Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Poster Open Access

Analyzing the Kinematics of SITELLE Spectra using Machine Learning

Rhea, Carter; Rousseau-Nepton, Laurie; Prunet, Simon; Hlavacek-Larrondo, Julie; Fabbro, Sébastien; Vale Asari, Natalia; Grasha, Kathryn; Perreault Levasseur, Laurence; Prasow-Émond, Laurence


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4721552</identifier>
  <creators>
    <creator>
      <creatorName>Rhea, Carter</creatorName>
      <givenName>Carter</givenName>
      <familyName>Rhea</familyName>
      <affiliation>L'Université de Montréal, Canada</affiliation>
    </creator>
    <creator>
      <creatorName>Rousseau-Nepton, Laurie</creatorName>
      <givenName>Laurie</givenName>
      <familyName>Rousseau-Nepton</familyName>
    </creator>
    <creator>
      <creatorName>Prunet, Simon</creatorName>
      <givenName>Simon</givenName>
      <familyName>Prunet</familyName>
    </creator>
    <creator>
      <creatorName>Hlavacek-Larrondo, Julie</creatorName>
      <givenName>Julie</givenName>
      <familyName>Hlavacek-Larrondo</familyName>
    </creator>
    <creator>
      <creatorName>Fabbro, Sébastien</creatorName>
      <givenName>Sébastien</givenName>
      <familyName>Fabbro</familyName>
    </creator>
    <creator>
      <creatorName>Vale Asari, Natalia</creatorName>
      <givenName>Natalia</givenName>
      <familyName>Vale Asari</familyName>
    </creator>
    <creator>
      <creatorName>Grasha, Kathryn</creatorName>
      <givenName>Kathryn</givenName>
      <familyName>Grasha</familyName>
    </creator>
    <creator>
      <creatorName>Perreault Levasseur, Laurence</creatorName>
      <givenName>Laurence</givenName>
      <familyName>Perreault Levasseur</familyName>
    </creator>
    <creator>
      <creatorName>Prasow-Émond, Laurence</creatorName>
      <givenName>Laurence</givenName>
      <familyName>Prasow-Émond</familyName>
    </creator>
  </creators>
  <titles>
    <title>Analyzing the Kinematics of SITELLE Spectra using Machine Learning</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-04-26</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4721552</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4721551</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/galspec2021</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We describe the first paper in a series of works in which we explore the application of different machine learning algorithms to the spectral analysis of extra galactic emission regions. We discuss the creation of synthetic spectra replicating the primary optical filter of the SITELLE instrument located at the Canada-France-Hawaii Telescope. We employ a convolutional neural network to learn the kinematic parameters, velocity and line broadening, directly from these spectra. Subsequently, we apply our methodology to a field of the nearby galaxy M33 and demonstrate the efficacy of our results in terms of residuals and computational expediency. We develop an open source framework for users to port this methodology to other IFUs, and we discuss future applications of machine learning to spectral analysis.</description>
  </descriptions>
</resource>
84
35
views
downloads
All versions This version
Views 8484
Downloads 3535
Data volume 28.7 MB28.7 MB
Unique views 8383
Unique downloads 3535

Share

Cite as