
in pydriller and in using it for your research. If you do, it would be great if you could refer to it in
your papers as in the following:

@inproceedings{spadini2018pydriller,
title={{PyDriller}: Python framework for mining software repositories},
author={Spadini, Davide and Aniche, Maur{\'\i}cio and Bacchelli, Alberto},
booktitle={Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering},
series = {ESEC/FSE 2018},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3236024.3264598},
doi = {10.1145/3236024.3264598},
pages={908--911},

16

https://github.com/ishepard/pydriller/pull/31/files#diff-378a824440b369b923b60aaf13ff93c29de15cbbe1ce9d6665ae49ec1f382241
https://github.com/ishepard/pydriller/pull/31/files#diff-1ce63c9778b0554518a3e8e36be71cba528bea283ddc1fffc12345286017e145
https://github.com/ishepard/pydriller/pull/95
https://pypi.org/project/lizard/
https://github.com/ishepard/pydriller/pull/74
https://github.com/ishepard/pydriller/pull/74

year={2018%}
}

We also hope to see you on the GitHub repository of PyDriller, where we will be happy to discuss
how to grow PyDriller together with youl!

17

https://github.com/ishepard/pydriller

	PyDriller – Ready to grow together (MSR 2021 Tutorial)
	1. Why PyDriller?
	2. Getting Started With PyDriller
	2.1 Basics: The Repository object
	2.2 Basics: The Commit and the ModifiedFile objects
	2.3 Basics: Filter
	2.4 Basics: Documentation

	3. Mining Software Repositories Examples
	3.1 Who are the committers of a project?
	3.2 What are the hotspots of the system?
	3.3 Logical coupling
	3.4 Complexity growth of a file
	3.5 Other out-of-the-box functionality

	4. Contributing to Pydriller
	4.1 Adding traversing configuration flags
	4.1.1 Testing In Pydriller

	4.2 Supporting more git commands
	4.3 Further changes

	5. Closing

