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Abstract
Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure
of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations
along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for
which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new
method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application
to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique
for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority
of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised
emissivity map.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the edge of tokamaks, cross-field particle and heat transport
have been attributed in a large part to convection by flows,
either due to sustained turbulence or on the occasion of violent
events such as edge-localized modes [1]. Not only do the
large particle and heat fluxes leaving the core in this manner
deteriorate confinement, but the associated vessel erosion also
impairs the awaited viability of long lasting discharges. It is
thus of primary importance to describe and understand flows
in the edge region, and in particular their spatial and temporal
organization. Since the edge plasma is at a relatively low
temperature, it can under certain conditions emit visible light,
which may then be collected using an optical device to obtain a
two-dimensional image [2]. Using a camera with a fast enough

5 Present address: Institut für Mathematik, Freie Universität Berlin,
Arnimallee 6, 14195 Berlin, Germany.
6 Present address: UCSD Jacobs School of Engineering, 9500 Gilman Drive,
La Jolla, CA 92093-0403, USA.

sampling rate (tens to hundreds of kHz), it is now possible to
resolve in time part of the turbulent dynamics.

One of the current limitations of such optical diagnostics is
that the received flux cannot be directly related to the volumic
emissivity of the plasma, because the photons collected by
each pixel on the camera sensor have been emitted all along a
corresponding ray, rather than out of a single point in space.
Nonetheless, impressive progress was achieved by qualitative
analysis of sequences of images obtained from cameras as
have been installed on several devices in recent years [3–6].
This has been possible because the dominant structures in
tokamak edge turbulence happen to be field-aligned filaments,
commonly known as ‘blobs’, that have a higher density than
their surroundings, and whose structure varies much slower
along magnetic field lines than in the orthogonal directions.
Thanks to this remarkable property, it is possible to detect
individual blobs on the projected movie and to analyse their
behaviour. However, to describe blob trajectories more
accurately, and also to obtain a picture of the plasma which
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goes beyond the detection of individual blobs, a way must be
found to invert the optical projection effect and to reconstruct
the emissivity in three dimensions. When it is acceptable to use
concurrently many devices with different orientations in the
experimental setup, relatively classical tomographic methods
can be successfully applied to achieve this goal (see, e.g., [7]
where several photomultiplier tubes are combined in this way).
But in most cases, the restricted number—typically one—of
available cameras imposes a completely different approach.

Fortunately, it has been shown that slow variation along
magnetic field lines is not only a property of blobs, but of all
the fluctuating quantities participating in the edge transport
process, such as density, momentum and temperature. As
we propose to demonstrate further down, this approximate
symmetry of the plasma may be exploited to extract three-
dimensional information out of individual camera movies. A
similar but geometrically simpler situation arises when taking
pictures of axisymmetric objects which radiate volumically, as
do some nebulae [8], or mechanical devices probed with x-rays
[9]. When the object is viewed under a small enough angle,
the mathematical transform which relates the emission of each
point to the intensity of the image is called the Abel transform,
a Volterra integral operator of the first kind [10]. In the case
of the tokamak geometry, the symmetry is helical rather than
axial, and the angle of view is relatively large since the camera
cannot be placed much further away from the plasma than the
confinement vessel. The problem is thus more challenging
and, to our knowledge, has not been treated mathematically
or even numerically in the past before, probably because the
helical geometry is rather specific to tokamaks and was not
encountered in other contexts. Note that related ideas were
applied to analyse bolometer measurements from the tokamak
DIII-D [11], but under the simpler assumption that the radiation
coming from the core of the plasma was constant over whole
magnetic surfaces rather than field lines.

Once the link between the three-dimensional radiation and
the two-dimensional image is understood, the reconstruction
becomes an inverse problem which has a formal solution under
the assumed symmetry, but is ill-posed in the presence of
noise. A suitable numerical inversion procedure needs to
be devised in order to avoid amplification of experimental
errors. Many classical approaches, as for example least-
squares iteration [12] or singular value decomposition (SVD)
[13] are described in textbooks [14]. Although they regularize
the problem by damping the modes of the inverse transform
which would lead to amplification of the noise, they typically
do not take advantage of the spatial localization of coherent
structures present in the plasma, a shortcoming which limits
their performance.

To better tackle inverse problems in the presence of
localized structures, Donoho [15, 16] has proposed to turn
to the wavelet-vaguelette decomposition (WVD) which had
been introduced by Tchamitchian [17]. The rationale behind
this choice is that wavelet decompositions keep track of both
scale and space localization, as illustrated, for example, by the
extraction of coherent bursts in turbulent edge plasma [18].
WVD was successfully applied to tomographic reconstruction
in the context of medical imaging [19–21], where the
relevant mathematical model is the Radon transform, and
also for solving partial differential equations [22, 23]. Except

for the advantage of spatial localization, WVD has many
similarities with the SVD. An intuitive way of understanding
the difference between WVD and SVD in this context is that
the former emphasizes the space-scale structure of the field
to be reconstructed, while the latter aspires to an optimal
representation of the optical apparatus.

The purpose of this work is to provide numerical evidence
that the method can also be applied successfully to the
generalized Abel transform in the context of tokamak edge
turbulence imaging, in both academic and realistic situations,
and to illustrate the efficiency of the new method by comparing
it with a naive least-squares approach, and to a more
competitive SVD method. First, we introduce a generalized
definition of the Abel transform, and propose a way to solve
the associated inverse problem by WVD. We then show a
few academic examples of inversion, validate the procedure
by applying it to independently generated images, and finally,
apply it to a movie acquired in the Tore Supra tokamak.

2. Reconstruction method

2.1. Notations

We start with magnetic coordinates (�, θ, ϕ), where � is a
flux coordinate, ϕ is the toroidal angle and θ is an appropriate
poloidal coordinate such that the magnetic field lines satisfy
the equations {

� = �0

θ − ϕ

q(�)
= θ0,

(1)

where q is the safety factor. In the following, we take
for granted that a relationship has been established between
those magnetic coordinates (�, θ, ϕ) and the fixed cylindrical
coordinates (ρ, z, ϕ), where ρ is the distance to the axis of
symmetry of the tokamak, and z is the vertical coordinate
with respect to the horizontal midplane. In general, such
a relation will be obtained numerically using a magnetic
reconstruction code. Here, for demonstration purposes, we
consider simplified analytical formulae, which apply to the
special case where magnetic surfaces have circular cross
sections, and can then be indexed by their radius � = r:

ρ = R

(
1 + γ

(
1 − r2

a2

))
+ r cos(θ) (2a)

z = r sin(θ). (2b)

Here, the parameter γ controls the distance between the centre
of the magnetic surfaces and the magnetic axis, which allows
modelling of the Shafranov shift effect if necessary. The
axially symmetric case is approached in the limit q → +∞.
The magnetic configuration is schematized in figure 1.

The camera is modelled by a screen located at a distance
d from a vanishingly small diaphragm C whose coordinates
are denoted (ρC, zC, ϕC). The rays going through C are
parametrized by two angles: α is the angle with respect to
the half-plane ϕ = 0 and β is the angle with respect to the
plane z = 0. We call H the point on a ray which has the
smallest ρ, and ρH the distance of closest approach of the ray
to the z-axis. See figure 2 for a schematic view of the setup.
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Figure 1. Schematic representation of a poloidal plasma cross
section, the red cross indicating a point whose cylindrical
coordinates are (ρ, z), corresponding to magnetic coordinates (r, θ).

Elementary geometry allows us to express α and β as functions
of ρH and zH as follows:


sin(α − ϕC) = ρH

ρC

tan(β) = zH − zC√
ρ2

C − ρ2
H

(3)

and, denoting by s the arc length along a ray, with s = 0 at H ,
we obtain a parametric representation of the ray in cylindrical
coordinates:


ρ(s) =

√
ρ2

H + s2 cos2(β)

z(s) = zH + s sin(β)

ρ(s) cos(ϕ(s) − ϕC) = ρC − s cos(α − ϕC).

(4)

2.2. Helical Abel transform

Let S0(�, θ, ϕ, ��) be the emissivity of the plasma at a
point M characterized by its field line coordinates (�, θ, ϕ)

and in the direction defined by the unit vector ��. By
definition, S0(�, θ, ϕ, ��)d3Md2� is the power radiated by an
infinitesimal volume of the plasma located around M , towards
the directions contained in an infinitesimal cone around ��.
From the start, we assume that the radiation is isotropic, so
that S0 does not depend on ��. We leave aside the effect of
the spectral dependence of the camera sensitivity within the
excited frequency range, which could introduce complications
since it comes as an additional convolution operator on top of
the geometrical scrambling. The validity of this hypothesis
should be checked case by case, and we will briefly come
back to it in the experimental section below. Moreover, we
consider that the plasma is optically thin or transparent, so that
the flux density received by the camera screen around a point
P = (x, y) is given, up to a dimensional constant depending
on d and the opening of the diaphragm, by the integral of the
volume emissivity along the unique ray going throughP andC:

I0(x, y) =
∫ ∞

sC

S0(�(s), θ(s), ϕ(s)) ds, (5)

where {
x = d tan(α)

y = d tan(β)
(6)

are the coordinates in the image plane, and

sC := −
√

ρ2
C − ρ2

H

cos α
(7)

is the position of the camera on the ray.
We denote by K the operator such that I0 = KS0. We

are interested in the action of K on special kinds of emissivity
fields, namely those that vary slowly along magnetic field lines
as defined by equation (1). Due to the fact that the safety
factor q can be irrational, it would not be realistic to assume
that S0 is constant along field lines since by continuity that
would, in most cases, imply that S0 is constant over whole
magnetic surfaces, which is not observed in practice. In the
following, we shall thus assume that S0 is constant on any
connected portion of a field line visible in the camera field. In
practice, the fluctuations along the magnetic field lines should
satisfy k‖ � 1

R
for this procedure to work. The restriction

of K to helically symmetric fields now associates a two-
dimensional image I (x, y) to any given poloidal cross section
of the emissivity, S0(�, θ). The classical Abel transform,
which we have mentioned in the introduction, is approximately
recovered when q � 1 and ρC � R.

In practice, to compute I0, (2a) and (2b) need to be inverted
and (5) can then readily be applied. In our case we do the
inversion analytically, using equation (2a) which defines r as
the only positive root of a quadratic polynomial. In the generic
case, no analytical representation of the field lines is available,
and this inversion will have to be done point-wise using a
lookup table. To discretize the operator K , we restrict (r, θ) to
a rectangular domain [rmin, rmax]×[θmin, θmax] and use a regular
Cartesian grid (ri, θj ) with i = 1, . . . , Nr and j = 1, . . . , Nθ .
We assume that S0 vanishes for r > rmax and for r < rmin,
and is periodic with the period θmax − θmin in the θ direction.
Similarly, (x, y) is restricted to [xmin, xmax] × [ymin, ymax] and
discretized using a grid (xi, yj ) with i = 1, . . . , Nx and
j = 1, . . . , Ny . The integral in (5) is approximated using
a quadrature rule, the method of rectangles with 1024 points
on the interval [−smax, smax], where smax is defined by

cos(α)2s2
max := ρ2

C − ρ2
H (8)

in order to cover the whole interval where the ray intersects
the smallest vertical cylinder containing the plasma. From
now on, we consider that the operator K has been discretized
in this manner, but we keep the same notation for simplicity.
K thus transforms arrays defined on the poloidal grid (ri, θj )

into arrays defined on the image grid (xi, yj ).

2.3. Wavelet-vaguelette decomposition

To reconstruct S0 from the observation I0, K needs to be
inverted. The restriction of (r, θ) to a rectangular domain,
which we have imposed for numerical reasons, implies that
depending on the values of rmin, rmax, θmin, θmax, part of the
information may not be visible to the camera, so that K is
not invertible in general. A rigorous mathematical study of
the invertibility of K is out of the scope of this paper, and
in the following we will be content to consider the pseudo-
inverse. The issue which, however, cannot be left aside is that
the measured I is corrupted by noise. Assuming for simplicity
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Figure 2. Schematic representation of the camera setting with appropriate notations. Left: projection of the setup in a horizontal plane.
Right: view of the plane defined by the camera axis (OC) and the vertical axis.

that this noise is additive, Gaussian and white, we thus observe
in practice

I = I0 + W = KS0 + W, (9)

and regularization is required to avoid amplification of the
noise and thus obtain a reasonable estimate for S0 from the
noisy data. We propose to use the WVD [15, 16] method,
which is now briefly recalled.

In the following, the L2 scalar products are denoted by
brackets, 〈· | ·〉, and the associated norms by ‖ · ‖, in both
the (r, θ) and (x, y) planes. When needed, the integrals are
discretized using the method of rectangles over the Cartesian
grids defined above. Consider a periodized orthogonal wavelet
basis (ψλ)λ∈� associated with a multiresolution analysis on the
domain [rmin, rmax] × [θmin, θmax]. The elements of the set �

used to index the wavelets are of the form (j, µ, i), where j

indicates the scale of the wavelet, µ its direction of oscillation,
and where the two integer components of i specify the position
of the wavelet (details may be found in textbooks, e.g. [24]).
The corresponding vaguelette families (ξλ)λ∈� and (χλ)λ∈� are
then defined by

Kψλ := κλχλ (10a)

K∗ξλ := κλψλ, (10b)

where K∗ is the adjoint of K , and the constants κλ are chosen
in order to impose ‖ξλ‖ = 1 for all λ. Therewith χλ and ξλ

are defined in the image plane (x, y), while ψλ is defined in
the poloidal plane (r, θ). From their definitions ((10a) and
(10b)) it follows that the families (ξλ) and (χλ) satisfy the
biorthogonality relations:

〈ξλ | χλ′ 〉 =
{

1 if λ = λ′

0 otherwise.
(11)

We refer the reader to the literature for mathematical
background on vaguelettes [17, 25, 26].

The general idea of WVD to solve the inverse problem in a
stable way is to take advantage of the formal inversion formula

S0 =
∑
λ∈�

〈KS0 | ξλ〉κ−1
λ ψλ, (12)

derived from (10a) and (11), which describes the emissivity
S0 in the poloidal plane in terms of the vaguelette coefficients
〈I | ξλ〉 of the corresponding image I0 = KS0. To understand
how this can be done, first note that according to (9) the

Table 1. Summary of geometric and numerical parameters used for
the tests reported in this work.

Academic ex. TOKAM TS 42967

Plasma parameters
R (m) 2.30 2.30 2.22
a (m) 1 0.6 0.65
γ 0 0 0.0650
q ∞ −3.00 −3.25
Camera parameters
ρC (m) 4.00 3.20 3.53
zC (m) 0 0 0.190
ϕC (rad) −0.846 −0.846 −0.727
xmin (d) −0.750 0 0.111
xmax (d) 0.300 0.404 0.382
ymin (d) −0.404 −0.404 −0.431
ymax (d) 0.404 0.404 0.266
Discretization parameters
rmin (m) 0.200 0.400 0.28
rmax (m) 1.00 0.600 0.47
θmin(rad) −π/2 0 0
θmax(rad) π/2 π/3 π/2
Nr 32 32 32
Nθ 32 32 64
Nx 100 101 110
Ny 100 150 283

vaguelette coefficients of the noisy signal can be put in the
following form:

〈I | ξλ〉 = 〈I0 | ξλ〉 + 〈W | ξλ〉.

Now, since the noise is Gaussian and white, and since
‖ξλ‖ = 1, the coefficients 〈W | ξλ〉 are Gaussian, identically
distributed random variables. The variance of the noise is
thus spread over many vaguelette coefficients. In contrast, the
variance of the signal is likely to be concentrated on a few
coefficients corresponding to marked features in the image,
blobs for example. A natural way of removing the noise is
therefore to retain only the largest among those coefficients,
which is precisely the approach adopted by WVD. Indeed, the
WVD-reconstructed emissivity SR is defined similarly to (12)
but retaining only the vaguelette coefficients whose magnitude
is larger than a certain threshold �:

SR :=
∑
λ∈�

11[�,+∞[(|〈I | ξλ〉|)〈I | ξλ〉κ−1
λ ψλ, (13)

4
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Figure 3. Representation of a wavelet in the poloidal plane (left) and of the corresponding vaguelettes ξλ (middle) and χλ (right) in the
image plane. The geometric parameters are indicated in table 1 (Academic ex.).

Table 2. Summary of computational resources used for the various
tests reported in this paper. All computations were done in double
precision.

Academic ex. TOKAM TS 42967

Percentage of non-zero entries (100% = full matrix)
K 9.3% 6.8% 3.1%
χ 6.8% 3.8% 1.9%
ξ 9.7% 40% 13%
Size in memory
K 7.6 Mb 8.5 Mb 16 Mb
χ 8.3 Mb 79 Mb 170 Mb
ξ 11 Mb 850 Mb 1.1 Gb
Computing time for LU factorization

195 s 4680 s 10920 s

where

11[�,+∞[(x) :=
{

0 if x < �

1 otherwise.

The value of the threshold needs to be estimated from the data,
since the optimal threshold to use depends on the level of noise
which is unknown a priori. In order to do this, we propose to
use an iterative algorithm [27, 28], which we briefly recall now.
Once all vaguelettes coefficients 〈I | ξλ〉 of the image have
been computed, a first estimate for the threshold is defined by

�2
0 := c2

NrNθ

∑
λ∈�

〈I | ξλ〉2, (14)

where c is a dimensionless constant of order unity which
controls the denoising sensitivity. Note that we normally prefer
the notation q, as in ‘quantile’, instead of c (see [28]), but in
the tokamak context q could be confused with the safety factor
and has to be avoided.

�0 is thus proportional to the standard deviation
of all wavelet coefficients, which is a classical way of
eliminating outliers in a statistical sequence. Then, successive
approximations of � are obtained by iterating the sequence

�2
n+1 := c2

∑
λ∈�〈I | ξλ〉211[−�n,�n](〈I | ξλ〉)∑

λ∈� 11[−�n,�n](〈I | ξλ〉) (15)

until convergence. This complicated formula simply means
that � is in the end proportional to the standard deviation of the
coefficients contained in the interval [−c�, c�]. The choice
of c should be made depending on the application one has in
mind for the reconstructed emissivity. If c is very large, the

field will be blurred, but if c is very small, some artefacts due
to the noise will persist. We have found that for qualitative
image analysis, c = 4 is a good compromise. This value has
been consistently used to obtain all of the results that follow.

To implement formula (13) in practice, the vaguelettes χλ

are first computed by applying K to the wavelets, and the ξλ

are then obtained by inverting the linear system (11). To do
this, several methods are possible. We have found that least-
squares iteration is inefficient due to slow convergence, and
have therefore chosen to apply a sparse LU decomposition
to an augmented regularized system [29]. This also has the
benefit of keeping memory requirements relatively low (see
table 2). Overall, the algorithm thus consists of the following
steps:

(i) explicitly construct a sparse matrix representation of K

using the discretization of equation (5),
(ii) obtain the χλ from (10a),

(iii) compute the ξλ from (11), using sparse LU decomposition
and the PETSC sparse parallel matrix library [30],

(iv) determine the vaguelette coefficients 〈I | ξλ〉 by sparse
matrix multiplication,

(v) reconstruct a denoised poloidal emissivity map SR by fast
inverse wavelet transform according to (13),

(vi) optionally, apply K to obtain a denoised image IR = KSR .

For given plasma and camera setups, steps (i)–(iii) need to
be performed only once, while steps (iv)–(vi) must be repeated
for each movie frame. Note that, in practice, the linear system
inversion (iii) is by far the most expensive step in this algorithm.
In the following we take the most regular Coiflets [31] with
filters of length 6 as the wavelet family. The wavelets in
this family have two vanishing moments, which is sufficient
to ensure that the associated WVD is well defined, while at
the same time the shortness of the wavelet filter ensures that
the matrices remain sparse enough, so that the problem is
computationally tractable. Note, however, that the fast wavelet
transform algorithm [24] cannot be used when computing the
vaguelette coefficients in step (iv). Indeed, the operator K not
being translation invariant, there is no filter bank corresponding
to the associated vaguelettes.

2.4. Alternative methods

For comparison, we have also implemented two other, more
classical methods of inversion. First, to illustrate the difficulty
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Figure 4. Denoising test with uniform radiating shell from r = 0.47 to r = 0.73. The geometric parameters are indicated in table 1
(Academic ex.). Left: source emission intensity S0 in the poloidal plane. Middle: corresponding noiseless image I0 = KS0 in the image
plane. Right: noisy image I = I0 + σW , where W is a standard white noise and σ = 0.5.

of inverting the operator K in a stable way in the presence of
noise, we shall consider the least-squares solution:

SLS := argmin
S

‖I − KS‖2, (16)

which is easily computed using the LSQR iterative algorithm
[12]. Strong noise amplification is anticipated to corrupt SLS

and prevent its use as a meaningful estimate of S0.
A classical way of mitigating the amplification of noise

is to replace K in (16) by a lower rank approximation
obtained by truncating the singular value decomposition
(SVD) of K . Let us briefly recall how this is done. Denote
N = min(NrNθ , NxNy). By the SVD theorem, there exist
orthogonal families (ui)1�i�N and (vi)1�i�N respectively in
the source and target spaces of the discretized K , and a
sequence of positive real numbers (ηi)1�i�N such that K

admits the expansion

KS =
N∑

i=1

ηi〈S | vi〉ui. (17)

The (ηi) are unique and are called the singular values of K ,
while the (ui) and (vi) are, respectively, called left and right
singular vectors of K . The properties of the SVD [13] ensure
that the least-squares solution (16) is also given by the formula

SLS =
N∑

i=1

〈I | ui〉η−1
i vi . (18)

Note the formal similarity of (18) with the WVD-inversion
formula (12). As for the WVD, the coefficients 〈I | ui〉
appearing in (18) can be split into a contribution coming from
S0, and a contribution coming from the noise. A classical
procedure used to reduce the effect of the noise is thus to replace
(18) by a truncated reconstruction formula:

SSVD :=
N0∑
i=1

〈I | ui〉η−1
i vi, (19)

where N0 � N is adjusted in order to obtain a qualitatively
good reconstruction SSVD. Note that the retained SVD modes
are not determined by the data like in the wavelet case, but
rather by the global cut-off parameter N0, for which no well-
established automatic selection procedure exists. We shall
study in a specific example the effect of varying N0.

3. Validation

3.1. Academic example

In this section we report the results of a simple test case, using
the geometric parameters listed in the first column of table 1.
For simplicity there is no Shafranov shift (γ = 0), and the
magnetic lines are horizontal (q = ∞).

To give an idea of the type of functions we are working
with, we first provide a representation of a wavelet and of
the corresponding vaguelettes ξλ and χλ (figure 3). As
expressed by (10a), the vaguelette χλ (figure 3, right) is simply
the image of the wavelet ψλ (figure 3, left) as seen by the
camera. In contrast, ξλ is obtained by solving a linear system,
which explains why it features more oscillations on the image
(figure 3, middle). Despite these oscillations, ξλ appears
relatively well localized, which is essential to the success of
the method, and also to its computational efficiency since it
ensures sufficient sparsity (see table 2).

To test WVD-reconstruction, we now apply it to a simple
academic test case. We start with an emissivity map which
takes the constant value 1 in a toric shell extending from
r = 0.47 to r = 0.73, and vanishes elsewhere (figure 4,
left). First, we apply the operator K to obtain a synthetic
camera image (figure 4, middle). It is interesting to remark
the critical curves that appear in the image plane due to the
integration along lines of sight intersecting the toric shell.
Then, we perturb the image with a Gaussian white noise having
a standard deviation σ = 0.5 (figure 4, right), and apply
WVD-reconstruction to reconstruct the emissivity field from
the noisy image. The result (figure 5, left) preserves the main
features of the input (figure 4, left), although the consequences
of the degradation, such as spurious peaks and oscillations,
are visible. In particular, due to the oscillating nature of the
wavelets, the approximation of the emissivity which is obtained
takes negative values close to the discontinuities, which is why
we have extended the colour scale to the interval [−0.2, 1.2]
instead of just [0, 1]. As an interesting qualitative test for the
method, we also show the denoised image IR = KSR (figure 5,
right), where the improvement over the noisy observation
(figure 4, right) is more apparent. Note that when performing
an analogous numerical experiment with σ = 0, i.e. in
the absence of noise, the inversion is exact up to numerical
truncation errors, and the inverted poloidal emissivity map

6
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Figure 5. WVD-inversion results for the denoising test with a
uniform radiating shell from r = 0.47 to r = 0.73. Left:
reconstructed poloidal emissivity map SR . Right: denoised
image KSR .

(not shown) cannot be distinguished by the naked eye from
figure 4 (left).

The same test case is then used to assess the advantages
of WVD compared with other methods. In figure 6(a),
the least-squares reconstruction SLS is shown, along with
its corresponding camera image, KSLS . Note that SLS also
corresponds to an SVD reconstruction with N0 = N . As a
consequence of noise amplification, the initial toric shell is
barely visible in the inverted emissivity. By eliminating high
order SVD modes (figures 6(b)–(d)), the noise is gradually
suppressed, but at the same time the relevant information gets
smeared out, and the radial localization of the steps in the
emissivity is not well preserved. To obtain an acceptable
compromise, one must go through the difficult process of
finding the optimal value for the number N0 of retained
modes, and even once this has been done, the result remains
qualitatively inferior to the WVD-inverted emissivity.

Admittedly, the discontinuities present in the emissivity
make the test case presented in this section rather extreme.
However, one is tempted to extrapolate that the same kind of
qualitative advantage enjoyed by the WVD over the SVD will
hold when more realistic data containing sharp features are
considered.

3.2. Test with Tokam data

To validate the method further, we apply it to camera images
that are generated artificially but using a different method
than the one presented above. In order to come closer to
the experimental situations we are going to face, we take as
input emissivity field the fourth power of the ion density in
a computation of edge plasma fluctuations obtained with the
Tokam 2D code [32], shown in figure 7(a). The artificial
camera image (figure 7(b)) was obtained by accumulating
projections of successive poloidal cross sections through S

using Matlab, i.e. the operator K is discretized by splitting
the integral (5) into a sum over ϕ instead of a sum over s as we
did in the rest of this work. This difference of discretization
is a way to test the robustness of our method. The geometric
parameters for this test case are shown in the second column
of table 1.

For numerical reasons we chose to perform the
reconstruction on a grid of size only 32 × 32, whereas the
original data were given on a much finer grid of size 512 × 512.

The emissivity map reconstructed by WVD is shown in
figure 7(c). For better comparison, we show in figure 7(d)
the input data downsampled on a grid of the same size. We see
that the radial position of maximum average emissivity close
to r = 0.4 is well captured, as well as some of the main blobs,
like the one located close to θ = π

6 . Note that the limited
resolution of the reconstruction only allows us to detect the
presence of this blob, but does not reveal its fine structure. By
applying the operator K again to this inverted emissivity map,
we obtain an image (figure 7(e)) that is visually similar to the
one we started from (figure 7(b)). This supports the fact that
our reconstruction, despite its low resolution, has faithfully
extracted a large part of the information which was present in
the image (figure 7(b)).

4. Application to an experimental movie

In this section we present first results obtained by applying
the WVD-reconstruction method to an experimental movie
acquired during during the Tore Supra discharge TS42967, of
which we first briefly describe the experimental conditions.

During the discharge, a regime of so-called full-
detachment was reached and stabilized over several seconds
thanks to a feed-back control of gas puffing on the radiated
power fraction (100% of radiated power). In that regime,
the edge is strongly cooled down and radiates all the power
losses from the plasma core: in the scrape-off layer (SOL), the
electron temperature drops to a few eV and steep pressure and
temperature gradients (similar to usual SOL profiles) establish
at mid-radius (r/a ∼ 0.5) in the closed field line region.
The spatial distribution of the radiations was deduced from
three diagnostics. From bolometers, the 2D map (r, θ) of
radiation emissivity in the range 200–0.2 nm was reconstructed
by tomography on 48 line-integrated channels. In that fully
detached regime, the radiations consisted of a uniform shell
of several centimeters width at r/a ∼ 0.5 (figure 8, left). A
UV spectrometer with a sweeping line of integration allowed
the tomographic reconstruction of the radiations at given
UV wavelengths. Emissions from D I (121.6 nm) and C IV

(28.9 nm) species also formed a uniform shell at roughly the
same position (figure 8, left).

The strongly radiative toroidal plasma shell is also directly
visible on the movies taken by the camera that we consider
in this work (figure 8, right), which were acquired with an
exposure time of 20 µs and a frequency of 40 kHz. These
parameters are marginally sufficient to resolve part of the edge
turbulence dynamics. The camera was oriented according to
the geometric parameters provided in the last column of table 1,
which were in fact estimated a posteriori from the movie itself
using a key-point detection method based on some visible
features of the vessel. During the parameter fitting process,
discrepancies between the experimental movie and our simple
camera model were noted, which corresponded to an estimated
RMS error of 7 pixels in terms of pixel displacement likely
due to optical distortions. In this experiment, the emission
spectrum is dominated by the Hα line, around which the
fluctuations of the camera sensitivity are of the order of 5%,
which we have chosen to neglect in this first analysis.

Thanks to the sufficient resolution in space and time of
the movies, previous analyses focusing on the region where

7



Nucl. Fusion 52 (2012) 013005 R. Nguyen et al

Figure 6. Least-squares (a) and SVD (b)–(d) inversion results for the denoising test with a uniform radiating shell from r = 0.47 to
r = 0.73, and for varying N0, see equation (19). The SVD reconstruction with N = N0 = 1024 is equal to the least-squares solution (a),
equation (16). The colour pictures correspond to SSVD, while the black and white pictures represent KSSVD. White pixels correspond to
values falling outside of the colour scale boundaries.

the line of sight is tangent to a magnetic surface have allowed
extraction of structure advection velocities which are in very
good agreement with direct measurement using Doppler back-
scattering [33]. Here, we apply the tomographic method to
reconstruct the emissivity field over the whole sector of the
poloidal plane visible to the camera, which is hard to analyse
using classical techniques due to the effect of the optical
projection.

To illustrate and discuss the results of the method, four
consecutive movie frames are considered here (figure 9, left
to right). Note that the movie was first cropped to focus
on the most active region. In addition, a very simple pre-
processing was applied to the movie beforehand, in order to
remove vertically propagating horizontal bands (as seen in
figure 8, right) which were likely due to an electronic artefact.
Moreover, the time average of the whole movie was subtracted
from each frame, which helps us to decrease the effect of
reflection on the chamber wall. The algorithm is then applied
directly to the fluctuations in the signal instead of the full signal
(figure 9, top row).

The inverted maps of emissivity fluctuations are shown
in the second row of figure 9. The obtained emissivity fields
are quite smooth except for some very intense and localized
artifacts, which we interpret as leftovers from the noise. Since
those fall out of the colour scale, they can be identified by
looking for white pixels in the image. Examination of the
four frames reveals that structures tend to propagate counter-
clockwise. In the last row of figure 9, we show the artificial
movie frames obtained by applyingK to the inverted emissivity

map. The main features that were visible by eye in the original
movie frames (figure 9, top row) are strongly enhanced in the
denoised one, while the noise has been reduced to a very low
level.

From figure 9 it appears that the most intense positive
fluctuation, found around z = 0 and r = 0.4, is propagating
both poloidally and radially. By measuring the distance
travelled between the first and last frames, rough estimates for
the poloidal and radial propagation velocities of, respectively,
660 m s−1 and 130 m s−1 are obtained.

5. Conclusion

We have proposed a new method for reconstructing the
volumic light emissivity map of a tokamak plasma using a
single camera. Our method relies on the hypothesis that the
emissivity varies sufficiently slowly along magnetic field lines.
We have demonstrated its feasibility using simple academic
test cases, and validated its robustness by applying it to
independently generated artificial movies based on numerical
computations of plasma edge fluctuations by the Tokam 2D
code. We have also highlighted the benefits of the non-
linear denoising capabilities of wavelets as compared with
more classical least-squares approaches to ill-posed inverse
problems, namely the singular value decomposition (SVD).
Finally, we have shown how the method could be applied to
an actual experimental movie and reveal the propagation of a
structure in the (r, θ) plane.
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Figure 7. Inversion test with artificial image generated from the TOKAM code. (a) Test emissivity field obtained from a TOKAM run (ion
density raised to fourth power). (b) Artificial camera image obtained by stacking method (see text). (c) WVD-inverted emissivity SR (the
white pixels correspond to negative values). (d) Original emissivity field subsampled on the 32 × 32 grid for meaningful comparison. (e) IR

obtained by applying K to SR .

Figure 8. Left: radial radiation profiles during the detached phase of TS42967 as estimated from tomographic bolometry (blue) and
sweeping UV spectrometer (magenta and red). Right: full movie frame acquired by the tangential visible camera during the detached phase
of TS42967.

The technical tool underlying our approach is the wavelet-

vaguelette decomposition [15] (WVD), which is an efficient

way of solving ill-posed inverse problems in the presence of

noise. Thanks to the localization of the wavelets, features such

as blobs and fronts are preserved in the denoised emissivity

map. We have seen that some artifacts persist in the denoised

output, but there are hopes that the method could be improved

in the future, for example by choosing the threshold in a more

refined way. Compared with the classical SVD, WVD yields

much better results and appears to be a very promising method
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Figure 9. WVD-inversion of four consecutive experimental movie frames (left to right) from Tore Supra discharge TS42967. Top row:
noisy movie frames used as input for the WVD-algorithm. Middle row: reconstructed emissivity maps in the (r, θ) plane obtained as a result
of WVD-inversion. Bottom row: denoised artificial movie frames obtained by applying K to the reconstructed emissivity maps.

for future application to data from high speed imaging of
tokamaks.

The next issue that should be readily addressed is
the thorough experimental validation of the method, by
comparison with other existing diagnostics, for example
Doppler reflectometry [34]. Note that the possible effect
of the spectral response of the camera should be carefully
investigated in future studies, especially those involving more
radiating species, and the possibility of using a filter should be
considered. The space resolved emissivity maps that will then
be obtained will make new quantities available to experimental

investigation, which could facilitate the study of blob velocity,
mode coupling, etc, as is already done in linear devices [35].
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Rev. Math. Iberoamerica 3 163–89

[18] Farge M., Schneider K. and Devynck P. 2006 Extraction of
coherent bursts from turbulent edge plasma in magnetic
fusion devices using orthogonal wavelets Phys. Plasmas
13 042304

[19] Kolaczyk E.D. 1996 A wavelet shrinkage approach to
tomographic image reconstruction J. Am. Stat. Assoc.
91 1079–90

[20] Cavalier L. and Koo J.-Y. 2002 Poisson intensity estimation
for tomographic data using a wavelet shrinkage approach
IEEE Trans. Inform. Theory. 48 2794–802

[21] Kalifa J., Laine A. and Esser P.D. 2003 Regularization in
tomographic reconstruction using thresholding estimators
IEEE Trans. Med. Imaging. 22 351–9
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[23] Bockhorn H., Fröhlich J. and Schneider K. 1999 An adaptive
two-dimensional wavelet-vaguelette algorithm for the
computation of flame balls Combust. Theory Modelling
3 177–98

[24] Mallat S. 1999 A Wavelet Tour of Signal Processing (New
York: Academic)

[25] Meyer Y 1997 Ondelettes et opérateurs vol 1-2 (Paris:
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