Journal article Open Access

Towards online reinforced learning of assembly sequence planning with interactive guidance systems for industry 4.0 adaptive manufacturing

de Giorgio, Andrea; Maffei, Antonio; Onori, Mauro; Wang, Lihui


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/38ff3edb-4e0f-486d-b93b-5b8cfe3dda71/de_Giorgio_et_al_2021.pdf"
      }, 
      "checksum": "md5:0be5bec39acfb392636fa56246853bae", 
      "bucket": "38ff3edb-4e0f-486d-b93b-5b8cfe3dda71", 
      "key": "de_Giorgio_et_al_2021.pdf", 
      "type": "pdf", 
      "size": 12880176
    }
  ], 
  "owners": [
    146569
  ], 
  "doi": "10.1016/j.jmsy.2021.05.001", 
  "stats": {
    "version_unique_downloads": 5.0, 
    "unique_views": 6.0, 
    "views": 7.0, 
    "version_views": 7.0, 
    "unique_downloads": 5.0, 
    "version_unique_views": 6.0, 
    "volume": 77281056.0, 
    "version_downloads": 6.0, 
    "downloads": 6.0, 
    "version_volume": 77281056.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1016/j.jmsy.2021.05.001", 
    "latest_html": "https://zenodo.org/record/4753542", 
    "bucket": "https://zenodo.org/api/files/38ff3edb-4e0f-486d-b93b-5b8cfe3dda71", 
    "badge": "https://zenodo.org/badge/doi/10.1016/j.jmsy.2021.05.001.svg", 
    "html": "https://zenodo.org/record/4753542", 
    "latest": "https://zenodo.org/api/records/4753542"
  }, 
  "created": "2021-05-12T19:09:43.605341+00:00", 
  "updated": "2021-05-13T01:48:11.282758+00:00", 
  "conceptrecid": "4753541", 
  "revision": 2, 
  "id": 4753542, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1016/j.jmsy.2021.05.001", 
    "description": "<p>Literature shows that reinforcement learning (RL) and the well-known optimization algorithms derived from it have been applied to assembly sequence planning (ASP); however, the way this is done, as an offline process, ends up generating optimization methods that are not exploiting the full potential of RL. Today&rsquo;s assembly lines need to be adaptive to changes, resilient to errors and attentive to the operators&rsquo; skills and needs. If all of these aspects need to evolve towards a new paradigm, called Industry 4.0, the way RL is applied to ASP needs to change as well: the RL phase has to be part of the assembly execution phase and be optimized with time and several repetitions of the process. This article presents an agile exploratory experiment in ASP to prove the effectiveness of&nbsp;<a href=\"https://www.sciencedirect.com/topics/engineering/reinforcement-learning-technique\">RL techniques</a>&nbsp;to execute ASP as an adaptive, online and experience-driven optimization process, directly at assembly time. The human-assembly interaction is modelled through the input-outputs of an assembly guidance system built as an assembly digital twin. Experimental assemblies are executed without pre-established assembly sequence plans and adapted to the operators&rsquo; needs. The experiments show that precedence and transition matrices for an assembly can be generated from the statistical knowledge of several different assembly executions. When the frequency of a given&nbsp;<a href=\"https://www.sciencedirect.com/topics/engineering/subassemblies\">subassembly</a>&nbsp;reinforces its importance, statistical results obtained from the experiments prove that online RL applications are not only possible but also effective for learning, teaching, executing and improving assembly tasks at the same time. This article paves the way towards the application of online RL algorithms to ASP.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Towards online reinforced learning of assembly sequence planning with interactive guidance systems for industry 4.0 adaptive manufacturing", 
    "journal": {
      "volume": "60", 
      "pages": "22-34", 
      "title": "Journal of Manufacturing Systems"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4753541"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "4753542"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "stockholmai"
      }
    ], 
    "publication_date": "2021-05-11", 
    "creators": [
      {
        "orcid": "0000-0001-6064-5634", 
        "affiliation": "KTH Royal Institute of Technology", 
        "name": "de Giorgio, Andrea"
      }, 
      {
        "orcid": "0000-0002-0723-1712", 
        "affiliation": "KTH Royal Institute of Technology", 
        "name": "Maffei, Antonio"
      }, 
      {
        "orcid": "0000-0002-0006-283X", 
        "affiliation": "KTH Royal Institute of Technology", 
        "name": "Onori, Mauro"
      }, 
      {
        "orcid": "0000-0001-8679-8049", 
        "affiliation": "KTH Royal Institute of Technology", 
        "name": "Wang, Lihui"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
7
6
views
downloads
Views 7
Downloads 6
Data volume 77.3 MB
Unique views 6
Unique downloads 5

Share

Cite as