Conference paper Open Access

FaceRec: An Interactive Framework for Face Recognition in Video Archives

Pasquale Lisena; Jorma Laaksonen; Raphael Troncy


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Face recognition</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Neural networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Semantic metadata</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video archives</subfield>
  </datafield>
  <controlfield tag="005">20210520151112.0</controlfield>
  <controlfield tag="001">4764633</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">21 June 2021</subfield>
    <subfield code="g">DataTV-2021</subfield>
    <subfield code="a">2nd International Workshop on Data-driven Personalisation of Television</subfield>
    <subfield code="c">New York, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aalto University</subfield>
    <subfield code="0">(orcid)0000-0001-7218-3131</subfield>
    <subfield code="a">Jorma Laaksonen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EURECOM</subfield>
    <subfield code="0">(orcid)0000-0003-0457-1436</subfield>
    <subfield code="a">Raphael Troncy</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4150681</subfield>
    <subfield code="z">md5:1cbb47353bc5ab1ffb120bd0087ff194</subfield>
    <subfield code="u">https://zenodo.org/record/4764633/files/facerec.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://datatv2021.iti.gr/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-datatv2021</subfield>
    <subfield code="o">oai:zenodo.org:4764633</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">EURECOM</subfield>
    <subfield code="0">(orcid)0000-0003-3094-5585</subfield>
    <subfield code="a">Pasquale Lisena</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">FaceRec: An Interactive Framework for Face Recognition in Video Archives</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-datatv2021</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">ANR-17-CE38-0010</subfield>
    <subfield code="a">Transdisciplinary Analysis of French Newsreels (1945-1969)</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780069</subfield>
    <subfield code="a">Methods for Managing Audiovisual Data: Combining  Automatic Efficiency with Human Accuracy</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Annotating the visual presence of a known person in a video is a hard and costly task, in particular when applied to large video corpora. The web is a massive source of visual information that can be exploited for detecting celebrities. In this work, we introduce FaceRec, an AI-based system for automatically detecting faces of known but also unknown people in a video. The system relies on a combination of state-of-the-art algorithms (MTCNN and FaceNet), applied on images crawled from web search engines. A tracking system links consecutive detection in order to adjust and correct the label predictions using a confidence-based voting mechanism. Furthermore, we add a clustering algorithm for the unlabelled faces, thus increasing the number of people that can be recognized. We evaluate our system that obtained high precision on datasets of both historical and recent videos. We release the complete framework as open-source at https://git.io/facerec .&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4764632</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4764633</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
96
77
views
downloads
All versions This version
Views 9696
Downloads 7777
Data volume 319.6 MB319.6 MB
Unique views 7777
Unique downloads 6666

Share

Cite as