Journal article Open Access

COSIFER: a Python package for the consensus inference of molecular interaction networks

Manica, M.; Bunne, C.; Mathis, R.; Cadow, J.; Ahsen, M.; Stolovitzky; Martínez, M.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20210512134812.0</controlfield>
  <controlfield tag="001">4748570</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research Europe</subfield>
    <subfield code="a">Bunne, C.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research Europe</subfield>
    <subfield code="a">Mathis, R.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research Europe</subfield>
    <subfield code="a">Cadow, J.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai</subfield>
    <subfield code="a">Ahsen, M.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai</subfield>
    <subfield code="a">Stolovitzky</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research Europe</subfield>
    <subfield code="a">Martínez, M.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">294183</subfield>
    <subfield code="z">md5:5f4930e120d35a507a2ce4cc88f7728b</subfield>
    <subfield code="u">https://zenodo.org/record/4748570/files/btaa942.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ipc</subfield>
    <subfield code="o">oai:zenodo.org:4748570</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Bioinformatics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IBM Research Europe</subfield>
    <subfield code="a">Manica, M.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">COSIFER: a Python package for the consensus inference of molecular interaction networks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipc</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">826121</subfield>
    <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The advent of high-throughput technologies has provided researchers with measurements of thousands of molecular entities and enable the investigation of the internal regulatory apparatus of the cell. However, network inference from high-throughput data is far from being a solved problem. While a plethora of different inference methods have been proposed, they often lead to non-overlapping predictions, and many of them lack user-friendly implementations to enable their broad utilization. Here, we present Consensus Interaction Network Inference Service (COSIFER), a package and a companion web-based platform to infer molecular networks from expression data using state-of-the-art consensus approaches. COSIFER includes a selection of state-of-the-art methodologies for network inference and different consensus strategies to integrate the predictions of individual methods and generate robust networks.&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1093/bioinformatics/btaa942</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
72
66
views
downloads
Views 72
Downloads 66
Data volume 19.4 MB
Unique views 68
Unique downloads 65

Share

Cite as