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Abstract. Effective tutoring during motor learning requires to provide
the appropriate physical assistance to the learners, but at the same time
to assess and adapt to their state, to avoid frustration. With the aim of
endowing robot tutors with these abilities, we designed an experiment
in which participants had to acquire a new motor ability - balancing
an unstable inverted pendulum - with the support of a robot provid-
ing fixed physical assistance. We analyzed participants’ behavior and
explicit evaluations to (i) identify the motor strategy associated with
best performances in the task; (ii) assess whether natural facial expres-
sions automatically extracted from cameras during task execution can
inform about the participant’s state. The results indicate that the vari-
ation and the mean of the wrist velocity are the most relevant in the
effective balancing strategy, suggesting that a robot tutor could reorient
the attention of the pupil on this parameter to facilitate the learning
process. Moreover, facial expressions vary significantly during the task,
especially in the dimension of Valence, which decreases with training.
Interestingly, only when the robot had an anthropomorphic presence,
Valence correlated with the degree of frustration experienced in the task.
These findings highlight that both physical behavior and affective signals
could be integrated by an autonomous robot to generate adaptive and
individualized assistance, mindful both of the learning process and the
partner’s affective state.

Keywords: Social Robot Tutor · Motor Skill Learning · Multimodal
Assistance.

1 Introduction

The acquisition of qualified motor skills is crucial in human daily and profes-
sional life. The role of the expert tutor in the skill transfer process is of critical
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importance and often relays on a series of implicit signals in which several com-
munication channels are involved. Indeed, the interaction between the expert and
the learner could be seen as a continuous flow of physical and affective, social sig-
nals, which lead the tutor to build a complex and complete model of the pupil’s
skills and state and to act accordingly. This is what happens, for example, when
a physiotherapist trains a patient to recover certain motor skills. Beyond the se-
lection of the appropriate force and physical assistance to support the learning,
the expert physiotherapists are mindful of the state of their patients. They aim
at keeping the patients committed to the task, but at the same time, they mon-
itor the stress, anger, or other negative reactions that might be triggered by the
lengthy and often challenging rehabilitation process. Given the widespread adop-
tion of robotics in the context of rehabilitation [8], it would be desirable that also
robot tutors would exhibit a similar ability of understanding and adapting to
the learner’s needs both from the physical and the affective perspectives. In the
field of motor skill learning, many researchers have focused mostly on physical
interactions between humans and robots to define the optimal training strategy
[7, 14]. On the other hand, several studies have demonstrated the potential of so-
cial robots to positively contribute to users’ learning and experience in the field
of skill acquisition [5, 13]. Also, it has been shown that the presence of physical
robots may have advantages in sensing and using affective data, by inducing
higher degrees of emotional expressiveness [12]. These results suggest not only
that embodied social robots may be a more effective medium for developing intel-
ligent tutoring systems, but also that integrating affect-awareness in the tutoring
model can lead to important benefits. We state that, for motor learning to be
effective and to optimize the experience of the human naive, social robot tutors
should integrate into their decision-making process physical and performance-
related information with social and affective cues. However, works that focus on
the relative roles of the physical and the social components in a single, unified
setting are still scarce. The design of an optimal assistive architecture for social
robots is an open challenge that implies facing different aspects. Indeed, before
implementing the robot tutoring behavior, it is necessary to (1) understand the
effect of the physical presence of the social robot as an expert trainer on the per-
formance and experience of the subjects, and (2) identify the most informative
cues that the robot has to exploit in order to decide the best way to assist the
learner. In the current work, we present a novel experimental design in which
naive participants had to learn the right strategy to accomplish a complex mo-
tor task, i.e. stabilizing an inverted pendulum by using a robotic manipulandum,
the Wristbot [9, 8]. We ran a between-subjects study: participants of both groups
performed the training with physical assistance that facilitated the task in the
same way. However, while for the Control group the assistance was attributed
to the Wristbot, for the iCub group the humanoid robot iCub [10] pretended to
provide the assistance. In doing so, it exhibited some social behaviors (as gazing
and talking) and played the role of the expert tutor. In a previous study [4], we
reported the effect of the presence of the humanoid social robot embodying the
physical assistance on the performance and the self-reported experience of the
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naive learners, addressing the first of the above-mentioned issues. We observed
that people who interacted with the humanoid robot iCub reported a more enjoy-
able training experience, without negative effects on attention and effort levels.
Also, for both groups, the training was effective, with significant improvements
in performance in the test phase. In light of the results obtained, in this study
we want to address the second main question and deepen the understanding of
the relative role of the different physical and social cues directly detectable by
the robot and their potential use in the tutoring interaction. In particular, we
addressed the following research questions: i) concerning the physical cues, we
are interested in investigating which are the most significant features of partic-
ipants’ motion that differentiate a successful from an unsuccessful strategy. A
robot tutor endowed with such information could guide the learner’s attention
to selectively focus on the most relevant motion properties to facilitate the train-
ing; ii) in the context of affective cues analysis, we tested if it was possible to
infer the users’ state starting from implicit affective signals (like Arousal and
Valence) computed from the participants’ facial expressions, by comparing them
with the self-reported judgments obtained through questionnaires. Moreover, we
evaluated whether and how the presence of the social humanoid tutor changed
the communicative behavior of the naive subjects.

2 Methods

2.1 Participants

We recruited 32 participants (18 females, 14 males). Half of the subjects were
tested in the Control group (9 females, 7 males, 26.1±3.9 years of age), and the
remaining were tested in the iCub group (9 females, 7 males, 27.1±3.1 years of
age). All participants gave their written informed consent before participating in
the study. They were right-handed and did not have any known neurological or
physical impairment. The research was approved by the local ethical committee
of the Liguria Region (n. 222REG2015).

2.2 Experimental Setup

The setup comprised the inverted pendulum structure, a robotic manipulandum
(the Wristbot), and, for the iCub group, also the humanoid robot iCub. The
pendulum structure was composed of a table on which an inverted motorized
pendulum was fixed. The pendulum was made of a carbon fiber rod 52 cm long,
linked on its basis to a brushless motor. The pendulum had a maximal angular
excursion of ±40 degrees. During the task, participants sat on a fixed chair in
front of the pendulum structure, holding with their right hand the Wristbot han-
dle (Fig. 1, right panel) that worked as a haptic joystick to deliver forces directly
to the pendulum and control its position. For this specific task, the Wristbot al-
lowed only movements on the prono-supination plane of the human wrist, with
a maximal angular displacement of ±60 degrees. A high-resolution RGB camera
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was placed on the opposite side of the pendulum structure, recording the facial
expressions of participants for subsequent offline analysis. On the same side, for
the iCub group, the humanoid robot stood on a fixed platform facing the partic-
ipant. A one-meter sided squared surface covered the pendulum structure and
the hands of both the subject and the robot (Fig. 1, left panel).

Fig. 1. In the left panel, the robot iCub and the participant facing each other on the
opposite sides of the pendulum structure while performing the task in the training
phase. In the right panel, the robotic manipulandum Wristbot used by the subjects to
control the pendulum.

2.3 Protocol

Three different phases were comprised in the protocol, for both groups: i. base-
line (1 trial), ii. training (5 trials) and iii. test (3 trials). For the whole duration
of each trial (2.5 minutes), participants were required to keep in balance the in-
verted pendulum for as long as possible, by controlling it acting on the angular
orientation of the Wristbot handle. In between trials, they had 2.5 minutes of
resting time to prevent fatigue from affecting performance. An additional real-
time auditory feedback was provided whose magnitude increased with the an-
gular distance between the pendulum and the vertical (i.e., the equilibrium). At
the beginning of the experiment, it was explicitly explained to the subjects that
during the training phase there would have been physical assistance facilitating
the task coming from the Wristbot or iCub, depending on the experimental con-
dition. For the iCub group, the humanoid robot iCub also showed some social
behaviors, which however did not adapt to participants’ performance, to emu-
late the condition in the Control group where no feedback was provided by the
Wristbot. Before starting the baseline, iCub introduced itself and gave a brief
introductory explanation about the task objective. At the beginning of the train-
ing trials, it looked at the participant’s face and prepared itself to play, then it
invited participants to get ready by saying an exhortation, such as ”Let’s start”.
When the game started, iCub followed the pendulum with its gaze and per-
formed specific prono-supination movements of its forearm to mimic the control
on the pendulum. At the end of the session, it invited the subject to take some
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minutes of rest before starting the next trial. It pretended to take a rest as well,
looking around in the room in an exploratory way. During baseline and test ses-
sions, iCub remained in its rest position and looked at the subjects performing
the task, by alternating its gaze fixation point between the tool and the subject’s
face. The robot exhibited a happy, friendly face for the whole duration of the
experiment, except during the training phase in which it looked at the pendu-
lum with a focused expression. Except for the face-tracking behavior, the robot
behavior was pre-programmed and not responsive to stimuli from participants.

Questionnaires Participants of both groups were required to compile ques-
tionnaires at the end of the experiment: the NASA-TLX workload assessment
[6] and a short version of the Intrinsic Motivation Inventory (IMI) [1], com-
prising 14 items from the sub-scales Competence, Effort/Importance, and In-
terest/Enjoyment. Also, participants of iCub group were asked to fill in some
questionnaires regarding their perception of the robot, among which the scales
Anthropomorphism, Animacy, Likeability, and Perceived Intelligence of the God-
speed questionnaire [3]. See [4] for a more detailed description.

2.4 The Task

The task was designed to meet an optimal challenge level, without resulting too
easy and leading to a lack of interest, or too arduous and preventing learning.
To achieve this goal, we implemented a virtual dynamics that determined the
angular orientation of the pendulum starting from the angular orientation of
the Wristbot. The dynamics included a non-linear spring, which virtually con-
nected the Wristbot to the pendulum, and an unstable viscous force-field in
which the pendulum moved. An initial pilot study was conducted on a similar
sample population to choose the parameters of the virtual dynamics, the average
trial duration, and the number of trials needed to learn the successful strategy.
During the training phase, participants experienced facilitated dynamics thanks
to assistance that reduced the instability of the viscous force-field of 30%. The
assistance level was selected after piloting, and it wanted to emulate the help of
an expert trainer that intervenes in the task by dampening the fall of the pen-
dulum, making it easier to control. The training phase was thought not to fully
counterbalance the instability, but rather to facilitate the task while maintain-
ing it still challenging. The assistance was constant during the whole training
phase and did not adapt to participants’ performance. This choice met the need
to keep the two experimental conditions as comparable as possible. In the test
phase participants had to accomplish the same task they faced in the baseline
(with no assistance); we could then assess whether they could generalize the skill
learned during the training.

2.5 Data Analysis

Kinematic Data Starting from the wrist position, i.e. the angular wrist dis-
placement in the range ±60 degrees, sampled at 100 Hz and low-pass filtered at
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8 Hz, the angular velocities and accelerations were computed through a sixth-
order Savitzky-Golay low-pass filter (10 Hz cut-off frequency). For each trial,
different features in time and frequency domain were computed starting from
the wrist velocity and acceleration signals (Time Domain: 1. Mean Amplitude
(MEAN), 2. Maximum Amplitude (MAX), 3. Standard Deviation (SD), 4. Root
Mean Square (RMS), 5. Maximum Amplitude Variation (PP), 6. Skewness (SK),
7. Kurtosis (KRT), 8. Crest Factor (CF), 9. Number of Peaks (PKS); Frequency
Domain: 10. Maximum of the Power Spectrum Density (MAX POW), 11. Dom-
inant Frequency (DF), 12. Total Power (POW), 13. Power Ratio (PR)). After
having tested windows of different lengths (1, 1/3, 1/5, and 1/10 of the whole
trial duration) to determine the optimal one, we choose the one which gave us
the best model accuracy, i.e. 1/3. Subjects’ performances were computed as a
weighted sum of the pendulum angular positions. In this way, participants who
held positions around the vertical for longer were rewarded with higher scores.
Therefore, the performances were continuous values expressed in percentage.
Since we aimed to test whether it was possible to infer subjects’ performances
starting from the kinematic features of the wrist and to identify the more infor-
mative features able to discriminate between a successful and an unsuccessful
strategy, we discretized subjects’ performances and turned into a classification
problem. Specifically, performances above a certain threshold (computed as the
mean performance of the whole population and equal to ∼61%) were labeled as
good performance and performances below that threshold were labeled as bad
performance. Starting from the assumption that the successful strategy did not
change among the two groups conditions, and in order to exploit as much data
as possible, we trained a machine learning classification model with all the obser-
vations from the 32 subjects, excluding the trials of the five training sessions, in
which the task was facilitated by the assistance. Considering that each trial was
divided into 3 windows of the same length, our final dataset consisted then in 384
observations and was balanced, with a ratio between good and bad performance
equal to 0.50. Features were rescaled trough Z-score normalization such that they
had the properties of a standard normal distribution with a mean of zero and
a standard deviation of one. We implemented a Logistic Regression model with
the Elastic-Net regularization method. We followed a 10-fold cross-validation
procedure with a nested 5-fold cross-validation for optimal hyperparameter tun-
ing. To enforce sparsity we set l1 ratio hyperparameter equal to 0.95. We tuned
the regularization parameter C using logarithmic spaced values in the interval
[10−2; 102]. The sparsity regularization approach allowed us to have an insight
into the most informative features of the model, by acting on the coefficients of
the correlated predictor and shrinking towards zero the less relevant ones. The
model was implemented using Scikit-Learn library [11].

Affective Data To analyze subjects’ facial expressions we used the FaceChan-
nel neural network [2]. The FaceChannel is a lightweight convolutional neural
network that allows for fast training and fine-tuning of facial expressions. It
presents a compact architectural design with state-of-the-art facial expression
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Fig. 2. Example of the FaceChannel network output, showing the Arousal and Valence
values for each processed video frame.

recognition and which allows for fast inference times, endowing it with the ca-
pability to be deployed in the real-time analysis of the recorded videos. The
FaceChannel was trained using a large-scale dataset with more than 1 million
datapoints and it can describe a facial expression using a continuous represen-
tation of Arousal and Valence. We processed each video by localizing the face
using the caffee-based face detector of OpenCV 4 in each of the video’s frame.
We then resized each detected face to a dimension of 96x96 pixels and fed it to
the FaceChannel. The network outputs Arousal and Valence within the range
of -1 and 1, representing calm/negative and excited/positive respectively for
each face (Fig. 2). We considered in the analysis only the portions of videos in
which the subjects performed the task (plus ∼3 seconds before and after the task
execution) since in this phase we were mainly interested in studying the expres-
siveness of the naive subjects while learning the new motor skill, to potentially
exploit in the future these implicit communicative signals and retrieve informa-
tion about their status. The data were then smoothed with a median filter of
0.5 seconds. Due to technical failures, some video data were missing (2.08% for
the iCub group and 5.56% for the Control group). Data were compared among
different sessions or between different groups through ANOVAs. When data re-
sulted not following the sphericity assumption, a Greenhouse-Geisser correction
was applied. The data resulting from questionnaires were also analyzed to inves-
tigate whether some correlation exists between the perception of the robot iCub
and the observed expressiveness. The details of each analysis are reported in the
results.

4 https://opencv.org/
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3 Results

3.1 Classification Model

Since the strategy leading to a successful outcome was not known a priori, we
tested whether it was possible to infer the skill level of the naive learners on the
basis of some regularity of the wrist movement. The machine learning classifica-
tion model trained with the wrist’s velocity and acceleration features of all the
subjects had a mean accuracy of 76.80±7.43%. The most recurrent best C was
3.16. In order to interpret the model’s coefficients and assess the most relevant
features, we trained the model fixing C to 3.16 and l1 ratio to 0.95. This model
gave a test accuracy of 76.26±7.20%.

All the model coefficients are shown in Fig. 3. The higher the amplitude of
coefficients, the higher was the contribution of the corresponding features to the
model classification. Specifically, as you can see from the figure, the features
that resulted most informative for the model were the standard deviation and
the average value of the wrist velocity, together with the mean and the power
of the spectrum of the acceleration. This can be interpreted indeed as the need
for subjects of making rapid and frequent wrist movement adjustments to keep
the pendulum in balance. The robot tutor can be provided with such knowledge
and improve the assistance by acting (directly or indirectly) on the movement
strategy adopted by the learners, by intervening specifically on their kinematic
pattern.

Fig. 3. Average coefficients of the classification model.
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3.2 Communicative Behavior

To test whether subjects’ expressiveness significantly changed among the dif-
ferent sessions (i.e., baseline, training, and test), and between the 2 groups, we
performed a Mixed Model ANOVA with “sessions” as within factor and “groups”
as between factor. For Valence, the results showed that there was a significant
effect of sessions (F (1.34, 28.1) = 8.54, p < .01), while there was not significant
effect of groups (F (1, 21) = 0.724, p = .40), nor of the interaction between the
two (F (1.34, 28.16) = 0.376, p = .67). A post-hoc Tukey test revealed that the
significant effect of sessions reflected a significant difference in Valence between
baseline and training (p < .01) and between baseline and test (p < .01) (Fig.
4). These results indicated that while participants showed positive Valence when
approaching the challenging task for the first time, in the following sessions they
tended to be more neutral or even showed negative Valence. For Arousal, the
ANOVA did not reveal any significant effect of group (F(1, 21) = 2.39, p = .14)
or session (F (2, 42) = 1.44, p = .25). Only the interaction approached signifi-
cance (F (2,42) = 3.05, p = 0.058), with a tendency for Arousal to decrease over
trials towards negative values in the Control group. These results suggested that
over the duration of the experiment participants modified their facial expression
and it was possible to detect a significant modification in their Valence.

On average the pattern of such changes was very similar between the two
groups, i.e., with and without the social humanoid tutor. It seemed therefore
more driven by the task than by the presence of a partner. We should consider,
however, that the task designed led subjects to stay constantly focused on the
pendulum position, so their expressiveness when performing the task was limited.
Moreover, we did not found any significant interaction between performance
and facial expression, meaning that poor outcomes in task performance are not
necessarily reflected in negative emotions and vice versa. At the same time,
positive emotions are not necessarily predictive of successful performance. This
suggested that the relations between users’ state and performance are not trivial
and above all, they cannot be generalized under predefined rules.

To test whether subjects’ expressiveness was communicative of their self-
reported states, we performed Pearson correlation between affective data and
the scores of the post-questionnaires (namely IMI and NASA-TLX). The results
showed that the mean Valence correlates significantly (and positively) with the
Frustration score of NASA-TLX questionnaire (r(13) = 0.53, p = .043), but
only for the iCub group. However, when performing Spearman correlation this
tendency is no more significant (rs(13) = 0.44, p = .09).

No significant correlations were found instead for the Control group between
facial expressions and self-reported measures. Lastly, to further explore poten-
tial relations between the evaluation of the robot iCub and expressiveness, we
performed correlation between post-questionnaires sub-scales regarding robot
perception and Arousal and Valence values. A significant negative correlation
between Valence and Anthropomorphism subscale of Godspeed questionnaire was
found (Pearson’s r(14) = -0.54, p = .032; Spearman’s rho(14) = -0.61, p = .012),
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Fig. 4. Mean and Standard Error of Valence for each group in the different sessions
(left panel). Valence in baseline versus Valence in test for each subject of the two groups
(right panel).

meaning that participants who ascribed higher anthropomorphic traits to iCub
showed lower values of Valence.

4 Discussion

In this study, we started to address the issue of the need to integrate different
communication signals in the assistive architecture of robot tutors. Indeed, we
state that for motor learning to be effective and to optimize the experience of
naive humans, robots should integrate into their decision-making process phys-
ical and performance-related information with social and affective cues. To this
aim, we proposed a novel experimental design where it is possible to record and
send both haptic signals, by using the robotic handle Wristbot, and social cues,
through the humanoid robot iCub. We asked participants to learn a complex
task, namely to balance an unstable inverted pendulum, in two different exper-
imental conditions: one that involved training with the humanoid robot iCub,
embodying the physical assistance, and one in which participants had to per-
form the same training but using the Wristbot alone. In a previous study [4],
we have demonstrated that both groups effectively acquired the skill by lever-
aging the physical assistance as they significantly improved their stabilization
performance even when the assistance was removed; moreover, learning in a
context of interaction with a humanoid robot assistant led subjects to increased
motivation and more enjoyable training experience, without negative effects on
attention and perceived effort. In this study, we wanted to take a step further
and investigate deeply the relative contribution of the different communicative
channels to understand which information the robot tutor should exploit in the
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future to enrich its knowledge about user’s skills and emotional state, to build a
comprehensive and exhaustive user model to rely on when assisting. To answer
our research questions, we computed and analyzed several kinematic features of
the wrist movement and implemented a machine learning classification model to
infer the performance of subjects of both groups. A Logistic Regression model
with Elastic-Net regularization was able to predict the performance of the sub-
jects with an accuracy of 76.26±7.20%. The sparsity method allowed us to rank
the most informative features of the model. These results allowed us to acquire
a more solid knowledge of the strategy needed to succeed in the task, not known
a priori. The results indicated that the variation and the mean of the wrist ve-
locity are the most relevant features for an effective balancing strategy. This
means that the social robot tutor could improve the assistance by directing the
attention of the learners on these parameters, suggesting them to keep the wrist
velocity high and stable, or, if necessary, delivering directly physical assistance.
Then we wanted to test whether and how the affective state of the participants,
described in terms of Arousal and Valence computed from their facial expres-
sions, changed among sessions and group conditions. The Valence recorded in
the baseline was significantly higher than the one detected by the software in
the training and test sessions. We believe that the novelty component and the
difficulty experienced in the first trial provoked the higher expressivity of the
naive participants. No significant difference was found in the amount of Arousal
and Valence between the 2 groups, probably because the task required high and
continuous focus on the pendulum, limiting the variability of expressiveness. Of
interest, when testing whether the expressive behavior of the subjects correlates
with the self-reported measures of the post-questionnaires, we found a significant
relationship between frustration score and Valence values only in the iCub group,
while no significant correlations were found for the Control group. These results
lead us to speculate that the presence of the embodied agent seemed to influence
the communicative intent of their expressiveness as if to make their emotional
states explicit and easily readable by the partner. The outcomes of the corre-
lation between iCub perception and affective state showed that subjects who
ascribed higher anthropomorphic traits to iCub presented lower values of Va-
lence when involved in a complex and challenging task. As future development
of this work, we are interested in reading both motor behavior and affective
states in real-time to build an adaptive assistive architecture, which will allow
us to get closer to robots that are not just assistive devices but rather assistive
partners, able to guide humans in both short-term and long-term processes of
skills learning and recovery and to adapt to their needs through a customized
interaction.
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