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Abstract

Smart grid technology is considered as the ultimate solution to challenges that1

emerge from the increasing power demands, the subsequent increase in pollution,2

and the outmoded power grid infrastructure. The successful implementation of3

the smart grid is mainly driven by the utilization of modern communication tech-4

nologies, which aim at the provision of advanced demand side management mecha-5

nisms, such as demand response. In this paper, we present and analyze four power-6

demand scheduling scenarios that aim to reduce the peak demand in a smart grid7

infrastructure. The proposed scenarios consider that each consumer is equipped8

with a certain number of appliances of different power demands and different op-9

erational times, while the percentage of consumers that agree to participate in the10

demand scheduling program is also incorporated in our models. We provide the11

analysis for the determination of the peak demand in a residential area, based on12

recursive formulas. The proposed analysis is validated through simulations; the13

accuracy of the analytical models is found to be quite satisfactory. Moreover, we14

unveil the consistency and necessity of the proposed scenarios and corresponding15

analytical models.16
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Nomenclature

Bm probability of exceeding P after the ac-

ceptance of type-m request

pm,t compressed power demand when the to-

tal power consumption is Pt−1 ≤ j < Pt

bm(j) control function for CDS Pt power threshold for the scheduling sce-

narios

bm,t(j) control function for CDS Q distribution normalization constant

cm,0(j) control function for DRS sm,t percentage of type-m appliances that

participate in the scheduling program,

when Pt−1≤j<Pt
cm,t(j) control function for DRS and PRS T number of thresholds for CDS and DRS

d−1m mean appliance operational duration

d−1m,t mean appliance operational duration

when Pt−1 ≤ j < Pt

Greek symbols

e predefined upper bound of the block-

ing probabilities

λm power request arrival rate of type-m ap-

pliances

j total number of PU in use λm,t power request arrival rate of type-m ap-

pliances when Pt−1 ≤ j < Pt

M number of appliances Subscripts

M1 number of appliances that are able to

compress their demands

m appliance type from theM appliance set

M2 number of appliances that are able to

postpone their operation

m′ appliance type from the expanded 2M

appliance set

P maximum number of supported p.u.

in the real system

t power threshold

pm power demand of type-m appliance

1. Introduction17

The present electric power grid has persisted for several decades and its18

capability to address the future demand for electricity is doubtful. The evo-19

lution of electric power systems should be a next generation infrastructure20

that provides reliability, efficiency, and resilience to equipment failures. The21

smart grid aims at enhancing the flexibility and consistency of the electric22
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power grid, through the utilization of communication technologies that pro-23

vide intelligent control over power consumption [1], [2]. In this smart energy24

consumption environment, users’ appliances are able to adjust their power25

demands according to their practical needs, while contributing to the reduc-26

tion of the total power consumption in peak-power demand hours [3], [4].27

The successful implementation of the demand management in a smart28

grid environment is mainly driven by exploiting Demand Response (DR)29

programs that are applicable to either industrial/commercial or residential30

consumers. This customer-enabled power consumption management is the31

key smart-grid feature that enables the adaptation of power demands to time32

variable prices, while it improves the efficiency and the reliability of the power33

grid and achieves peak demand reduction [5]. Consequently, a DR scheme34

that provides a fair charging scheme would not only benefit the participants35

that can save more money, but it would also enable the energy provider36

to meet its pollution obligations and reduce the power generation cost by37

eliminating the need for activating expensive-to-run power plants during peak38

demand hours [6], [7]. This peak demand reduction target can be achieved39

by applying DR programs not only to industrial/commercial consumers, but40

also to residential consumers, since both sectors can mutually mitigate the41

grid’s congestion during peak hours [8], [9].42

The design of efficient DR algorithms is a crucial issue for the deployment43

of the smart grid. These algorithms can be classified according to the offered44

motivations into price-based and incentive-based programs [10], and based45

on the decision variable into task scheduling and energy scheduling [11]. In46

price-based DR programs, consumers are granted time-varying prices that47
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are defined based on the electricity cost in different time periods, while in48

incentive-based DR programs, consumers are offered fixed or time-varying49

payments, in order to motivate their electricity usage reduction during peri-50

ods of system stress, but they are also penalized for not participating in the51

program. Furthermore, in task scheduling DR [12], the key function is the52

control on the activation time of the requested load, which can be shifted53

from peak-demand to low-demand periods. The reduction of the total power54

consumption in peak-demand hours can be also achieved by applying energy55

scheduling DR programs [13], which target the power consumption reduc-56

tion of specific loads, through the control of their operation to consume less57

power during system stress. Both task and energy scheduling DR programs58

are considered as the most effective strategies that can be applied to house-59

holds for the reduction of peak-to-average ratio in load demand [14], while60

they can be combined with price-based or incentive-based schemes, in order61

to make the DR program attractive to the consumers. A detailed discussion62

on the challenges and requirements of load scheduling methods can be found63

in [15].64

There is a significant number of research articles that study the imple-65

mentation of scheduling DR programs. Most of these research efforts use66

simulation [16], [17] or optimization methods [18], [19], [20] to deal with the67

power-demand control problem. Analytical models have provided solution68

to the same load management problem. The current power consumption is69

used in [21], in order to decide the power request scheduling. Two power70

demand control policies are proposed and analyzed: the first policy assumes71

that a power controller activates immediately or postpones power requests,72
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based on the current power consumption. In the second policy, a new re-73

quest is activated immediately, if the total power consumption is lower than74

a threshold, else it is queued. Similar power demand control policies are75

presented in [22]. Furthermore, in [23] an analytical model for the peak and76

total energy consumption reduction under Interruptible/Curtailable service77

(I/C) and Capacity Market Programs (CAP) is proposed. In all cases, the78

power requirement of each power request equals to 1 power unit. Multiple79

appliances with diverse power demands are considered in [24] for the efficient80

determination of the peak demand in the residential area, by considering81

either energy or task scheduling policies. However, the proposed models do82

not consider the percentage of consumers that refuse to participate in the83

program, while the computational complexity of the analytical model for the84

task-scheduling scheme is high, due to the absence of a recursive formula for85

the determination of state probabilities.86

In this paper, we study both task and energy scheduling programs, by87

considering a smart grid architecture where each end-user is connected to88

a Central Load Controller (CLC), located at a substation of the Distribu-89

tion Network Operator (DNO). We propose and analyze four power demand90

scheduling scenarios for the control of power requests by the CLC. Each sce-91

nario tackles a different approach on the control of the users’ power demands,92

and achieves a different performance regarding the total required power con-93

sumption in a residential area. Compared to the state of the art, the key94

advantages of the proposed scenarios and corresponding analytical models95

are: 1) the consideration of a set of consumers, each one equipped with a96

specific number of appliances with different power demands, different oper-97
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ational times and different arrival rates of power requests, 2) the inclusion98

of the percentage of consumers that wish to contribute to the program for99

each appliance, 3) the low computational complexity of the proposed ana-100

lytical models due to the utilization of recursive formulas. Therefore, the101

proposed models are more realistic and provide more accurate peak-demand102

results, compared to models that do not consider consumers’ participation103

percentages, while the proposed models can be applied to DR programs that104

require near real-time decisions, due to their significantly low complexity.105

More precisely, the four proposed scenarios and their key features are:106

• The first scenario, named the “default scenario”, is introduced in order107

to determine the upper bound of the total power consumption in the108

residential area under study.109

• The second scenario, named the “Compressed Demand Scenario”(CDS),110

is an energy scheduling scenario, where a number of appliances are able111

to compress their power demands and simultaneously expand their op-112

erational times. This compression mode (also known as load curtailing113

[25]) is applied to specific types of appliances, and it is only activated114

when the power consumption in the residential area exceeds predefined115

thresholds.116

• In the third scenario, named the “Delay Request Scenario”(DRS), power117

requests are delayed in buffers for a predefined time period, which is dif-118

ferent for each appliance’s type and is a function of the current power119

consumption and predefined power thresholds, while after this delay120

the power requests attempt to access the system. This power-request121
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delay is also known as demand shifting and may reduce the power con-122

sumption by waiting for the termination of the operation of already123

activated appliances, without accepting any new power requests.124

• Finally, in the “Postponement Request Scenario”(PRS), power requests125

that arrive at the CLC when the power consumption exceeds a thresh-126

old P1, are not postponed for a constant time period as in the DRS127

case, but until the power consumption drops below a second threshold128

P2, with P2≤P1.129

Examples of the operation of the three scheduling scenarios (CDS, DRS130

and PRS) are presented in Fig. 1. The CDS is more suitable for appliances131

with an elastic load component (e.g. appliances that have heating elements),132

while the demand-shifting scenarios (DRS and PRS) can be applied to a va-133

riety of appliances that can handle operational delays. A combination of the134

proposed scenarios can achieve maximum peak-demand reduction, through135

the demand compression of an appliance’s set and the demand shifting of an-136

other set of appliances. Table 1 summarizes the four basic scenarios together137

with 2 combined scenarios that consider both demand compression and de-138

mand shifting, and it presents the appliances’ types that can be applied to139

each scenario and the corresponding scheduling parameters. It should be140

noted that the application of the demand-shifting scenarios eliminates the141

probability of higher load levels, mainly due to the consideration of power142

thresholds: under DRS (Fig. 1b), the gradual increase of power-request de-143

lays results in less accepted power requests while more appliances terminate144

their operation, whereas under PRS (Fig. 1c), power requests are delayed un-145

til the total power consumption drops below a power threshold that is smaller146
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than the threshold that is considered for the shifting activation. Furthermore,147

the participation of the consumers to the scheduling scenarios should be mo-148

tivated through the provision of incentives, such as lower electricity prices for149

consumers that decide to participate in the program, in order to change their150

power consumption habits and contribute to the peak demand reduction.151

The main contribution of this paper is the derivation of recursive formu-152

las for each scenario that determine the distribution of power units in the153

residential area. The utilization of recursive formulas is a computationally154

efficient method that minimizes the complexity of the required calculations;155

therefore the near real-time peak-demand calculations can be used in order to156

provide fast decisions for the efficient application of the scheduling programs.157

The validation of the proposed analytical models is realized through the com-158

parison of analytical results with corresponding results from simulation. The159

analytical results are obtained by solving the proposed recursive formulas,160

while simulation results are obtained from our objected-oriented simulator,161

which executes the rules of each scheduling scenario without considering any162

equations. Through this validation process, the accuracy of all models is163

found to be quite satisfactory. Therefore, the proposed analytical models164

can be efficiently used for the peak demand determination, which is realized165

in a very short time, in comparison to simulations, which are typically time-166

consuming and are generally performed by using troublesome and expensive167

simulation tools. Moreover, the proposed analytical models are pattern ag-168

nostic; therefore they can be applied to a wide range of applications, while169

considering both demand compression and demand-request postponement.170

Finally, we compare analytical results from the proposed scenarios with cor-171
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responding analytical results from [22] and [24], since these models also in-172

corporate power thresholds for the activation of the load scheduling scheme.173

We show that the proposed analytical models are more realistic, since they174

consider multiple power requests with diverse power requirements, while they175

achieve better performance regarding the total power consumption.176

The organization of this paper is as follows. In Section 2, we introduce177

the modeling principles for the default scenario, while in Section 3 we present178

and analyze the three proposed scheduling scenarios. In Section 4, we discuss179

the applicability of the proposed scenarios, when both power compression180

and request delay are jointly applied. Section 5 is the evaluation section,181

where both analytical and simulation results are displayed and discussed.182

We conclude our paper in Section (6).183

2. Modeling Principles of the Default Scenario184

In this section, we present the basic principles for the modeling of the185

smart grid infrastructure under study. We also present the default scenario,186

which is introduced in order to determine the upper bound of the power187

consumption in the residential area under study. These modeling principles188

are also considered in the scheduling scenarios that are presented in the189

following section.190

We consider a residential area where each residence is equipped with up to191

M appliances (Fig. 2). For each residence there is an Energy Consumption192

Controller (ECC) connected to all appliances. Each residence is connected193

to the power line coming from the energy source, while the ECC is connected194

to the CLC through a Local Area Network (LAN). Each appliance requires195
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a certain amount of power in order to operate properly. The power demand196

of appliance m (m = 1, . . . ,M) is denoted as pm power units (PUs), while197

the maximum number of PUs that the DNO can support in the specific area198

is denoted as P . The ECC receives the required number of PUs from each199

appliance and reports these requirements to the CLC, by using load control200

messages that are sent through the LAN control channel. The controller201

activates the power requests immediately upon the reception of the load202

control message, i.e. no request scheduling occurs. The arrival process of the203

requests for pm PUs from all residences follows a Poisson distribution, with a204

mean arrival rate denoted as rm. The operation of the m−type appliance is205

generally distributed with a mean duration of d−1m . The Poisson distribution206

has been considered as a suitable solution for modeling the power requests’207

arrival process ([22], [26]). Furthermore, appliances’ operation times have208

been considered to follow a general distribution, which is a more widespread209

solution compared to exponential distribution followed in several research210

schemes ([27], [28]). Based on the above assumptions, we determine the211

distribution of the PUs in use by using the following recursive formula:212

jq(j) =
∑M

m=1
(rmd

−1
m )pmq(j − pm) (1)

for j = 1, ..., P . Eq. (1) provides the distribution of the probabilities q(j) that213

j PUs are in use in the residential area. A similar recursive formula is used214

for the distribution of the occupied bandwidth in multi-rate communication215

networks [29], which also assumes Poisson arrivals and generally distributed216

service times. Eq. (1) is solved by using an iterative method, where we217

set q(0) = 1 and q(j) = 0, for j < 0 and j > P . In this way, we calculate218
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the unnormalized probabilities q(j); these probabilities are normalized over219

the summation Q =
∑P

i=0 q(i). It should be noted that the assumption of220

discrete power consumption can provide efficient results, especially when 1221

PU is considered equivalent to a very small value of the (continuous) power222

consumption (e.g. 1 PU ⇔ 0.01 W ).223

Due to the finite nature of P , there is a probability Bm that after the224

acceptance of a power request, the total number of PUs exceeds P . From225

Eq. (1), Bm can be calculated as the sum of the probabilities of all states226

that makes the total number of PUs in use to exceed P :227

Bm =
∑P

j=P−pm+1
(q(j)/Q) (2)

Eq. (2) can be used to determine the minimum value of P , which guaran-228

tees that the requested PUs don’t suffer an outage probability larger than a229

predefined maximum value e. Therefore, by considering a very small value e230

for the outage probability (e.g. e = 10−5, since power requests should not be231

blocked) we can use Eq. (2) together with Eq. (1) in order to determine the232

minimum value of P . This calculation is realized by considering the following233

steps: (i) set an initial value for P , (ii) determine the distribution of PUs in234

use from Eq. (1) and outage probabilities from Eq. (2), (iii) repeat step (ii)235

by constantly increasing the value of P until all results of Eq. (2) for all M236

appliances are below the threshold e. Therefore, since the proposed policies237

do not consider blocked power requests, the peak demand for a specific set of238

power requests can be determined by considering the aforementioned method239

for a very small value for the parameter e, so that the number of blocked240

power requests is negligible.241
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3. The Scheduling Scenarios242

3.1. The Compressed Demand Scenario243

In the Compressed Demand Scenario (CDS), appliances are prompted to244

gradually reduce their power demands when the total power consumption245

exceeds predefined power thresholds. The consideration of multiple power246

thresholds minimizes the effect of an abrupt power reduction that could result247

in significant decrease in consumers’ convenience and comfort. We consider248

T thresholds for the total number of PUs in use. Upon the arrival of an249

m-type power demand, if the total number of PUs in use is less than the250

first threshold P0, the demand is accepted with its initial requirements pm251

and operational time d−1m . If the total number of PUs in use exceeds P0,252

then the CLC sends a message to all consumers, which prompts that the253

power requests of a specific appliance set should be compressed, so that254

the total power consumption is reduced. Specifically, the message informs255

that if consumers wish to contribute to the demand compression mode, then256

a request for type-m appliance will be accepted with a compressed power257

demand pm,1 < pm and an extended operational time d−1m,1 > d−1m , m =258

1, . . . ,M . Correspondingly, when the total number j of PUs in use is Pt−1 ≤259

j < Pt (t = 1, . . . , T ), consumers that agree to participate in the program260

are informed that a request for a type-m appliance will be accepted with a261

compressed power demand pm,t and an extended operational time d−1m,t, with262

pm > pm,1 > . . . > pm,T and d−1m < d−1m,1 < . . . < d−1m,T . It should be noted263

that for the reduction of the energy consumption at peak demand hours, the264

product (pm,t × d−1m,t) should be gradually reduced with the increase of the265

power consumption, so that (pm,t−1 × d−1m,t−1) > (pm,t × d−1m,t).266
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The message sent by the CLC refers only to appliances that are able to267

reduce their power demands and at the same time extend their operation268

times, e.g. water heaters or air conditioners. Furthermore, the message also269

contains information for the incentives provided to consumers in order to270

accept the power request compression (e.g. lower electricity rates for con-271

sumers that agree to contribute to the program). These incentives should272

be adjusted based on the total power consumption, so that more consumers273

would be motivated to participate in the program when the total power con-274

sumption is high; e.g. by considering a price function that is a decreasing275

function of the current power consumption. Based on the consumers’ prefer-276

ences, the ECC sends a new message to the CLC that contains the response277

of the consumer on the acceptance or the rejection of the program, while then278

consumers that agree to participate in the scheduling program adjust the ap-279

pliance’s operation either manually or automatically through a home energy280

management system [30]. We consider that the probability that consumers281

will agree to compress their demands for type-m appliances when the total282

power consumption is Pt−1 ≤ j < Pt, is denoted by sm,t, while the probabil-283

ity that the consumers will continue to use their appliances with their initial284

power demands is denoted as 1−sm,t. The assumption of variable acceptance285

probabilities sm,t is used in order to take into account that consumers may286

react differently to the scheduling messages that contain different pricing sig-287

nals, depending on the current power consumption. It should be noted that288

power compression is only activated when the power consumption exceeds the289

first threshold P0, while it is deactivated when the power consumption drops290

below P0. In contrast, appliances that are not able to compress their power291
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demands (e.g. home entertaining sets or computers) continue to require pm292

PUs even if the total number of PUs in use exceeds the first threshold P0.293

The sequence of messages exchanged between the ECC and the CLC are294

illustrated in Fig. 3, while the procedure that takes place at the CLC upon295

the arrival of a power demand for this scenario is depicted in Fig. 4.296

The consideration of the acceptance probabilities sm,t affects the power297

requests’ arrival rate. Specifically, since a percentage of consumers agree to298

compress their demands, two groups of the same appliance type should be299

considered: the first group will operate with compressed power demands,300

while the second group will continue to operate under their nominal power301

demands. To this end, the following analysis considers 2Ṁ types of appli-302

ances; the first group comprises of appliances that agree to participate in303

the program, together with half of appliances that are not able to compress304

their demands, while the second group consists of appliances that refuse to305

compress their demands, together with the other half of appliances that are306

unable to compress their demands. Based on these considerations, the power307

requests’ arrival rate Rm′(j) of the m′-th appliance’s type (m′ ∈ 2Ṁ) is308

denoted as:309

Rm′(j) =



rm
2

if γm′ = 0,m′ ∈ 2M, j ∈ P
rm
2

if γm′ = 1, m′ ∈ 2M, j ≤ P0

rmsm′,t if γm′ = 1, m′ ≤M, Pt−1 ≤ j − pm′,t < Pt

rm(1− sm′,t) if γm′ = 1, m′ > M, Pt−1 ≤ j − pm′,t < Pt
(3)

where γm′ denotes the ability of the appliances to compress their demands310

(γm′ = 0 for appliances that are unable to compress their demands, while311
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γm′ = 1 for appliances that are able to participate in the program) and rm is312

the power requests’ arrival rate of the original m (m = 1, . . . ,M) appliances’313

type. Therefore, for γm′ = 0 the arrival rate is rm/2, since half of these314

appliances belong to the first group (m′ ≤ 2M) and the other half belongs315

to the second appliances’ group (m′ > 2M). The latter rule is also valid for316

appliances that are able to compress their demands (γm′ = 1) and the current317

power consumption is below the first threshold (j ≤ P0), where no scheduling318

occurs. However, when the current power consumption is Pt−1 ≤ j < Pt, a319

sm′,t percentage of consumers will agree to compress their demands, since320

they belong to the first appliances’ group (m′ ≤ 2M), while a 1 − sm′,t321

percentage that belong to the second appliances’ group (m′ > 2M) will322

refuse to participate in the program. It should also be noted that due to the323

consideration of the two appliances’ groups, the probabilities sm′,t are defined324

so that sm′,t = sm′+M,t = sm,t, for m′ ≤M .325

The calculation of the probabilities distribution q(j) of the PUs in use is326

based on the following recursive formula:327

jq(j) =
∑2M

m′=1Rm′(j)d−1m′pm′bm′(j)q(j − pm′)+∑2M
m′=1

∑T
t=1Rm′(j)d−1m′,tpm′,tbm′,t(j)q(j − pm′,t)

(4)

328

where bm′(j)=



1 (if 1≤j−pm′≤P0 and γm′ = 1)

or (if 1 ≤ j ≤ P and γm′ = 0)

or (if 1 ≤ j ≤ P and γm′ = 1 and m′ > M)

0 otherwise

(5)
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329

and bm′,t(j) =

 1 if Pt−1 < j ≤ Pt and γm′ = 1 and m′ ≤M

0 otherwise
(6)

The function bm′ activates the recursive formula when a type-m′ appliance330

is capable of reducing its power demands, while the function bm′,t is used331

in order to include the compressed power demands in the calculation of the332

distribution q(j). The parameters pm′ , pm′,t and d−1m′ , are defined based on333

the corresponding values of the parameters for the original appliances’ set334

(m ∈ M), so that pm′ = pm′+M = pm for m′ ≤ M , pm′,t = pm,t for m′ ≤ M ,335

pm′,t = pm for m′ > M (since power demands from the second appliances’336

group are not compressed), while d−1m′,t = d−1m,t for m′ ∈M and d−1m′,t = d−1m for337

m′ > M .338

The proof of Eq. (4) is provided in Appendix A, where initially a single339

threshold is considered and a corresponding recursive formula is derived. This340

formula is then extended in order to cover the case of multiple thresholds.341

For the appliances that are not able to compress their power demands,342

the outage probability Bm′ that the total power consumption will exceed P343

upon the arrival of a power demand for pm PUs can be calculated by using344

Eq. (2), while the outage probability Bm′,t for requests from appliances that345

compress their power demands is given by:346

Bm′,t =
∑P

j=P−pm′,t+1
(q(j)/Q) (7)

The computation of the minimum value of P so that the outage probabil-347

ity will not exceed a predefined maximum value e is realized by considering348

both Bm and the set of Bm′,t. A method for solving the set of equations Eq.349
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(3) - Eq. (7) is presented in Fig. 4. Furthermore, the proposed analytical350

model can be used in order to determine the number T of power thresholds351

and the value Pt of each threshold that achieves an optimal peak demand352

reduction. This optimization procedure can be realized through an iterative353

method, where in each step the peak demand is calculated by using the al-354

gorithm presented in Fig. 4 for a given set of (T , Pt), and at the end of the355

iterations the optimal value set that achieves the minimum peak demand is356

derived. It should be noted that if a single threshold is considered and P0=P ,357

then the CDS coincides with the default scenario.358

3.2. The Delay Request Scenario359

The Delay Request Scenario (DRS) uses the same set of thresholds as in360

the case of the CDS. Under the DRS, power requests are delayed in one of361

M buffers (one for each type of appliance) that are installed in the CLC.362

After the delay in the buffer, the power request immediately tries to access363

the system. In this way, when the total power consumption exceeds a power364

threshold, power demands are not accepted for a specific time period (since365

new power requests are delayed in the buffer) and therefore the total power366

consumption is not increased. Furthermore, during this time period a number367

of already accepted requests are terminated (since a number of appliances368

terminate their operation), and therefore the total power consumption is369

reduced. The power request delay also causes the reduction of the final370

arrival rate of requests, due to the increase of the inter-arrival time as a371

result of the delay in the buffer, and consequently the probability to reach372

high-power consumption states is also reduced. For the activation of each373

appliance a number of messages are exchanged between the ECC and the374
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CLC, in a way similar to the one that was described for the CDS case (Fig.375

3). In addition, the procedure that takes place at the CLC upon the arrival376

of a power demand for the DRS is illustrated in Fig. 5.377

As in the case of CDS, the analysis for the derivation of the peak demand378

for the case of DRS also considers that a percentage sm,t of consumers will379

agree to postpone their demands, when the current power consumption is380

Pt−1 ≤ j < Pt, while (1− sm,t)% of the consumers will refuse to participate381

in the program. Specifically, the delay that a power demand of the m-th382

appliances’ type has to suffer is denoted as 1/λm,t, m = 1, . . . ,M , for Pt−1 ≤383

j < Pt. The values of the parameters 1/λm,t are defined by considering384

the capability of the appliance to tolerate a delay for its operation. For385

example, lighting during evening hours cannot endure operation delays, while386

the operation of devices such as the washing machine could be postponed.387

The calculation of the arrival rate of the power requests, when the number388

of PUs exceeds the first threshold P0, is based on the inter-arrival time of the389

requests after their postponement at the buffer, and also on the probability390

sm,1 that the consumer will agree to participate the program. This time is391

equal to the inter-arrival time of requests 1/rm that arrive at the buffer plus392

the time 1/λm,1 that these requests detain at the buffers; therefore, for the393

general case where the current power consumption is Pt−1 ≤ j < Pt, the394

final arrival rate is given by the inverse of the aforementioned summation,395

multiplied by the percentage sm,t of consumers that agree to postpone their396

power requests. However, the arrival rate of power requests from consumers397

that refuse to postpone their demands is only a function of the percentage398

1 − sm,t, while the power requests’ arrival rate from appliances that cannot399
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endure delays is defined in the same way as in the case of CDS:400

Rm′(j) =


rm
2

if γm′ = 0, m′ ∈ 2M

sm′,t
rmλm′,t
rm+λm′,t

if γm′ = 1, Pt−1 ≤ j − pm′ < Pt, m
′ ≤M

(1− sm′,t)rm if γm′ = 1, Pt−1 ≤ j − pm′ < Pt, m
′ > M

(8)

where λm′ = λm and sm′,t = sm′+M,t = sm,t, for m′ ≤M .401

The distribution q(j), for j = 1, ..., P , of the PUs in use is given by the402

following recursive formula:403

jq (j) =
∑2M

m′=1Rm′(j)d−1m′ cm′,0(j)pm′q(j − pm′)+∑2M
m′=1

∑T
t′=1Rm′(j)d−1m′ cm′,t(j)pm′q(j − pm′),

(9)

where cm′,0(j) =



1 (if j−pm′≤P0 and γm′ = 1)

or (if 1≤j≤P and (γm′ = 0)

or (if 1≤j≤P and (γm′ = 1) and (m′ > M)

0 otherwise

(10)

404

cm′,t(j) =

 1 if (Pt−1 ≤ j−pm′ < Pt) and (γm′ =1) and (m′<= M)

0 otherwise
(11)

The proof of Eq. (9) is presented in Appendix B. Furthermore, similarly405

to the function bm′(j) of the CDS, the function cm′,1(j) is used in order406

to control the recursive formula of Eq. (9), in order to include the types of407

appliances that are able to endure delays, while the function cm′,2(j) activates408

the formula of Eq. (9) for the same types of appliances, when the current409
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power consumption j exceeds the threshold P0.410

The probability that the total power consumption will exceed P upon411

the arrival of a power demand for pm PUs can be calculated by Eq. (2). A412

method for solving the set of equations Eq. (8)-Eq. (11) for the calculation413

of the P minimum value is presented in Fig. 5. As in the case of CDS, the414

proposed analytical model for the DRS can be used in order to determine415

the number T of thresholds and the value Pt of each threshold that achieves416

optimal peak demand reduction. In addition, if the delay 1/λm is set to zero417

for all M types of appliances, the DRS coincides with the default scenario.418

3.3. The Postponement Request Scenario419

The Postponement Request Scenario (PRS) is a special case of the DRS,420

since both of these scenarios assume that power requests are delayed, in421

order to reduce the peak demand. However, in the case of PRS, only two422

thresholds are considered: Above the threshold P2 the user is prompted that423

the appliance operation should be delayed, until the total number of PUs in424

use is dropped below a second threshold P1, with P1 ≤ P2 (Fig. 3). The425

probability that the user will agree is denoted as sm and the probability of426

refusal is 1-sm. This procedure should be based on a dynamic pricing model,427

in order to provide the incentive to the end-user to agree on postponing the428

power request. Furthermore, the consideration of the different thresholds P2429

and P1 for the scheduling activation and the deactivation, respectively, affect430

the power-request arrival rate from only task scheduling appliances, while the431

arrival rate of power requests from appliances that cannot endure delays is not432

a function of the current power consumption; for the latter appliances’ types433

we consider that sm = 0. Based on the PRS aforementioned assumptions,434
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the requests arrival rate for pm PUs is a function of the total number of PUs435

in use:436

rm(j)=


rm,1(j)=rm + smrm if j ≤ P1

rm,2(j) = rm if P1 < j ≤ P2

rm,3(j) = (1− sm)rm if j > P2

(12)

The CLC implements the PRS by checking the conditions of 12, as it is437

depicted in Fig. 6. The distribution q(j), for j = 1, ..., P , can be calculated438

by the recursive formula:439

jq(j) =
∑M

m=1

∑3

n=1
rm,nd

−1
m cm,n(j)pmq(j − pm) (13)

440

with cm,1(j) =

 1 if 0 ≤ j ≤ P1 + pm

0 otherwise
(14)

441

cm,2(j) =

 1 if P1 + pm < j ≤ P2 + pm

0 otherwise
(15)

442

cm,3(j) =

 1 if P2 + pm < j ≤ P

0 otherwise
(16)

Proof : see Appendix C.443

As in the cases of the other three scenarios, the functions cm,1(j), cm,2(j)444

and cm,3(j) are used in order to control the recursive formula, based on the445

current power consumption j and the corresponding value of the arrival rate446

function rm(j). Furthermore, the probability that the total power consump-447

tion will exceed P upon the arrival of a power demand for pm PUs can be448

calculated by using Eq. (2). Eqs. (12)-(16) can be solved by using the algo-449
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rithm presented in Fig. 6. It should be noted that if the probability sm is450

set to zero for all M types of appliances, the PRS coincides with the default451

scenario.452

4. Applicability of the proposed scenarios453

The application of the CDS is based on the fact that peak demand re-454

duction is achieved by considering appliances that are able to compress their455

demands. Furthermore, the DRS and PRS are applied to appliances that456

are able to postpone their requests, in order to reduce the peak demand.457

However, maximum demand reduction can be achieved by compressing the458

demands of an appliances’ set, while at the same time, postponing the re-459

quests of a different set of appliances. In general, household appliances can460

be divided into a group of appliances that are able to compress their de-461

mands, another appliance group that can endure request delays and a third462

group that cannot tolerate any demand compression or request delay. This463

categorization can be used in order to utilize the proposed scenarios for the464

derivation of the peak demand, when both power compression and request465

postponement are considered.466

A combined scenario that assumes households equipped with M1 +M2 =467

M types of appliances can be considered in order to achieve maximum peak468

demand reduction. The first appliance set M1 comprises of appliances that469

are able to compress their demands, while the second set M2 comprises of470

appliances that can tolerate request delays, together with appliances that471

cannot endure demand compression or request delays. Alternatively, the472

latter group of appliances can be considered as part of the first appliance473
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set M1. Based on these assumptions, the CDS can be applied to the first474

appliance set M1, while the DRS or the PRS is suitable for the second set M2,475

since both scenarios consider appliances that tolerate delays, together with476

scheduling-inelastic appliances. Therefore, under this combined scenario the477

peak demand can be determined as the sum of the total power consumption,478

which is derived by the CDS equations, plus the total consumption that is479

calculated by using the equations of DRS or PRS. The selection between the480

DRS or PRS should be based on the resulting peak-demand reduction of both481

scenarios, while also on the grid’s communication infrastructure, since DRS482

introduces more overhead mainly due to the multiple threshold consideration,483

which requires continuous communication for the execution of the scheduling484

program.485

The application of the proposed analytical models should also consider486

the specific characteristics of the household appliances. In general, appli-487

ance manufacturers focus on the energy efficiency of their products, while488

little interest is given on the peak demand reduction. In terms of the DRS489

or PRS, most appliances can handle operation delays; it is up to the con-490

sumers’ convenience to decide for the demand-request postponement, in order491

to contribute in the peak demand reduction. However, the shifting demand492

scenario should also consider that a number of appliances may have specific493

restrictions regarding the activation deadline [31]. On the other hand, de-494

mand compression should be applied only to appliances that have an elastic495

load component that results in the decrease of its instantaneous power draw,496

but at the expense of an increased operational time [32]. Such an elastic load497

component can be found in appliances that have heating elements, such as498
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air-conditioners, laundry pairs and electric stoves; in these appliances power499

compression can be achieved by reducing the heating temperature, while in-500

creasing the operational time of the appliance. It should be noted that some501

appliances’ types can either compress their demands or schedule their op-502

eration to an upcoming time-slot. These specific appliances should follow a503

single scenario (either the CDS or one of the DRS or PRS) and the best solu-504

tion can be derived by applying the proposed analytical models and selecting505

the scenario with the lowest peak demand. Furthermore, power requests’ ar-506

rival rates should be carefully defined based on the characteristics of the507

residential area under study (appliance population, typical power consump-508

tion patterns, etc.), while for the appliances’ operation times other factors,509

such as weather conditioners (e.g. for air conditioners or water heaters) or510

time of day (e.g. for electric stoves or lightning) should be considered, in511

order to effectively apply the proposed analytical models.512

It should be noted that the reduction of the peak demand is not the only513

objective of a DR program; these demand management programs should514

also aim for the efficient utilization of energy surplus that is produced by515

renewable energy sources. A typical strategy for the consumption of this516

excess energy is the provision of incentives to consumers to activate their517

appliances during energy surplus periods. The proposed analysis may be518

used for the efficient calculation of the additional number of power requests519

that should be arrived at the CLC, in order to consume this surplus energy.520

More specifically, by using Eq. (1) and Eq. (2) of the default scenario, a521

set of power-requests’ arrival rates can be calculated, for a given value of the522

parameter P , which is the power provided by the renewable energy sources.523
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This set denotes the additional power requests that the system can handle524

due to the energy surplus and can be used by the power utility in order to525

define the number of consumers that should be informed to increase their526

power consumption. The latter procedure can be realized through messages527

that are sent to the consumers, in order to inform them for any kind of528

incentives (based on the pricing policy of the utility), that will motivate529

them to activate their appliances. However, by using the aforementioned530

method, various arrival rate sets can be derived, for the same value of P . It is531

therefore up to the power utility to select the appropriate set, by considering532

other factors, such as the time of day and the customers’ consuming behavior,533

in order to motivate the activation of a specific set of appliances.534

5. Results and Discussion535

In this section we provide analytical and simulation results for the eval-536

uation of the proposed analytical models of the corresponding scheduling537

scenarios. To this end, we consider a residential area where each residence538

has M = 10 major appliances: 1) an electric stove, 2) a laundry pair, 3) a wa-539

ter heater, 4) a dishwasher, 5) a refrigerator, 6) an air conditioner, 7) a home540

office set, 8) an entertainment set 9) lighting and 10) a plug-in hybrid electric541

vehicle (PHEV). The power demands of these appliances are (p1, p2, p3, p4,542

p5, p6, p7, p8, p9, p10) = (20, 15, 40, 10, 6, 25, 5, 7, 4, 100) PUs, with corre-543

sponding operational times (d−11 , d−12 , d−13 , d−14 , d−15 , d−16 , d−17 , d−18 , d−19 , d−110 )544

= (40, 30, 30, 40, 60, 40, 40, 50, 60, 30) minutes. These values are derived545

by considering typical values for appliances’ power demands and operational546

times [32], [33] and by assuming that 1 PU = 100 Watt. We consider that the547
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electric stove, the dishwasher and the PHEV are task scheduling appliances,548

the laundry pair, the water heater and the air-conditioner are energy schedul-549

ing appliances, while the refrigerator, the home office set, the entertainment550

set and lighting are not participating in any scheduling scheme. Based on551

this appliance categorization, we consider two cases: the first case considers552

the combined application of CDS and DRS, and the second case considers553

the utilization of CDS and PRS. In both cases, the energy scheduling ap-554

pliances together with the refrigerator and the home-office set are applied555

to the model of CDS, while the task scheduling devices together with the556

entertainment set and lighting are considered for the DRS or PRS models.557

The evaluation of the accuracy of the proposed analysis is realized through558

the comparison of analytical results with corresponding results from simula-559

tion. To this end, we built an object-oriented simulator by using the C++560

programming language that executes the rules of the scheduling scenarios,561

while it creates events (power requests) based on random numbers. The562

simulator considers a large number of residences (in order to simulate the563

Poisson request arrivals), while each residence is equipped with the afore-564

mentioned set of M = 10 appliances. More precisely, the simulator generates565

3×106 power requests from 2×104 residences, while a stabilization time that566

corresponds to the first 2×105 requests is assumed, in order for the simulator567

to reach the steady state. Simulation results are obtained as mean values of568

8 runs, with 95% confidence interval, while only the mean values are used in569

the following figures, since the reliability ranges are found to be very small570

(therefore 8 runs per result are more than enough to produce efficient mean571

values). In each run the simulator records the current power consumption572
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after the acceptance of each power request and returns the highest value of573

these records as the peak demand; an example of a simulation run for the de-574

fault scenario is illustrated in Fig. 7, where the arrival rate of all appliances575

is assumed to be equal to 0.12 requests per minute. The consideration of a576

large number of power requests in the simulator enables the frequent activa-577

tion and deactivation of the scheduling mechanism of each scenario, which578

is important for the derivation of accurate simulation results. It should be579

noted that the presented analytical results, which are derived by solving the580

proposed analytical models, are obtained in a less than 2 s. in average, which581

is a significantly shorter time compared to 14 min. in average that is required582

in order to obtain the simulation results. This fact proves the necessity of583

the proposed analytical models for the efficient execution of a load scheduling584

scheme, especially when near real-time scheduling decisions are required.585

In Fig. 8 we evaluate the performance of CDS and DRS by comparing586

analytical and simulation results for maximum requested number of PUs,587

versus the demand-request arrival rate. In Fig. 8 we also present analytical588

and simulation results of the baseline policy that considers all 10 types of589

appliances, in order to show the achieved peak demand reduction under the590

combined scenario of CDS and DRS. The analytical results are obtained by591

solving the proposed equations (Eq. (1) - Eq. (2) for the default scenario,592

Eq. (3) - Eq.(7) for CDS, Eq. (2), Eq. (8) - Eq. (11) for DRS, and the593

iterative methods presented in Fig. 4 and Fig. 5 for CDS and DRS results,594

respectively), while simulation results are obtained from the simulator. Two595

thresholds are considered, which are set to be 60% and 75% of P , respec-596

tively, in order to provide a fair comparison between CDS, DRS and PRS,597
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since the latter scenario considers two thresholds. When the current power598

consumption exceeds the first threshold, consumers are prompted to reduce599

their power demands by 15% and at the same time expand their operational600

time by 15%, while these values are both changed to 25%, when power con-601

sumption exceeds the second threshold. For the DRS case, power requests602

are delayed for 4 and 8 minutes, when the power consumption exceeds the603

first and the second threshold, respectively. For presentation purposes, we604

assume that the arrival rate is the same for all appliances (indicated in the605

x-axis of Fig. 8); evidently, the proposed analytical model can be applied606

to any arrival-rate set, since the power-requests arrival rates are used in the607

proposed analytical models in a parametric way. We also assume that the608

percentage of consumers that agree to participate in the program when the609

power consumption surpasses the first threshold is 60% for all appliances,610

whereas for the second threshold this percentage is increased to 70% for all611

appliances (due to more encouraging incentives offered to consumers). The612

values of P are calculated so that the probability that the total power con-613

sumption will not exceed P is below e = 10−5. The comparison of analytical614

and simulation results of Fig. 8 reveals that the accuracy of both CDS and615

DRS analytical models is very satisfactory, since the maximum difference be-616

tween the analysis and simulation is 1.8%. As it was anticipated, the increase617

of the power-requests arrival rate result in the increase of the peak demand,618

since high arrival-rate values correspond to larger number of activated ap-619

pliances. Furthermore, comparing the results of the default scenario and the620

combined scenario of CDS and DRS, we notice that there is an average re-621

duction of 20.7% of the peak demand. It should be also pointed out that622
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the analytical results of Fig. 8 are exactly the same as the ones obtained623

by considering that 1 PU = 0.01 W, without a significant increase of the624

computation time, due to the use of recursive formulas.625

The evaluation of the PRS is realized by considering the same assump-626

tions as in the DRS case, regarding the two thresholds; however, since PRS627

considers a single percentage of consumers that agree to participate in the628

program, this value is set to 70% for all appliances, as in the case of DRS,629

when the second threshold (set to 75% of the maximum power consumption)630

is exceeded. In Fig. 9 we present analytical and simulation results for the631

combined CDS-PRS scenario, together with results from the baseline policy.632

Fig. 9 also includes analytical and simulation results for the CDS and PRS633

scenarios, in order to highlight the contribution of the two scenarios to the634

peak demand. The analytical results for the PRS are obtained by solving635

Eq. (2) and Eq. (12) - Eq. (16) through the iterative method presented636

in Fig. 6. As the results of Fig. 9 reveal, the accuracy of the proposed637

analytical models is very satisfactory, since the maximum difference between638

analytical and simulation results is 2.1%. Furthermore, the comparison of639

the results for the baseline policy and the combined CDS-PRS shows that640

the average peak demand reduction is 21.8%, which is higher than the cor-641

responding value under the combined CDS-DRS scenario. In addition, by642

comparing the DRS results from Fig. 8 and the PRS results from Fig. 9, we643

notice that PRS performs better in terms of peak demand reduction, since644

it results in 14.7% reduction in the power consumption, compared to 12.9%645

reduction achieved by the application of DRS. What is interesting is that646

the performance of PRS in terms of peak demand reduction is increased for647
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high arrival-rate values, since more power requests arrive at the ECC and648

therefore more requests are postponed and for longer periods. Therefore,649

PRS can be applied to task scheduling appliances of large residential areas,650

since PRS can effectively reduce the peak demand when a significant num-651

ber of power requests are generated, compared to DRS. On the other hand,652

DRS can offer a gradual increase of the power-requests’ delay, so that con-653

sumers’ convenience and comfort are not highly affected. For example, if 6654

thresholds were assumed instead of 2 for the DRS case, a gradual increase655

of the requests’ delay can be applied, instead of an unknown delay as in the656

PRS case (since requests are postponed until power consumption drops below657

the thresholf P2). However, in the latter example, by using the assumption658

of 60% consumers’ participation, the DRS model results in 2472 PUs peak659

demand, instead of 2186 PUs under the PRS.660

A significant parameter of the proposed scenarios is the consumers’ per-661

centage that agree to participate in the scheduling program. To this end, Fig.662

10 presents analytical results for the peak demand under the CDS, DRS and663

PRS, versus the consumers’ percentage that agree to compress their demands664

or postpone their requests. To provide a fair comparison between the three665

scenarios, we consider a single power threshold for CDS and DRS (set to 60%666

of maximum power consumption), so that a single value of the percentage667

sm,1 is considered for CDS and DRS, as in the case of PRS. Furthermore, all668

M = 10 appliances are applied to the scenarios, while CDS, DRS or PRS669

are applied to both task- and energy-scheduling appliances. For any case,670

the power-requests’ arrival rate is set to 2 requests/minute for all appliances,671

while the values for the other parameters are the same as the ones used for672
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the derivation of the results of Fig. 8 and Fig. 9. As it was anticipated,673

higher participation percentages results in lower peak demand values for all674

scenarios, since more consumers compress their demands or postpone their675

power requests. The best performance in terms of peak demand reduction is676

achieved by the CDS, while it is followed by PRS and DRS. This outcome is677

a result of the selection of the values of the parameters of each scenario. For678

example, CDS and DRS have the same performance, if the power request de-679

lay for DRS is increased from 8 to 9.4 minutes. Therefore, for task scheduling680

purposes, PRS achieves lower peak demand values, compared to DRS. How-681

ever, under PRS consumers are not aware of the duration of postponement682

of their appliances’ operation. Simulation results indicate that the average683

postponement is 11.7 minutes under PRS, which is significantly higher than684

8 minutes that were applied to appliances under DRS.685

The main advantage of CDS and DRS is the utilization of multiple power686

thresholds that target the minimization of the demand scheduling effect on687

consumers’ comfort. Under CDS, the number of thresholds that are applied688

to the scheduling program does not affect the peak demand value. For exam-689

ple, if two thresholds are considered (60% and 75% of the maximum power690

consumption), for consumers’ participation percentage of 60%, the resulted691

peak demand is 2604 PUs; this same value is determined by the application692

of 5 thresholds (60%, 64%, 68%, 72% and 75% of the maximum power con-693

sumption). The same conclusion, in terms of the effect of the number of694

thresholds on the peak demand, is derived for the case of DRS. Therefore,695

both CDS and DRS can be applied by using a high number of thresholds, in696

order to provide a gradual application of the scheduling program. However, a697
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high number of power thresholds requires real-time information for the total698

power consumption and its relation to the power thresholds (Pt−1 ≤ j < Pt),699

which is the decision parameter for the accurate selection of the scheduling700

parameters (power compression under CDS, or request delay under DRS);701

this requirement can be satisfied through an efficient communication infras-702

tructure that guarantees minimum transmission delays and packet losses.703

On the other hand, PRS utilizes only two power thresholds. The selection of704

these two thresholds is crucial, since they not only affect the amount of peak705

demand reduction, but also the duration of delay that power requests suffer.706

To this end, in Fig. 11 we provide analytical results for the peak demand707

versus the power-requests’ arrival rate, for various values of the scheduling708

de-activation threshold P2, while the participation percentage is set to 0.6709

for all appliances. The scheduling activation threshold P1 is kept constant710

and equal to 75% of the maximum power consumption, in order to study711

the effect of the relation between P1 and P2 to the peak demand reduction.712

The study of Fig. 11 reveals that lower values of P2 results in lower peak713

demand values, since the time period until the current power consumption714

drops below P2 is higher than the corresponding time period for high val-715

ues of P2 and therefore more power requests are delayed; however, when the716

threshold P2 is low, longer request delays arise. Therefore, the selection of717

the two power thresholds of PRS should not only target the minimization of718

the peak demand, but also consider the consumers’ tolerance on long power719

requests’ delays.720

The main advantage of the proposed analytical models is their pattern ag-721

nostic nature, since the various features of the system (power-request arrival722
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rates, appliances operational times, number of appliances, number of power723

thresholds) are considered in a parametric way; therefore the proposed anal-724

ysis may be applied to a variety of cases, in order to efficiently calculate the725

peak demand. To this end, we considered a more realistic evaluation scenario,726

which takes into account the typical usage profile of residential appliances727

([34]), based on demand patterns from the island La Palma in Spain during728

the first day of May 2014 [35], for three different power consumption periods:729

morning (8:00 - 10:00), afternoon (14:00 - 16:00) and evening (20:00 - 22:00).730

The arrival rates of power requests were calculated by considering the load731

demand patterns from [35] and the population of residential users in the is-732

land La Palma. Furthermore, we consider that the appliances’ types that are733

applied to each scheduling scenario, the percentage of consumers that agree734

to participate in the program, as well as the power thresholds are the same735

as ones that were used for the derivation of the results presented in Fig. 8736

and Fig. 9. In Table 2 we present analytical and simulation results for the737

baseline scenario, the CDS together with DRS, and the CDS together with738

PRS, for the three power consumption periods. The comparison of analytical739

to corresponding simulation results of Table 2 reveals the high accuracy of740

the proposed analysis. Finally, we compare the proposed analytical models741

with corresponding models of [24] and [22]. The models presented in [24]742

aim at reducing the peak demand by considering different appliances per743

consumer, with diverse power requirements. Since the consumers’ partici-744

pation percentage is not considered in the models in [24], a comparison can745

only be achieved by considering that in the proposed scenarios all appliances746

either compress their demands or postpone their requests, when the power747
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consumption exceeds predefined power thresholds. Under this assumption,748

the proposed models and the corresponding models from [24] produce the749

same peak demand results. However, the computational complexity of the750

task scheduling scheme in [24] is significant. Precisely, the the computational751

time for the derivation of the results of the task scheduling model in [24] is752

significantly higher (26 minutes in average, using a quad core 2.53 GHz CPU753

and 4GB RAM), compared to the computational time for the derivation of754

results from DRS (less than 2 seconds). Therefore, the proposed analytical755

models can be applied to DR programs that require near real-time decisions756

that could be made based on fast peak-demand calculations. On the other757

hand, the power demand control policies that are presented in [22] assume758

that the controller activates immediately or postpones power requests, based759

on the current power consumption, while the power requirement of each760

power request equals to 1 power unit. To this end, for the comparison of the761

proposed scenarios with the control policies of [22], we consider the following762

equivalence, since the analysis in [22] considers unit power requests:763

(α/µ) =
∑M

m=1
pm(rm/dm) (17)

Eq. (17) assumes that the total ratio of the arrival rate to the operation764

time of M appliances is equivalent to the ratio of the arrival rate α to the765

service time µ of [22]. The two power control policies in [22] named Thresh-766

old Postponement (TP) and Controlled Release (CR) consider that power767

requests are postponed; therefore we compare the performance of these poli-768

cies only with the proposed DRS and PRS. For a fair comparison, we set the769

TP threshold Pb of [22] as Pb=P0 for the DRS, while for the PRS we set770
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Pb=P1=P2. Furthermore, the deadline of the power requests for the TP and771

CR policies equals to the delay 1/λm that requests suffer, under DRS. The772

consumers’ participation percentages are set to 1 for all appliances in the773

proposed models, since the control policies of [22] consider that all requests774

are postponed. The values of all other parameters are the same as the ones775

used in the application examples for the evaluation of the proposed scenar-776

ios. In Fig. 12 we present analytical results for the total requested number777

of PUs versus the power requests’ arrival rate, under TP and CR policies778

of [22] and the proposed DRS and PRS. The study of Fig. 12 reveals the779

superiority of the proposed scenarios over the policies of [22]. Furthermore,780

in this evaluation example PRS performs worse than DRS in terms or peak781

demand reduction; this outcome is inconsistent with the results of Fig. 10782

(where PRS outperforms DRS), since the assumption of P1 = P2 results in783

5.6 min. average power-request delay values, which is lower than the 8 min.784

average delay of power requests under DRS. Evidently, the overestimations785

of the demand policies of [22] proves the necessity of implementing the pro-786

posed scenarios that consider multiple types of requests with diverse power787

requirements, which also take into account that a percentage of consumers788

may refuse to participate in the scheduling program, while they are also based789

on simple recursive formulas.790

6. Conclusion791

We present and analyze four power demand control scenarios in a smart792

grid environment. All scenarios assume that each residence is equipped with793

a specific number of appliances, each with different power demands and op-794
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erational times, and take into account the percentage of consumers that wish795

to participate in the program. For each scenario we propose a recursive796

formula for the determination of the distribution of PUs in use, which is797

used to calculate the total power consumption in the residential area. The798

accuracy of the proposed models is quite satisfactory, as it is verified by sim-799

ulations. The evaluation of the proposed scenarios indicate that a significant800

peak demand reduction can be achieved by scheduling the appliances’ op-801

eration, while this reduction is highly affected by the choice of the values802

for the system’s parameters. Furthermore, the proposed analytical models803

generate peak demand results in a small computational time, compared to804

simulations and other analytical models in the literature. In our future work805

we will study the case where each appliance type has a finite number of de-806

vices and may alter its operation between ON and OFF states, while also807

the case where consumers are induced to increase their power consumption,808

when power excess is available, due to the utilization of renewable energy809

sources.810
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Appendix A.814

In order to prove Eq. (4), we consider that the power compression and the815

change of the requests’ arrival rate when the total number of the PUs in use816

exceeds the first power threshold P0 and the subsequent thresholds leads to817
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a non-product form solution. To this end, we firstly study the system model818

and construct the one dimensional Markov chain of the system with the state819

transition diagram of Fig. 13a, where each state j represents the number of820

PUs in use, when j−pm′ ≤ P0. The construction of this state transition821

diagram is inspired by the call-level analysis of a multi-rate communication822

network presented in [36]. In these states, no power compression occurs. The823

local balance equation of the transition diagram of Fig 13a is:824

q(j − pm′)Rm′(j) = q(j)ym′,0(j)dm′ ⇔

q(j − pm′)
Rm′ (j)
dm′

pm′ = q(j)ym′,1(j)pm′

(A.1)

for j − pm′ ≤ P0 and m′ = 1, . . . , 2M . The function ym′,0(j) is the mean825

number of type-m′ appliances in use in the grid that require pm′ PUs, when826

the total number of PUs in use is j > P0 + pm′ .827

We also construct the one dimensional Markov chain of the system with828

the state transition diagram of Fig. 13b, where each state j represents the829

number of PUs in use, when Pt−1 ≤ j−pm′< Pt, for the m’ -th appliance’s830

type. In this case, power compression occurs with parameters pm′,t and d−1m′,t.831

The local balance equation of the state transition diagram of Fig 13b is:832

q(j − pm′,t)Rm′(j) = q(j)ym′,t(j)dm′,t ⇔

q(j − pm′,t)
Rm′,t(j)

dm′,t
pm′,t = q(j)ym′,t(j)pm′,t

(A.2)

The function ym′,t(j) is the mean number of appliances in use that require833

pm′ PUs, when the total number of PUs in use in the residential area is834

Pt−1 ≤ j−pm′<Pt. In both cases, the power-requests’ arrival rate Rm′(j) is835
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given by Eq. (3). By using Eq. (A.1) for all 2M appliances’ types we obtain:836

∑2M

m′=1
q(j − pm′)

Rm′(j)

dm′
pm′ = q(j)

∑2M

m′=1
ym′,0(j)pm′ (A.3)

for j ≤ P0 − pm′ . Similarly, from Eq. (A.2) and for all 2M appliances’ types837

and T thresholds, we obtain:838

∑2M

m′=1

∑T

t=1
q(j−pm′,t)

Rm′(j)

dm′,t
pm′,t=q(j)

∑2M

m′=1

∑T

t=1
ym,t(j)pm′,t (A.4)

The total number j of the PUs in use in any state j ∈ [0,P ] is given by839

the sum of the products of the mean number ym,t(j) of appliances in use by840

the number pm,t (with pm,0 = pm) of the PUs that these appliances demand,841

for all 2M appliances’ types and for all thresholds:842

j=
[∑2M

m′=1
ym′,0(j)pm′ +

∑2M

m′=1

∑T

t=1
ym′,t(j)pm′,t

]
(A.5)

for j = 0, ..., P . Therefore, in order for the summation of the Right Hand843

Side (RHS) of Eq. (A.3) to be equal to j, we have to assume that ym′,0(j) ∼=844

0 for j > P0 − pm′ . Similarly, in order for the summation of RHS of Eq.845

(A.4) to be equal to j, we have to assume that ym′,t(j) ∼= 0 outside the region846

[Pt−1, Pt]. These two assumptions are expressed by Eq. (5) and Eq. (6),847

respectively. By using these two assumptions, Eq. (A.5), and by summing848

up side by side Eq. (A.3) and Eq. (A.4), we obtain Eq. (4).849

38



Appendix B.850

In order to prove Eq. (9), we follow the same procedure as in the case of851

the proof of Eq. (4). Specifically, since in both cases the same threshold set is852

assumed, when the total power consumption j is less than the first threshold853

P0, Eq. (A.3) is also valid for the case of DRS. However, when the total power854

consumption exceeds the first power threshold, power requests are postponed,855

while this delay is a function of the power thresholds Pt. Therefore, for the856

general case where the current power consumption is Pt−1 ≤ j−pm′< Pt,857

the local balance equation of the corresponding Markov chain for type-m′858

appliances is expressed by:859

q(j − pm′)Rm′(j) = q(j)ym′,t(j)dm′ ⇔

q(j − pm′)
Rm′,t(j)

dm′
pm′ = q(j)ym′,t(j)pm′

(B.1)

which is converted to the following expression for all 2M appliances’ types860

and T thresholds:861

∑2M

m′=1

∑T

t=1
q(j−pm′)

Rm′(j)

dm′
pm′ =q(j)

∑2M

m′=1

∑T

t=1
ym,t(j)pm′ (B.2)

Therefore, by following the same procedure as in the case of the proof of862

Eq.(4), we assume that the mean number ym′,0(j) ∼= 0 for j > P0 − pm′ and863

ym′,t(j) ∼= 0 outside the region [Pt−1, Pt]. These assumptions are expressed864

by Eq. (10) and Eq. (11), respectively. By using these assumptions and by865

summing up side by side Eq. (A.3) and Eq. (B.2), we derive Eq. (9).866
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Appendix C.867

In order to prove Eq. (13), we also follow the analysis for the proof of868

Eq. (4) and we define the local balance equations from the equivalent state869

transition diagrams:870

q(j − pm)rm,1 = q(j)ym,1(j)dm ⇔

q(j − pm) rm,1

dm
pm = q(j)ym,1(j)pm

(C.1)

where ym,1(j) is the mean number of appliances that require pm PUs when j871

PUs are in use, for j − pm ≤ P1. Also,872

q(j − pm)rm,2 = q(j)ym,2(j)dm ⇔

q(j − pm) rm,2

dm
pm = q(j)ym,2(j)pm

(C.2)

where ym,2(j) is the mean number of appliances that require pm PUs when873

P1 + pm < j ≤ P2 + pm, and874

q(j − pm)rm,3 = q(j)ym,3(j)dm ⇔

q(j − pm) rm,3

dm
pm = q(j)ym,3(j)pm

(C.3)

where ym,3(j) is the mean number of appliances that require pm PUs when j875

PUs are in use in the grid, for P2 + pm < j ≤ P . By using Eqs. (C.1), (C.2)876
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and (C.3) and by summing up for all M power levels, we obtain:877

M∑
m=1

q(j−pm) rm,1

dm
pm=q(j)

M∑
m=1

ym,1(j)pm, j ∈ [0,P1−pm]

M∑
m=1

q(j − pm) rm,2

dm
pm = q(j)

M∑
m=1

ym,2(j)pm, j−pm∈ [P1,P2]

M∑
m=1

q(j−pm) rm,3

dm
pm=q(j)

M∑
m=1

ym,3(j)pm, j ∈ [P2−pm, P ]

(C.4)

As in the cases of the CDS and DRS, we need to assume that ym,1(j)∼=0878

for j >P1−pm, ym,2(j)∼= 0 outside the region P1−pm<j≤P2−pm and that879

ym,3(j)∼=0 for j<P2−pm. By using the three assumptions and by summing880

up side by side the three equations of Eq. (C.4) we derive Eq. (13), while881

the aforesaid assumptions are expressed by Eq. (14)-(16).882
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