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Centrale de Lyon, Université de Lyon, Ecully Cedex, France; dLMD-IPSL-CNRS, Ecole Normale

Supérieure, Paris Cedex 5, France

(Received 30 November 2011; final version received 28 June 2012)

The helical properties of five prototypical homogeneous turbulent flows are investigated:
statistically steady forced isotropic turbulence, decaying isotropic turbulence, decaying
rotating turbulence, growing sheared turbulence, and growing rotating sheared turbu-
lence with a rotation ratio f/S = +0.5. The five turbulent flows were originally studied
using direct numerical simulations, and well-developed flow fields are chosen for this
analysis. For comparison, a solenoidal uncorrelated Gaussian random field is included
in the analysis as a sixth case. An orthogonal wavelet decomposition is used to study the
scale-dependent properties of the cases. It is found that flows with growing turbulent
kinetic energy and turbulent motion at large scales show a maximum in the relative
kinetic helicity probability distribution functions (PDFs) at zero, corresponding to a
trend to local two-dimensionalization of the flow with vorticity and velocity tending to
be perpendicular. Flows with decaying turbulent kinetic energy and turbulent motion at
small scales, however, show maxima of the relative kinetic helicity PDFs at plus and
minus one, indicating a preference for helical motion with a trend to alignment or anti-
alignment of vorticity and velocity. The PDFs of relative super-helicity always assume
maxima at plus and minus one for all flows. The helical properties of statistically steady
forced isotropic turbulence follow those of flows with decaying turbulent kinetic energy
and a small asymmetry in the relative helicity PDFs is observed. Joint PDFs of relative
kinetic helicity and relative super-helicity show that the quantities tend to have the same
sign for all flows, including the random field, indicating that super-helicity dissipates
kinetic helicity.

Keywords: helicity; homogeneous isotropic and anisotropic turbulence; scale-
dependent statistics; direct numerical simulation

1. Introduction

The helicity of a solenoidal vector field is a scalar valued signed quantity defined by
the scalar product of a vector with the inverse of its curl, i.e., the Biot–Savart integral.
For example, the kinetic helicity is defined as Hu = u · ω, where u is the velocity and
ω = ∇ × u is the vorticity. The mean kinetic helicity, defined as 〈Hu〉 = ∫

Hud
3x, was

introduced to study turbulence [1]. It was shown to provide a measure for the linkage of
vortex lines and it is conserved in the inviscid limit of the Navier–Stokes equations [2–4].
Furthermore, helicity allows to quantify the effects that are due to a lack of reflectional
symmetry or chirality. Geometrical and topological effects involving helicity, encountered
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in numerous turbulent flows with a wide spectrum of applications ranging from astro-, geo-,
and plasma-physics to classical fluid- and aero-dynamics, can thus be characterized. For a
review on helicity, we refer to Moffatt and Tsinober [5].

Helical structures, corresponding to swirling flow, are present in a variety of turbulent
flows. In electrically conducting fluids, helical structures are responsible for the alpha effect
which amplifies the magnetic field by the so-called dynamo action [6–8]. In the atmosphere,
tornadoes and hurricanes are characterized by strong swirling motion. Helicity plots are used
in meteorology to identify such strong storms and to forecast their genesis [9,10]. Helicity
is necessary to maintain strong localized atmospheric vortical structures [11]. Magnetic
helicity plays a key role for the magnetic confinement of the plasma in thermonuclear
fusion devices, such as tokamaks. Swirling motion, e.g., streamwise vortices in boundary
layers, leading and trailing edge vortices shed from wings, can be frequently observed in
aerodynamics [12].

Normalizing helicity by the norms of the corresponding vectors yields the relative
helicity that corresponds to the cosine of the angle between both vectors. For the relative
kinetic helicity, we thus have hu = Hu/(|u||ω|). Helical structures are characterized by
alignment or anti-alignment of velocity and vorticity vectors, which implies hu = ±1.
Prototypical examples for flows with maximal helicity are Beltrami flows, i.e., flows for
which the velocity field is an eigenvector of the curl operator. Maximum helicity, the perfect
alignment of velocity and vorticity, results in a local depletion of the nonlinear term in the
Navier–Stokes equation [13,14], which is known as local flow Beltramization. In this case,
the Lamb vector, i.e., the vector product between velocity and vorticity vanishes, so that
the whole nonlinear term, which corresponds to the solenoidal part of the Lamb vector, is
locally equal to zero.

In Kerr [15], helicity and strain have been studied in forced isotropic turbulence con-
sidering histograms, while Pelz et al. [14] investigated local helicity in turbulent channel
flow and turbulent Taylor–Green flow. Shell models of isotropic turbulence have been used
to study helicity and its transfer [16, 17]. High-resolution direct numerical simulations of
forced helical rotating turbulence have been studied in Mininni and Pouquet [18, 19]. The
alignment of velocity and vorticity in various flow types, such as shear flow, channel flow,
and strained flow, was examined in Rogers and Moin [20]. In their simulations, it was shown
that the alignment of velocity and vorticity was significantly weaker than in the investi-
gation of Pelz et al. [14]. They questioned the results of the latter and the role of helicity
fluctuations in three-dimensional turbulence in general. The generation and destruction
mechanisms of cross helicity, defined by the scalar product between the velocity and the
magnetic field, in magnetohydrodynamic turbulence have been studied in Yokoi [21].

The balance equation for mean kinetic helicity has been discussed by Sanada [22] for
isotropic turbulence. Sanada conjectured that the dissipation of mean kinetic helicity 〈Hu〉
is determined by mean super-helicity 〈Hω〉 = 〈ω · (∇ × ω)〉. Since the two mean helicities
are signed quantities, mean super-helicity can dissipate mean kinetic helicity only if the two
quantities have the same sign. Evidence supporting Sanada’s conjecture was given more
recently by Galanti and Tsinober [23] for isotropic turbulence with helical or non-helical
forcing.

In Jacobitz et al. [24], the influence of initial mean kinetic helicity was studied for
homogeneous turbulent shear flow. In order to gain insight into the evolution of the kinetic
energy and kinetic helicity, an analysis of the spectral tensor, the two-point correlation
of velocity in Fourier space, was performed (see also Cambon et al. [25] and Sagaut
and Cambon [26]). The spectral tensor was decomposed into its mirror-symmetric part
(related to kinetic energy) and its anti-symmetric part (related to kinetic helicity). This
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analysis showed that the evolution equations of the two parts are only linked through the
nonlinear interaction terms. Therefore, kinetic helicity only influences the evolution of
kinetic energy through the nonlinear term. The influence of initial mean kinetic helicity on
the flow evolution resembles the influence of mean kinetic helicity on decaying isotropic
turbulence: the initial decay of the kinetic energy is weakened. This finding is in agreement
with Kraichnan’s prediction that energy transfer is slowed down by helical motion [27].

The helical properties of rotating sheared turbulence were investigated in Jacobitz
et al. [28]. It was concluded that the growing cases are characterized by a tendency toward
local two-dimensionalization, while decaying cases exhibit a preference for swirling
motion. A motivation for the present study is to investigate if these findings hold for a
wider class of homogeneous turbulent flows.

In the present study, the helical properties of six cases are investigated: a solenoidal
uncorrelated Gaussian random field, statistically steady forced isotropic turbulence [29],
decaying isotropic turbulence [30], decaying rotating turbulence [31], growing sheared
turbulence, and growing rotating sheared turbulence with a rotation ratio f/S = +0.5
[28, 32]. The turbulent flows were studied using direct numerical simulations and details
can be found in the respective publications. All cases initially do not contain mean kinetic
helicity and they remain free from it. However, this does not concern the local kinetic helicity
and regions with strong kinetic helicity can exist in a flow free from mean kinetic helicity.

The purpose of this study is to answer three questions: first, what are the local helical
properties of the turbulent flows, and are the helical properties related to the fate, growth, or
decay of the turbulence? Second, do helical properties vary with the scale of the turbulent
motion? This question is addressed using a wavelet-based decomposition of the turbulent
motion into different scales as proposed in Yoshimatsu et al. [33]. Third, does super-helicity
act to diminish kinetic helicity?

2. Results

In this section, the helical properties of a solenoidal Gaussian random field, statistically
steady forced isotropic turbulence, decaying isotropic turbulence, decaying rotating turbu-
lence, growing sheared turbulence, and growing rotating sheared turbulence are presented
first. Then, a wavelet-based scale-dependent analysis considers helicity at different scales
of turbulent motion. Finally, the role of super-helicity as a dissipative mechanism for kinetic
helicity is investigated.

An overview of the different flows is given in Table 1. The statistically steady forced
isotropic turbulence case of Vincent and Meneguzzi [29] has a Taylor microscale Reynolds
number Reλ = 150. The decaying isotropic turbulence case of Jacobitz et al. [30] is taken
at an eddy-overturning time t∗ = tε/K = 3, where K = 〈ukuk〉/2 is the turbulent kinetic

Table 1. Properties of the turbulent flows considered in this study.

Case Source Reλ Fate
Gaussian white noise
Forced isotropic turbulence Vincent and Meneguzzi (1991) 150 Steady
Isotropic turbulence Jacobitz et al. (2005) 27 Decay
Rotating turbulence Liechtenstein et al. (2005) 60 Decay
Sheared turbulence Jacobitz et al. (2008) 72 Growth
Rotating and sheared Jacobitz et al. (2008) 100 Growth
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energy, ε = ν〈∂ui/∂xk∂ui/∂xk〉 is the dissipation rate, and ν is the kinematic viscosity. The
Taylor microscale Reynolds number is Reλ = qλ/ν = 27, where q = √

2K is the magni-
tude of velocity and λ =

√
5νq2/ε is the Taylor microscale. The decaying rotating turbu-

lence by Liechtenstein et al. [31] is taken at an eddy-overturning time t∗ = 3. The Taylor mi-
croscale Reynolds number is Reλ = 60 and the Rossby number is Ro = q/(fL) = 0.025,
where f = 2� is the Coriolis parameter and L is an integral length scale. The growing
sheared turbulence and growing rotating sheared turbulence by Jacobitz et al. [32] are
taken at a non-dimensional time St = 5, where S is the uniform mean shear. The Taylor
microscale Reynolds numbers are Reλ = 72 and Reλ = 100, respectively. The shear num-
bers are SK/ε = 4.8 and SK/ε = 6.0, respectively. For the rotating sheared turbulence
case, the rotation ratio is f/S = +0.5 and the Rossby number is Ro = 0.166. All flows
were studied using direct numerical simulations based on a Fourier-pseudospectral method
at a resolution of 2563 grid points.

2.1. Helical properties of the flows

Figure 1 shows the probability distribution functions (PDFs; estimated from a histogram
with 100 equidistant bins) of relative kinetic helicity hu for the six cases considered in
this study. For the case of the solenoidal Gaussian random field, a uniform distribution is
obtained without a preference for any value ofhu. The two cases of statistically steady forced
isotropic turbulence and decaying isotropic turbulence are characterized by maxima at
hu = ±1, corresponding to a higher probability for alignment or anti-alignment of velocity
and vorticity, i.e., helical or swirling motion. The decaying rotating turbulence case shows
an approximately even distribution of relative kinetic helicity with just a slight maximum
at hu = +1. The two cases of growing sheared turbulence and growing rotating sheared
turbulence with f/S = +0.5, however, exhibit a maximum at hu = 0, corresponding to a
preference for velocity and vorticity to be perpendicular, i.e., local two-dimensionalization
of the flows.
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Figure 1. PDFs of relative kinetic helicity hu for the six cases.
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It is found that growing turbulence has a tendency to local two-dimensionalization
of the flow, while decaying turbulence is characterized by helical motion. Statistically
steady forced isotropic turbulence shows a trend similar to the results obtained for decay-
ing turbulence. These findings are consistent with a previous study restricted to rotating
sheared turbulence with different rotation ratios [28]. Growing turbulence was observed
for rotation ratios 0 ≤ f/S ≤ 1, which corresponds to an anti-parallel arrangement of the
system rotation and the flow’s mean vorticity due to shear. For these growing cases, a
preference for hu = 0 was observed. For all other cases, including those with a parallel
arrangement of system rotation and mean vorticity, decay of the turbulence was obtained.
For those decaying cases, a preference of hu = ±1 was found in the simulations. The local
two-dimensionalization observed in the cases in which the kinetic energy is growing is
to a certain extent consistent with the fact that in two-dimensional flows the energy is
less efficiently transferred to the small scales than in three-dimensional flows. For shear
flows, these finding are consistent with a higher likelihood of vanishing kinetic helicity in
regions of low-energy dissipation rate [34]. The interpretation of the helical motion for the
remaining flows is not entirely clear. The local helical properties observed in the decaying
or statistically steady flows indicate clearly the three-dimensional character of these flows,
and in the isotropic case this is consistent with an energy cascade toward small scales,
which is more efficient than for two-dimensional turbulence. However, these local helicity
fluctuations do at the same time weaken the nonlinear term, so that the transfer of energy
to small scales is not optimal.

The corresponding PDFs of relative super-helicity hω are given in Figure 2. Again,
for the solenoidal Gaussian random field, a uniform distribution is obtained without a
preference for any value of hω. In contrast to the relative kinetic helicity hu, the relative
super-helicity hω shows pronounced maxima at hω = ±1 for all turbulent flows and it does
not aid with a further classification of the fate of the flows. This result is again in agreement
with the previous study of rotating sheared turbulence by Jacobitz et al. [28].

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

-1 -0.5  0  0.5  1

pd
f

hω

Gaussian White Noise
Forced Isotropic Turbulence

Isotropic Turbulence
Rotating Turbulence
Sheared Turbulence

Rotating and Sheared

Figure 2. PDFs of relative super-helicity hω for the six cases.
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2.2. Scale-dependent analysis

The wavelet representation of turbulent flows (see, for example, Farge [35] as well as
Schneider and Vasilyev [36]) allows for a clear scale separation. To obtain the scale contri-
butions of velocity uj (and similarly for vorticity and its curl), the flow field u = (u1, u2, u3),
given at resolution N = 23J with J = 8, is decomposed into an orthogonal wavelet series
using Coiflet 12 wavelets:

u(x) =
∑
λ

ũλψλ(x). (1)

The multiindex λ = (j, i, µ) denotes scale index j (with 0 ≤ j ≤ J − 1), spatial position i
(with 23j values for each j andµ), and seven spatial directionsµ = 1, . . . , 7 of each wavelet
ψλ [35]. Due to the orthogonality of the wavelets, the coefficients are given by ũλ = 〈u, ψλ〉,
where 〈·, ·〉 denotes the L2-inner product. The coefficients measure fluctuations of u at
scale 2−j and around position i/2j for each of the seven possible directions. Fixing j and
summing only over i and µ in Equation (1), the contribution uj at scale j is obtained and
by construction we have u = ∑

j uj . Analogously, the contributions ωj and (∇ × ω)j at
scale 2−j are obtained.

Thus, the scale-dependent kinetic helicity can be defined as follows:

Huj = uj · ωj . (2)

Here, uj and ωj are velocity and vorticity at scale 2−j , respectively, as proposed in
Yoshimatsu et al. [33] for isotropic turbulence. For j �= 0, the scale-dependent kinetic
helicity Huj is a Galilean invariant of the flow, though Hu itself is not. This is based on
the fact that the mean velocity of uj vanishes due to the vanishing moment property of the
wavelets [35].

Accordingly, the scale-dependent relative kinetic helicity can be defined as

huj = Huj /(|uj ||ωj |). (3)

Analogously, the scale-dependent super-helicityHωj = ωj · (∇ × ω)j and the correspond-
ing relative quantity hωj are obtained. These scale-dependent quantities yield further insight
into the geometrical statistics at different scales of motion. In the following, we analyze the
different turbulent flows.

PDFs of scale-dependent relative kinetic helicity huj (left column) and relative super-
helicity hωj (right column) are presented in Figures 3 and 4 for the six different cases
considered here. The figures show the PDFs of the total relative helicities and the PDFs
of the scale-dependent helicities at scales j = 3 to j = 7. Note that largest scales j = 1
and j = 2 are not shown, since the flow contains only a small number of wavelet modes at
those scales and the PDFs are consequently poorly converged.

For the solenoidal Gaussian random field (3, top), the uniform distribution for the
total helicities persists at all scales as expected. For statistically steady forced isotropic
turbulence (3, center), decaying isotropic turbulence (3, bottom), and decaying rotating
turbulence (4, top), the smallest scales of motion show maxima at huj = ±1. In the case
of forced isotropic turbulence, the maxima at huj = ±1 for smaller scales are the least
pronounced, but a maximum at huj = 0 is observed for the larger scales. For decaying
isotropic turbulence and decaying rotating turbulence, the larger scales of motion do not
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Figure 3. PDFs of scale-dependent kinetic helicity huj (left column) and super-helicity hωj (right
column) for a Gaussian random field (top), forced isotropic turbulence (center), and decaying isotropic
turbulence (bottom).

show a clearly defined maximum. For growing sheared turbulence (4, center), the PDFs of
scale-dependent relative kinetic helicity of the larger scales with j = 3, 4, and 5 show a
maximum athuj = 0, corresponding to a trend to local two-dimensionalization of the flow at
large scales. The smaller scales with j = 6 and 7 have maxima at huj = ±1, corresponding
to a trend to helical motion at small scales. For growing rotating sheared turbulence with
f/S = +0.5 (4, bottom), a similar result as for sheared turbulence is obtained, but the
probability for local two-dimensionalization at large scales and helical motion at small
scales is even more pronounced.
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Figure 4. PDFs of scale-dependent kinetic helicity huj (left column) and super-helicity hωj (right
column) for decaying rotating turbulence (top), growing sheared turbulence (center), and growing
rotating sheared turbulence with f/S = +0.5 (bottom).

The PDFs of scale-dependent relative super-helicity of these three cases also yield a
maximum at hωj = 0 for the larger scales with j = 3, 4, and 5 and maxima at hωj =
±1 at the smaller scales j = 6 and 7. For decaying rotating turbulence and decaying
rotating sheared turbulence with f/S = +5, the scale-dependent kinetic helicity PDFs
show maxima for huj = ±1 at all scales j > 3. Similarly, the scale-dependent relative
super-helicity PDFs yield maxima for hωj = ±1 for all scales considered.

The decomposition of velocity and vorticity into scale-dependent contributions first
as well as the decomposition of the kinetic helicity directly yield the same mean kinetic
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helicity values for each scale 2−j , i.e., the sum over j of the scalewise mean helicities
results in the total mean helicity. This property is similar to the feature obtained for the
helicity spectrum, i.e., the sum of the helicity spectrum over all wavenumbers yields
the total mean helicity. The reason for the equivalence of both decompositions is that
the wavelets are orthogonal with respect to scale index j . Thus, the velocity components
uj and the vorticity components ωj are orthogonal, i.e., 〈uj , ωj ′ 〉 = 0 for j �= j ′. However,
the pointwise scale-dependent helicities differ.

In analogy to the spectrum, we prefer to use the scale decomposition of velocity and
vorticity. This scale-dependent helicity could be called helicity scalogram (contributions
of helicity per scale) in analogy with the energy scalogram (contribution of energy per
scale), where the velocity is decomposed in scale contributions and not the energy. The
scalograms can be related to Fourier spectra, using a relation between the scale index j
and the wavenumber kj = kψ2j , where kψ is the centroid wavenumber of the wavelet [35].
The scalogram corresponds to a smoothed version of the Fourier spectrum. The smoothing
kernel is the square of the Fourier transform of the wavelet. As frequency increases, i.e.,
at small scales, the smoothing interval becomes larger, which explains why the wavelet
spectrum is a well-conditioned statistical estimator.

The scale-dependent helicity introduced in Rodriguez Imazio and Mininni [37] cor-
responds to a low-pass-filtered helicity, considering decreasing box sizes, whereas the
wavelet-based scale-dependent helicity corresponds to a band-pass-filtered helicity, con-
sidering bands of increasing wavenumber, which yields incremental information on the
helicity of the flow scale by scale. The latter quantity can be compared with the Fourier he-
licity spectrum, which gives the helicity distribution wavenumber by wavenumber, whereas
the former gives some cumulative information, since information on the helicity of the larger
scale contributions of the flow is included in the helicity of the smaller scale contributions.
Hence, both quantities do not yield the same values.

2.3. Dissipation of kinetic helicity

The evolution of mean kinetic helicity 〈Hu〉 is described by a transport equation:

d

dt
〈Hu〉 = −2ν〈Hω〉 + 〈F 〉. (4)

Here, F = 2 f · ω accounts for the forcing term f in the momentum equation and vanishes
for the flows considered here due to their mirror symmetry property. The kinematic viscosity
of the fluid is ν. Dissipation of mean kinetic helicity 〈Hu〉 by mean super-helicity 〈Hω〉
requires that both mean helicities have the same sign. Sanada [22] conjectured that the two
helicities indeed have the same sign for isotropic turbulence.

Motivated by this study, further evidence to support a local dissipative mechanism of
kinetic helicity by super-helicity is provided: first, the PDFs of the cosine of the angle
between velocity and the curl of vorticity are considered. Second, the joint PDFs of relative
kinetic helicity with relative super-helicity are determined. Third, the two relative helicities
are used to color isosurfaces of vortical structures.

Using the vector identity

∇ × ∇ × u = −∇2u, (5)
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it follows that

u · ∇ × ∇ × u = ω · ω − ∇ · (u × ω). (6)

Averaging over a domain with periodic boundary conditions or boundaries on which the
normal component of u × ω vanishes leads then to the expression

〈u · ∇ × ∇ × u〉 = 〈ω · ω〉 > 0. (7)

It can, therefore, be deduced that there is a larger probability that the vectors u and
∇ × ∇ × u are aligned than that they are anti-aligned. From the larger probability of
alignment, it follows that there is a larger likelihood that the kinetic helicity Hu = u · ω

and the super-helicity Hω = ω · ∇ × ω have the same sign [22]. The higher likelihood for
the same sign also applies to the relative helicities hu and hω [23].

Figure 5 shows the PDF of the cosine of the angle between velocity u and the curl of
vorticity ∇ × ∇ × u = −∇2u for the six cases. The PDFs are strongly skewed supporting
a high probability for the alignment of the two vectors. The most strongly skewed PDF
is observed for the solenoidal Gaussian random field, indicating that the alignment is a
kinematic property of the curl operator. In contrast, the least skewed PDF is found for
forced isotropic turbulence. For the four remaining cases, all directly computed from the
Navier–Stokes equations, the PDFs are similar with maxima in between those found for the
random field and the forced isotropic turbulence case.

The impact of forcing in isotropic turbulence simulations on the alignment is inves-
tigated in more detail in Figure 6. The figure shows decaying isotropic turbulence and
results from three well-developed forced isotropic turbulence simulations by Vincent and
Meneguzzi [29], Yeung et al. [38], and da Silva et al. [39]. The three forced isotropic turbu-
lence fields are chosen at a time corresponding to the statistically steady regime. Different
forcing methods are used in these studies: Vincent and Meneguzzi [29] use a deterministic
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forcing mechanism with a constant amplitude for all Fourier modes with wavenumber com-
ponents equal to zero or one as described by Kerr [40]. Yeung et al. [38] use the stochastic
forcing scheme by Eswaran and Pope [41]. The forcing consists of a forcing acceleration
in the low wavenumber band, which is based on an Ornstein-Uhlenbeck random process
(six in total). The work of da Silva et al. [39] uses the stochastic volume forcing algorithm
developed by Alvelius [42]. The results suggest that the forcing mechanisms employed in
the forced isotropic turbulence simulations have an impact on the alignment of velocity and
the curl of vorticity. It appears that the forcing mechanisms also introduce a small amount
of mean kinetic helicity and the resulting PDF of relative kinetic helicity is not symmetric
around zero (see Figure 1).

To further verify that there is a high probability that the two helicities even locally have
the same sign, joint PDFs of relative kinetic helicity hu with relative super-helicity hω are
shown in Figure 7. For all cases, a strong correlation of the signs of the two helicities is
indeed observed. This sign correlation thus supports that super-helicity diminishes kinetic
helicity.

Note that the one-dimensional PDFs of hu and hω can be obtained by integration of
the joint PDF over hω and hu, respectively. Therefore, a joint PDF that is approximately
symmetric along its diagonal axis will yield similarly shaped PDFs for hu and hω. These
features are indeed observed for cases with decaying turbulent kinetic energy, forced
isotropic turbulence, and the Gaussian random field. In contrast, one possibility to obtain
different shapes for the PDFs ofhu andhω is an asymmetric joint PDF. Hence, this symmetry
is broken for the cases with growing turbulent kinetic energy.

Figure 8 shows isovorticity surfaces for three of the six cases considered here: forced
isotropic turbulence (top), decaying rotating turbulence (center), and growing sheared
turbulence (bottom). No preferred orientation is visible in the case of forced isotropic
turbulence. Vertical columns are present in rotating turbulence, while inclined structures
are observed for sheared turbulence. The isovorticity surfaces are colored with relative
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Figure 7. Joint PDFs of kinetic helicity hu and super-helicity hω for a Gaussian random field (top
left), forced isotropic turbulence (top right), decaying isotropic turbulence (center left), rotating
turbulence (center right), sheared turbulence (bottom left), and growing rotating sheared turbulence
with f/S = +0.5 (bottom right).

kinetic helicity hu (left) and relative super-helicity hω (right). For a given flow structure, it
is likely that the same sign is found. This visual observation thus indicates a high likelihood
that the signs of hu and hω are indeed correlated.

All indicators considered in this study suggest that super-helicity acts as a dissipative
process for kinetic helicity also locally in anisotropic homogeneous turbulence.
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Figure 8. Isovorticity structures colored with kinetic helicity hu (left) and super-helicity hω (right)
for forced isotropic turbulence (top), rotating turbulence (center), and sheared turbulence (bottom).

3. Conclusions

To summarize, helical properties of five prototypical turbulent flows were investigated
and compared to the helical properties of a solenoidal Gaussian random field. For the
PDFs of kinetic helicity hu, a maximum at hu = 0 was observed for cases with growing
turbulent kinetic energy, while a maximum at hu = ±1 was found for decaying cases.
Thus, for growing cases, the PDFs of kinetic helicity hu indicate a larger probability that
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velocity and vorticity are perpendicular, corresponding to local two-dimensionalization
of the flow. This finding is consistent with the two-dimensionalization of the fluctuating
strain rate for growing turbulent shear flow [43]. For decaying cases, the PDFs of kinetic
helicity hu show a preference for the alignment or anti-alignment of velocity and vorticity,
corresponding to helical motion. For all cases, however, the PDFs of super-helicityhω always
assume a maximum at hω = ±1. The helical properties of the statistically steady forced
isotropic turbulence case were found to follow those of flows with decaying turbulent kinetic
energy.

Scale-dependent PDFs of kinetic helicity show that large scales tend to have a maximum
at huj = 0, corresponding to two-dimensionalization of the flows, while small scales tend
to show a maximum at huj = ±1, corresponding to helical motion. These observations
hold for all types of turbulent flows considered in this study.

Consideration of the alignment of velocity with the curl of vorticity, joint PDFs of
relative kinetic helicity and relative super-helicity, as well as isovorticity surfaces colored
with kinetic helicity and super-helicity all indicate a high probability that hu and hω have
the same sign even locally. Thus, super-helicity tends to diminish kinetic helicity for the
different homogeneous turbulent flows studied here.
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[8] M. Steenbeck, F. Kause, and K.H. Rädler, Berechnung der mittleren Lorentz-Feldstärke für ein

elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung, Zs.
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