Conference paper Open Access

Coupling of ASTEC and RASCAL 4.3 Codes to Evaluate the Source Term and the Radiological Consequences of a Loss-of-Cooling Accident at a Spent Fuel Pool

Antonio Guglielmelli; Stefano Ederli; Fulvio Mascari; Federico Rocchi; Pietro Maccari

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.4742304</identifier>
      <creatorName>Antonio Guglielmelli</creatorName>
      <creatorName>Stefano Ederli</creatorName>
      <creatorName>Fulvio Mascari</creatorName>
      <creatorName>Federico Rocchi</creatorName>
      <creatorName>Pietro Maccari</creatorName>
      <affiliation>University of Bologna</affiliation>
    <title>Coupling of ASTEC and RASCAL 4.3 Codes to Evaluate the Source Term and the Radiological Consequences of a Loss-of-Cooling Accident at a Spent Fuel Pool</title>
    <date dateType="Issued">2020-09-01</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4742303</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;This paper deals with a general methodology to evaluate the Source Term (ST) and the Radiological Consequences (RC) of a Severe Accident (SA) at a Fukushima-like Spent Fuel Pool (SFP) by coupling ASTEC 2.1 and RASCAL 4.3 codes. Essentially, the ST provided by ASTEC is used as input to RASCAL to perform a RC analysis. This methodology was developed as a preparatory study for the Management and Uncertainties in Severe Accident (MUSA) H2020 European Project, coordinated by CIEMAT. Within MUSA project, the laboratory for the Safety of Nuclear Installation of ENEA is involved in the Innovative Management of SFP Accidents Work Package (WP6), coordinates by IRSN. Within WP6, ENEA is committed to perform an analysis on a Fukushima-like SFP with the aim to apply innovative measures on the SFP Severe Accident Management to mitigate the RC of the accident itself. In order to perform the RC studies, the Fukushima-like SFP has been assumed located in one of the Italian cross-border NPP sites. The weather data connected with the radionuclides transport in atmosphere phase are both standard and real hourly meteorological data. The results of the RC for 96 hours of ST release from the SFP in a range of 160 km from the emission point are reported in terms of Total Effective Dose Equivalent (TEDE), I-131 thyroid dose and Cs-137 total ground deposition. The mitigating effect on ST and on RC of the cooling spray system (CSS) actuated with several pH values (i.e., 4,7,10) was also investigated.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/847441/">847441</awardNumber>
All versions This version
Views 2626
Downloads 1919
Data volume 16.3 MB16.3 MB
Unique views 2424
Unique downloads 1919


Cite as