Poster Open Access

Analyzing the Kinematics of SITELLE Spectra using Machine Learning

Rhea, Carter; Rousseau-Nepton, Laurie; Prunet, Simon; Hlavacek-Larrondo, Julie; Fabbro, Sébastien; Vale Asari, Natalia; Grasha, Kathryn; Perreault Levasseur, Laurence; Prasow-Émond, Laurence


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210427122726.0</controlfield>
  <controlfield tag="001">4721552</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">April 12-16, 2021</subfield>
    <subfield code="g">GALSPEC2021</subfield>
    <subfield code="a">Extragalactic Spectroscopic Surveys: Past, Present and Future of Galaxy Evolution (GALSPEC2021)</subfield>
    <subfield code="c">Online</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Rousseau-Nepton, Laurie</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Prunet, Simon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Hlavacek-Larrondo, Julie</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Fabbro, Sébastien</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Vale Asari, Natalia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Grasha, Kathryn</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Perreault Levasseur, Laurence</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Prasow-Émond, Laurence</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">820834</subfield>
    <subfield code="z">md5:f4c56cc74b3e97119e5167aae27b3e35</subfield>
    <subfield code="u">https://zenodo.org/record/4721552/files/Galspec2021_CarterRhea.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.eso.org/sci/meetings/2021/galspec2021.html</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-galspec2021</subfield>
    <subfield code="o">oai:zenodo.org:4721552</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">L'Université de Montréal, Canada</subfield>
    <subfield code="a">Rhea, Carter</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Analyzing the Kinematics of SITELLE Spectra using Machine Learning</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-galspec2021</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">We describe the first paper in a series of works in which we explore the application of different machine learning algorithms to the spectral analysis of extra galactic emission regions. We discuss the creation of synthetic spectra replicating the primary optical filter of the SITELLE instrument located at the Canada-France-Hawaii Telescope. We employ a convolutional neural network to learn the kinematic parameters, velocity and line broadening, directly from these spectra. Subsequently, we apply our methodology to a field of the nearby galaxy M33 and demonstrate the efficacy of our results in terms of residuals and computational expediency. We develop an open source framework for users to port this methodology to other IFUs, and we discuss future applications of machine learning to spectral analysis.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4721551</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4721552</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
84
35
views
downloads
All versions This version
Views 8484
Downloads 3535
Data volume 28.7 MB28.7 MB
Unique views 8383
Unique downloads 3535

Share

Cite as