i

E-CAM Software Porting and Benchmarking Data V

E-CAM Deliverable 7.10

Deliverable Type: Report
Delivered in April, 2021

E-CAM
The European Centre of Excellence for
Software, Training and Consultancy
in Simulation and Modelling

Funded by the European Union under grant agreement 676531

E-CAM Deliverable 7.10

Page ii

Project and Deliverable Information

Contractual Date of Delivery
Actual Date of Delivery

Project Title E-CAM: An e-infrastructure for software, training and discussion in simulation
and modelling
Project Ref. Grant Agreement 676531
Project Website https://www.e-cam2020.eu
EC Project Officer Juan Pelegrin
Deliverable ID D7.10
Deliverable Nature Report
Dissemination Level Public

Project Month 64(31% January, 2021)
218t April, 2021

Description of Deliverable

Joint technical report on results of (a) porting and optimisation of at least 8
new modules related to those developed in the ESDWs to massively parallel ma-
chines (STFC); and (b) benchmarking and scaling of at least 8 new modules re-
lated to those developed in the ESDWs on a variety of architectures (Juelich).

Document Control Information

Title: E-CAM Software Porting and Benchmarking Data V
ID: D7.10
Document Version: As of April, 2021
Status: Accepted by WP leader
Available at: https://www.e-cam2020.eu/deliverables
with citable version on the E-CAM Zenodo Community page
Document history: Internal Project Management Link
Review Review Status: Reviewed
Written by: Alan O’Cais(Juelich Supercomputing Centre)
. Contributors: Jony Castagna (STFC), Fredrik Robertsén (CSC), Antti Puisto (Aalto Univer-
Authorship sity)
Reviewed by: Godehard Sutmann (Juelich Supercomputing Centre)
Approved by: Godehard Sutmann (Juelich Supercomputing Centre)

Document Keywords

Keywords: | E-CAM,

HPC, CECAM, Materials

21% April, 2021
Disclaimer:This deliverable has bee
Consortium Agreement and the Gra

n prepared by the responsible Work Package of the Project in accordance with the
nt Agreement. It solely reflects the opinion of the parties to such agreements on a

collective basis in the context of the Project and to the extent foreseen in such agreements.

Copyright notices: This deliverable

was co-ordinated by Alan O'Cais' (Juelich Supercomputing Centre) on behalf of

the E-CAM consortium with contributions from Jony Castagna (STFC), Fredrik Robertsén (CSC), Antti Puisto (Aalto
University) . This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of

this license, visit

http:/lcreativecommons.org/licenses/by/4.0.

©®

la.0cais@fz-juelich.de

https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables
https://zenodo.org/communities/e-cam/search?page=1&size=20&q=deliverable&type=publication&subtype=deliverable
https://redmine.e-cam2020.eu/issues/51
http://creativecommons.org/licenses/by/4.0
mailto:a.ocais@fz-juelich.de

E-CAM Deliverable 7.10 Page iii
Contents
Executive Summary 1
1 Introduction 2
2 Porting and Optimisation 3
2.1 Available ReSOUICES o o oo e e e e e 3
2.1.1 PrimaryResOUICeS o it it e e 3
2.1.2 PRACERESOUICTES . . ¢ v v v ot i i et e e e e e e e e e e e e e e e e e et e e e e e 3
2.2 European Environment for Scientific Software Installations 3
2.2.1 Scope of European Environment for Scientific Software Installations (EESSI) 4
2.2.2 Architecture of EESSI. e 4
223 CuITentStatus oo vt e e e e e e e 4
2.2.4 Accessingthe EESSLinfrastructure it ittt e e 5
2.2,5 Optimisationusing EESSI o e e 5
3 Modules and Application Codes 6
3.1 Performance of the EESSIsoftwarestack 6
3.1.1 Customising the Message Passing Interface (MPI) installation 7
3.2 Accelerator Portability e e 7
321 KokkOs . . oo i e 7
322 HIP o e 8
3.3 Application Specific Portingand Scaling L e 9
3.3.1 Porting and Scaling of DL._Meso on Partnership for Advanced Computing in Europe (PRACE) re-
SOUICES . v v v v v vt e ot i et e e e e et e e e e e e e e e e e e e e 9
3.3.2 Load-balancing for the Material PointMethod 11
3.3.3 Expanding the Capabilities of the Ludwig Lattice BoltzmannCode 12
4 Impact 14
References 15
List of Figures
1 Architecture of the EESSI Project. o v i i i it i e e e e e e e e e e e e e e e 4
Comparison of the scalability of GROMACS using EESSI and the JUSUF software stack. The number of
nodes is on the X-axis, giving a maximum of 2048 cores. On the y-axis we have the number of nanosec-
onds GROMACS can simulate per day (which ideally should scale linearly with the core count). 6
3 Comparison of the native CUDA GPU package in LAMMPS to that of the Kokkos package on up to 8 nodes
(With 4 GPUS Pernode). . . . v v v v it e 8
4 Cubble simulation in 2D showing a dynamical phase separation during the coarsening ofa foam. 9
5 Strong and weak scalability plots for DL_Meso for a simple case using different GPU generations. 10
6 Strong and weak scalability plots for DL_Meso for a complex case using different GPU generations. . .. 10
7 Load balancing of highly dynamic movements, a sphere flying througharing. 11
8 Evolution of g (from Eq. 1) over time as the sphere of Fig. 7 passes through the ring. We show the result
with an equi-distribution of work across processes and when using ALL. The ideal value of q is zero. 11
9 Evolution of required simulation walltime of the example from Fig. 7 with an equi-distribution of work
across processesand when using ALL. L L e e e e 12
10 Weak scaling efficiency of Ludwig with and without simple cubic, body-centered cubic, and face-centered
cubic crystalline capillaries. L L e e 12
11 Strongscaling speedup of Ludwig with and without simple cubic, body-centered cubic, and face-centered
cubic crystalline capillaries. L L e 13
List of Tables
1 Comparison of the average wallclock execution times of the Cubble program’s CUDA and HIP imple-

INENTATIONS. . v v v v v ot ot e

E-CAM Deliverable 7.10 Page 1

Executive Summary

The purpose of the current document is to deliver a joint technical report on results of the initial porting and optimi-
sation of 8 new E-CAM modules to massively parallel machines and their benchmarking and scaling on a variety of
architectures. The development of the modules was done in the context of the E-CAM program of Extended Software
Development Workshop (ESDW) events.

As this is the final deliverable in the series we present work related to a total of 13 modules to give more complete
context to what is presented. We focus the discussion on three areas:

* European Environment for Scientific Software Installations (EESSI):

— We see that this effort creates the opportunity to provide complete software stack portability for the E-CAM
community, optimised for all major CPU architectures.

— We show that a centrally maintained, web-based software stack can compete with HPC installations in
terms of performance including when considering interconnect hardware (which impacts the performance
of MPI).

* Accelerator portability
— We present showcase implementations of Kokkos in DL._Meso and n2p2 (as part of LAMMMPS).
— We also present a HIP implementation of the Cubble foam simulation application.

— We show that in both cases, using implementations that are portable among accelerators does not neces-
sarily lead to any drop in performance.

¢ Performance analysis of specific applications

— We study the performance of the DL._Meso application to 2048 GPUs on 3 different generations of NVIDIA
GPUs and compare the performance for both a simple and complex use case. DL._Meso exhibits excellent
weak scalability up to 18 billions particles on all GPU generations.

— We look at the performance improvement of a Material Point Method code when leveraging the ALL load-
balancing library.

— We assess the performance impact of introducing additional scientific capabilities (the ability to simulate
crystalline capillaries) to the Ludwig lattice Boltzmann application.

We also include a short assessment of the impact of the work package on the community. There, we show how we
have prepared the extended E-CAM community for the demands of upcoming exascale systems through addressing
core cross-cutting topics such as

¢ Load balancing - through the development of the ALL load-balancing library,
¢ Intelligent High Throughput Computing - through the development of the jobqueue_features library

¢ Accelerator portability - through the promotion of libraries such as Kokkos, and implementations in E-CAM
codes,

» Portability of entire software stacks - through contributions to EasyBuild and, now, EESSI E-CAM has paved the
way for the portability of entire application stacks and workflows to all the architectures that will be available
through EuroHPC.

http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://github.com/E-CAM/jobqueue_features
https://docs.easybuild.io/en/latest/
https://eessi.github.io/docs/

E-CAM Deliverable 7.10 Page 2

1 Introduction

The purpose of the current deliverable is to present a joint technical report on results of porting and optimisation of
at least 8 new modules related to those developed in the ESDW events to massively parallel machines, and the bench-
marking and scaling of at least 8 modules out of those related to the ESDW events on a variety of architectures.

Previously, this series of deliverables has been presented based on the Work Package (WP) contributions. In this final
deliverable we take the opportunity to present our results in more thematic manner, and also present work related to
13 E-CAM modules. In this deliverable we address

* portability of entire software stacks through European Environment for Scientific Software Installations
¢ accelerator portability through Kokkos and HIP
as well as presenting two individual application performance analysis cases.

The modules and applications have been benchmarked on the High Performance Computing (HPC) resources avail-
able to the project. Scaling and performance plots were generated for a variety of relevant systems and architectures
(detailed in Section 3).

E-CAM Deliverable 7.10 Page 3

2 Porting and Optimisation

This section covers the hardware resources available for WP7 "Hardware considerations and the PRACE relationship”
and a new approach to the porting effort required for these architectures.

In previous iterations of this deliverable, we have maintained a section which describes the E-CAM workflow when
it comes to our porting, optimisation, benchmarking and scaling efforts. Since the current report is the final in the
series, we forego this section to focus instead on a future-oriented workflow that we recommend to community soft-
ware developers. This workflow centres around the EESSI initiative that E-CAM has been involved with, that will be
described in detail below.

2.1 Available Resources
2.1.1 Primary Resources

A number of HPC sites are project partners and have generously made development resources available to the project,
particularly in the case where a specific HPC architecture component was not already available to the project. Given
the discussion with respect to hardware in D7.7: Hardware Developments IV[1], we focus our efforts on cluster-type
systems (with latest architectures) and accelerators. Our primary development hardware has been

o JUWELS: a modular supercomputing architecture with a GPU booster”, #7 in Top500 as of November 2020 (avail-
able through partner FZJ-JSC);

for general development work.

2.1.2 PRACE Resources

In the case of Partnership for Advanced Computing in Europe (PRACE) resources, there are two main avenues for
access to resources. Each Centre of Excellence (CoE), such as E-CAM, has been allocated 0.5% of the production
resource budget of PRACE. The second avenue is the normal PRACE Preparatory Access Call process. E-CAM has been
successful three times in acquiring additional resources through this second avenue, making an additional 1.55M core
hours available to the project.

We provide the complete list of supercomputers available through PRACE here (the configuration details of the hard-
ware are available in the PRACE Project Access Terms of Reference):

¢ Marconi Broadwell, 180.000 core hours
e Marconi KNL, 3.050.000 core hours

* Joliot Curie AMD, 1.715.000 core hours
¢ Joliot Curie KNL, 470.000 core hours

¢ Joliot Curie SKL, 660.000 core hours

JUWELS, 350.000 core hours

Hawk, 2.300.000 core hours
e MareNostrum4, 1.200.000 core hours
¢ Piz Daint, 2.720.000 core hours, 40.000 node hours

For 2019/2020, we have requested access to Joliot-Curie, JUWELS, Piz-Daint and Marenostrum since this set covers all
our architecture and scalability needs (in addition to our existing access to resources).

2.2 European Environment for Scientific Software Installations

The European Environment for Scientific Software Installations (EESSI) (pronounced "easy") is a collaboration be-
tween a number of academic and industrial partners in the HPC community to which E-CAM is contributing. Through
the EESSI project, they want to set up a shared stack of scientific software installations to avoid not only duplicate work
across HPC sites but also the execution of sub-optimal applications on HPC resources.

2The booster module is intended to accelerate calculations on a cluster module. Complex parts of the code, which are difficult to calculate
simultaneously on a large number of processors, are executed on the so-called cluster module with simpler parts of the program that can be
processed in parallel with greater efficiency transferred to the booster module.

https://eessi.github.io/docs/
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
http://www.prace-ri.eu/prace-preparatory-access/
https://prace-ri.eu/wp-content/uploads/Terms_of_Reference_Call20.pdf
https://www.eessi-hpc.org/
https://eessi.github.io/docs/partners/

E-CAM Deliverable 7.10 Page 4

They want to focus not only on the performance of the software, but also on automating the workflow for maintain-
ing the software stack, thoroughly testing the installations (including correctness, performance and scalability), and
collaborating efficiently.

2.2.1 Scope of EESSI

For end users, EESSI wants to provide a uniform user experience with respect to available scientific software, regard-
less of which system they use. The software stack is intended to work on laptops, personal workstations, in the cloud
and on the largest HPC infrastructures. This means we will need to support different CPUs, networks, GPUs, and so
on. We intend to make this work for any Linux distribution, and a wide variety of CPU architectures (Intel, AMD, ARM,
POWER, RISC-V) and accelerators.

2.2.2 Architecture of EESSI

The project replicates how CERN implements software distribution using the CernVM File System (CernVM-FS) with
modifications for the HPC space. The basic architecture can be seen in Fig. 1.

Host OS Compatibility layer
levelling the ground across Linux distros

provides
network
& GPU
drivers,
resource
manager
(Slurm),

host operating system (any Linux distribution)

Figure 1: Architecture of the EESSI project.

The bottom layer is the filesystem layer CernVM-FS, which is responsible for distributing the software stack across
clients. The middle layer is a compatibility layer, which is based on Gentoo Prefix and ensures that the software stack
is compatible with multiple different client operating systems. The top layer is the software layer which contains the
actual scientific software applications and their dependencies. This layer is managed via EasyBuild, a software build
and installation framework that facilitates the management of (scientific) software on HPC systems in an efficient way.
EasyBuild is used by dozens (and possibly hundreds) of HPC sites including JSC and CSCS who are PRACE Hosting
Members.

The design is intended to allow the support of multiple architectures (x86, ARM, POWER,...) as well as accelerators
such as GPUs. The compatibility and software layers are replicated (and individually optimised) for different archi-
tectures within CernVM-FS, with each client automatically addressing the appropriate architecture-specific subdirec-
tory.

The host OS still provides a couple of things, like drivers for network and GPU, support for shared filesystems like
GPFS and Lustre, a resource manager like Slurm, and so on.

We will use ReFrame (developed at CSCS) to do correctness, performance and scalability testing of the stack. The
research methods, algorithms, and code parallelization approach used within the applications themselves is outside
our control, but we will provide each software package such that it's hardware capabilities are fully exposed.

The details of how the implementation functions is described in the EESSI documentation and is based on the model
currently implemented by ComputeCanada [2].
2.2.3 Current Status

EESSI is currently in the pilot phase, where the design is being realised and a variety of related workflows are being
automated. For the pilot phase, a particular set of applications are being used which are notoriously difficult to install

https://cernvm.cern.ch/portal/filesystem
https://wiki.gentoo.org/wiki/Project:Prefix
https://easybuild.readthedocs.io/
https://reframe-hpc.readthedocs.io/
https://eessi.github.io/docs/

E-CAM Deliverable 7.10 Page 5

and/or have a very large user base. These include GROMACS, OpenFoam, TensorFlow, Bioconductor and OSU-Micro-
Benchmarks (for testing MPI performance). As a result of the extensive dependencies of these applications, the pilot
software stack includes more than 100 software packages (and hundreds of Python and R extensions).

EESSI currently supports all major CPU vendors (Intel, AMD, Power and ARM) and a wide set of micro-architectures:
* x86_64
- generic (currently implies -march=x86-64 and -mtune=generic)
- AMD
« Zen2 (Rome)
- Intel
* Haswell
* Skylake (avx512)
¢ aarch64/arm64

generic (currently implies -march=armv8-a and -mtune=generic)

— AWS Graviton2

Fujitsu A64FX

— Marvell Thunder X2
* ppc64le

— IBM POWER9

EESSI is also eager to begin porting the infrastructure to RISC-V and is currently waiting for access to hardware. Ulti-
mately, including an application in EESSI means the porting of that application to all these architectures, and covers
all of the architectures available to E-CAM via PRACE.

The full set of repositories related to EESSI can be found on GitHub, and a documentation website for EESSI is already
available. A number of tutorials related to EESSI were held (and recorded) during the 6th EasyBuild User meeting,
these are linked on the 6th EasyBuild User meeting website and covered CernVM-FS, Singularity and ReFrame.

2.2.4 Accessing the EESSI infrastructure

The EESSI software stack can be made available by installing and configuring a CernVM-ES client to use the EESSI
repositories. This method requires root privileges on the host, however.

One can also explore the EESSI software stack in entirely in user space on any system that supports Singularity. This
access method is covered in the EESSI documentation.

2.2.5 Optimisation using EESSI

One of the goals within EESSI is to improve the lives of HPC application developers. An identical software stack will be
available on their personal laptops and workstations as that of the HPC systems that they use. EESSI will provide a sta-
ble, optimised and continuously updated software stack upon which they can build and test their applications.

This introduces extensive continuous integration capabilities, for example through the use of light-weight containers
(the latest EESSI container which includes the software stacks of all architectures is under 200MB) and will support a
number of open source compilers. It is also extensible, and can be used to also test other commercial compilers, as
well as licensed software.

E-CAM has also developed a GitHub Action that can leverage EESSI. The EESSI GitHub Action is available to use in any
GitHub workflow. This development is documented in the E-CAM module EESSI-based GitHub Action for Continuous
Integration.

The relationship between EESSI and application developers can be a symbiotic one: application developers will en-
sure that the builds that appear within EESSI are correctly built and optimised (and help develop ReFrame tests to
confirm this). EESSI will provide a lightweight distribution platform that actively tests the applications (including
their performance and scalability) on a wide variety of CPUs, GPUs and interconnects.

EESSI will also provide performance optimisation tools, such as Scalasca which has been used in the past by E-CAM,
to allow developers to easily explore the optimisation potential within their applications.

https://github.com/EESSI/
https://eessi.github.io/docs/
https://easybuild.io/eum/
https://github.com/EESSI/filesystem-layer#clients
https://github.com/EESSI/filesystem-layer#clients
https://eessi.github.io/docs/pilot/#accessing-the-eessi-pilot-repository-through-singularity
https://github.com/features/actions
https://github.com/marketplace/actions/eessi
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/eessi_github_action.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/eessi_github_action.html
https://www.scalasca.org/

E-CAM Deliverable 7.10 Page 6

3 Modules and Application Codes

In the past, we have grouped the modules that we present in this family of deliverables by the Work Package from
which they originate, providing information such as:
¢ Relevance to E-CAM (including relevant modules and ESDWs);

¢ Description of work

In this final deliverable, we take a slightly broader scope, retaining some modules with very specific WP connections
but primarily focusing on modules that have scope beyond a single WP and address a wider HPC perspective:

¢ the performance of the EESSI software stack
e accelerator portability within application codes
¢ load-balancing as a means for improving portability, scalability and resilience

Where possible timing measurements are taken using internal timers available within the applications themselves.
If no such feature is available, or it is more appropriate, then the CPU time reported by the resource management
system of the HPC resource is used.

3.1 Performance of the EESSI software stack

While the concept behind EESSI, as outlined in Sec. 2.2, is very attractive, it's success will depend on it’s ability to
performas advertised. In particular, of critical interest is the ability of the EESSI software stack to leverage the hardware
available on HPC resources. Given the number of nodes that appear in HPC infrastructures, it is the performance of
EESSI on the interconnect that is of initial primary concern.

As reference modules for the work described here we use the following 2 modules:
e MPI support for EESSI-based containers
e EESSI and vGPU support in Magic Castle

Our initial investigation was to check basic point-to-point latency and bandwidth. For this we used the JUWELS
system (a SkyLake architecture with EDR infiniband), we found a minimum latency of < 1us and a point to point
bandwidth of about 12GB/s. This is entirely consistent with the performance of the system-recommended Message
Passing Interface (MPI) stack.

While such a confirmation is encouraging, it is in the performance of the applications themselves that is of most
interest. To investigate this we select one of the pilot applications, GROMACS, which is a common Molecular Dynam-
ics (MD) engine within E-CAM. We take a test case for GROMACS and compare the performance of the EESSI instal-
lation using the EESSI MPI, and a system-provided GROMACS installation which uses the system-recommended MPI
installation. This is done for the JUSUF system (AMD EPYC with HDR100 interconnect), and the results can be seen
in Fig. 2.

Comparison of scalability of GROMACS installation for EESSI and JUSUF software stack

450 1 —— EESSI (GROMACS 2020.1)

400 JUSUF software stack (GROMACS 2020 .4)

350
300
250

200

MNanoseconds per day

150

100

2 3 6 8 1 12 14 16
Nodes (128 cores per node)

Figure 2: Comparison of the scalability of GROMACS using EESSI and the JUSUF software stack. The number of nodes
is on the X-axis, giving a maximum of 2048 cores. On the y-axis we have the number of nanoseconds GROMACS can
simulate per day (which ideally should scale linearly with the core count).

https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/singularity.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/learnhpc_gpu.html

E-CAM Deliverable 7.10 Page 7

There are many qualifications on the results shown in Fig. 2, such as:
« the particular test case scales poorly (with only roughly 30% of perfect performance at 2048 cores)’,
* the versions of the used GROMACS packages differ slightly,
* we have used a particular hardware configuration with 4 OpenMP threads per physical node.

Nevertheless, it is highly encouraging to note that the performance of both installations is entirely consistent. This is
the case even though the EESSI installation was run from inside a singularity container.

There are benchmarking efforts underway in EESSI to automatically gather and share this type of information for a
variety of architectures. Ultimately, it is hoped that the application developers would work with EESSI to ensure that
the software distributed works as well as possible on the architectures EESSI will support. The currently supported
list of architectures is given in Section 2.2.3 and already covers all of the CPU architectures found in current PRACE
production systems.

3.1.1 Customising the MPI installation

EESSI is very aware that collective operations at scale is a crucial point for any communication library and that local
customisation of MPI installations could have a significant impact there. The grouping of interest around the middle-
layer library UCX and vendor support for the 1ibfabric library make being able to create a universally performant
MPI installation a possibility, but EESSI should still allow the scope for leveraging a site-customised MPI implemen-
tation.

To facilitate this, EESSI will leverage the Application Binary Interface (ABI) compatibility efforts of the MPI implemen-
tations themselves. In particular, the MPICH ABI Compatibility Initiative means that 6 differing M Pl implementations
are ABI compatible. EESSI is working on creating the ability for sites which prefer another ABI compatible implemen-
tation to be able to easily inject them into the stack (without requiring any recompiling or relinking). This should
make large computing sites a lot more comfortable with using the EESSI stack in production environments.

3.2 Accelerator Portability

In previous WP7 deliverables, we have made the case that applications should be looking at leveraging frameworks
that can relieve the developer of a lot of the effort of optimising their application for the latest available accelerators.
In E-CAM we have repeatedly mentioned Kokkos [3] in this regard.

In this section we also introduce an E-CAM evaluation of HIP, which is a C++ runtime API and kernel language that
allows developers to create portable applications for AMD and NVIDIA GPUs.

3.2.1 Kokkos

A number of modules have been developed recently in E-CAM that connect back to Kokkos. As reference modules for
the work described here we use the following 3 modules:

¢ n2p2 - Improved link to HPC MD software - includes changes to n2p2 (which provides neural network poten-
tials) to use it with Kokkos (and hence on multi-core CPUs and GPUs) which were implemented in a pull request
that added CabanaMD support to n2p2

e DL_MESO (DPD) on Kokkos: Verlet Velocity step 1 and DL_MESO (DPD) on Kokkos: Verlet Velocity step 2 -
which implemented some initial support for Kokkos in the DI._Meso package.

With respect to the n2p2 integration in LAMMPS, we also note that E-CAM continues to maintain the LAMMPS sup-
port in EasyBuild, updating the LAMMPS installation process in EasyBuild for the latest stable release. This support
includes architecture support for 3 AMD instruction set variants, 4 ARM instruction set variants, 7 Intel instruction
set variants, 3 Power instruction set variants, 13 NVIDIA GPU generations, 2 AMD GPU generations and 1 Intel GPU
generation. In addition, E-CAM has created a extensive set of training materials for running LAMMPS at scale which
include a large section on how to leverage Kokkos in LAMMPS. These training materials include a selection of per-
formance results related to the various performance-oriented packages available for LAMMPS. In Fig. 3, we share the
comparison of the native CUDA GPU package in LAMMPS to that of the Kokkos package on up to 8 nodes (32 physical
GPUs). We can see that the performance is consistent with both implementations.

The results of the DL._Meso Kokkos compared to the CUDA implementation are similar in this respect. For 5.12 million
particles of the Large Mixture test case, we get 0.00114s and 0.00117s per kernel execution with both versions, which

3The test case is taken from the PRACE Unified European Applications Benchmark Suite for Gromacs and uses the ion_channel dataset that
uses PME for electrostatics. This dataset is intended for Tier-1 systems, using the Tier-0 dataset would likely provide better scalability.

https://www.mpich.org/abi/
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/n2p2/n2p2_improved_link_hpc/readme.html
https://github.com/CompPhysVienna/n2p2/pull/49
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV1/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV2/readme.html
https://github.com/easybuilders/easybuild-easyblocks/pull/2213
https://fzj-jsc.github.io/tuning_lammps/
https://repository.prace-ri.eu/git/UEABS/ueabs#gromacs

E-CAM Deliverable 7.10 Page 8

Lennard-Jones system with ~11 million atoms
Intel Xean E5-2680 w3 Haswell CPU 2x12 Cores
with four K80 GPUs per node and Mellanox EDR InfiniBand network
GPU settings: "-sf gpu -pk gpu 4 neigh yes newton off split 1.0" with & MPI ranks/GPU
LAMMPS version: 3Mar20, Intel Compiler and CUDA

10
—a— CPU

=) GPU Package -9
5 80 1 —»— Kokkos GPU package
g speed-up for GPU package -8
%. --%- speed-up for Kokkos/GPU package .
o B =]
] 60 46
b ©
] -6 =
E 5
= 40 5 o
8 A) it . Thririvirt ¥ oo ¥ @
% EES FETETETEEEL CRTT S, ¥ L a %
E
o 20+ -3
=
[T
a -2

0 L T T T T T T T T]-

1 2 3 4 5 6 7 8

Number of nodes

Figure 3: Comparison of the native CUDA GPU package in LAMMPS to that of the Kokkos package on up to 8 nodes
(with 4 GPUs per node).

indicate no loss of performance in using Kokkos compared to native CUDA code. However, the data transfer between
host and device currently occurs at every time step in the Kokkos version, taking 0.5721s and 0.4789s, therefore having
a negative impact on the overall performance. For a fair comparison, this data should be transferred upstream to the
time marching loop as is done in the CUDA version.

3.2.2 HIP

The canonical model for Wet and semi-dry foams is the Durian bubble model, which implements the foam as as-
semblies of spherical bubbles. Due to its practical and simple implementation, and surprisingly accurate description
of soft particle systems, it has been the reference model for jammed soft materials for a long time. Several in-house
implementations for the model exist. The largest ones run in parallel on multiple CPUs using variants of the MPI im-
plementations. These are capable of simulating the dynamics of systems with sizes beyond 10° bubbles within a few
days wall clock time. The model relies on local short-range interactions between the bubbles, making it a prototype
case for almost perfect scalability. However, recent extensions of the model for the purposes of simulating coarsening
break this perfect picture: Large number of bubbles are required for the simulations to reach experimentally relevant
time-scales, and the implementation of gas exchange requires effective long range interactions between the bubbles
to be computed.

Relevance for E-CAM

The Cubble case attempts another approach. Here an in-house CPU code is implemented to be run as much as
possible on a completely different architecture, the GPUs, which are considered as a promising route to extreme-scale
computing. While a comparison between run-times of different implementations running on either single CPU or
single GPU hardly makes sense, the Cubble implementation is able to simulate experimentally relevant foam sizes of
(10%) bubbles, practically unreachable by a single thread CPU code, within just a few hours.

Three modules have been developed related to this effort and act as reference modules for the work described here:

* Modules Cubble Static and Cubble Flow which concern the initial CUDA implementation. These modules re-
port CUDA based implementations of a CPU based bubble dynamics code implementing foam coarsening un-
der different boundary conditions. These modules optimize the data-structures and algorithms used in a CPU
based implementation for efficient execution on single GPU. The development optimized the code for the cur-

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_static/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_flow/readme.html

E-CAM Deliverable 7.10 Page 9

rent state-of-the-art GPUs, NVIDIA Volta v100 on the Puhti cluster. Example simulations showing coarsening of
foam starting from one million bubbles is displayed in Fig. 4.

* Module CUBBLE HIP which concerns the effort for the implementation support of HIP via the HIP porting tools.
More details are below.

Figure 4: Cubble simulation in 2D showing a dynamical phase separation during the coarsening of a foam.

The future CSC resources include the LUMI HPC cluster, which includes a large array of AMD Instinct GPUs. As is
well known, CUDA is an NVIDIA specific platform or API for Nvidia GPUs. Therefore, CUDA based programs are
limited to NVIDIA hardware. HIP, on the other hand, provides porting tools which do most of the work to convert
CUDA code into portable C++ code that uses the HIP APIs allowing the code to execute on AMD platforms as well,
while maintaining the same performance as native CUDA code. The CUBBLE HIP module provides a HIP based
implementation of the bubble dynamics Cubble code allowing it to be run also on non-NVIDIA manufactured GPUs.
Our tests indicate, that the HIP implementation does not add overhead to the execution times of the code on NVIDIA
GPUs. This is a natural, since HIP is implementing a subset of the CUDA API and when compiled for NVIDIA hardware
the HIP code just calls the equivalent CUDA functions through header wrappers. To verify this, a set of test simulations
were run with the average timings gathered in Table 1 below.

Implementation ‘ Lavg
CUDA 609.25 s
HIP 606.19 s

Table 1: Comparison of the average wallclock execution times of the Cubble program’s CUDA and HIP implementa-
tions.

3.3 Application Specific Porting and Scaling

We end this section with development efforts related to software packages that have been previously investigated in
the WP7 series of deliverables: DL_Meso, the ALL load balancing library and Ludwig, a lattice Boltzmann code for
complex fluids.

3.3.1 Porting and Scaling of DL Meso on PRACE resources

In the previous iteration of this deliverable, we explored the scalability of DL_Meso up to 4096 GPUs on the Piz-Daint
system. Here, we again use the implementation of ALL library in DL_MESO as the reference module, and explore the

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://ludwig.epcc.ed.ac.uk/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/loadBalance/readme.html

E-CAM Deliverable 7.10 Page 10

scalability of DL._Meso on the different generations of NVIDIA GPUs that are available through our access to PRACE
resources:

¢ Piz Daint - P100 NVIDIA GPU
e Marconi - V100 NVIDIA GPU
e JUWELS - A100 NVIDIA GPU

‘ ---ideal

PizDaint (P100)
——Marconi (V100)
——JUWELS (A100)

---ideal

Piz Daint (P100)
—=—Marconi (V100)
—=—JUWELS (A100)

0 256 512 768 1024 1280 1536 1 2 4 8 16 32 64 128 256 512 1024 2048
number of GPUs number of GPUs

Figure 5: Strong and weak scalability plots for DL._Meso for a simple case using different GPU generations.

In Fig. 5, we show the strong and weak scalability for a simple test case. For the strong scalabilty (on the left), we
note a dip in performance for A100 GPU, this is due to the fact that the A100 is significantly faster, and the halo
communication is leaving the GPUs idle. We note that the A100 have 40GB of memory available (as opposed to 16GB
for the P100), we would have been able to fit a larger simulation onto these GPUs which would have allowed better
overlap between communication and computation. For weak scaling (on the right), we show scalability for up to 18
billion particles. We see generally consistent results, noting that the single GPU uses a different algorithm to the other
cases which is why we see a drop in performance when moving to more than 1 GPU. From 2 GPUs, we see near perfect
weak scalability.

32

28 ---ideal
- L Piz Daint (P100) 12
——Marconi (V100)
20 ——JUWELS (A100)
a e - - -ideal
_g 16 laea
gj . Piz Daint (P100)
% 12
——Marconi (V100)

—=—JUWELS (A100)

0 512 1024 1536 2048 1 2 4 8 16 32 64 128 256 512 1024 2048
number of GPUs number of GPUs

Figure 6: Strong and weak scalability plots for DL Meso for a complex case using different GPU generations.

In Fig. 6, we show the strong and weak scalability for a more complex test case. For the strong scalabilty (on the left),
we note a far pronounced performance drop-off for the NVIDIA A100. Again, the origin of this is the speed of the A100
GPUs, with enormous impact from the halo communications. A larger test case for 40GB of memory of the A100 would
mitigate this to some extent. For our weak scalability results (on the right), we note that we get better performance
than for the simple case. Of particular note is the consistent jump in performance at 32 GPUs, this is due to there
being an ideal distribution of particles among the GPUs in this case. The number of steps used in the benchmark case
is just 100 time steps. This number of steps is insufficient for the impact of the load-balancing from the ALL library to
be notable. A realistic simulation would have thousands of time steps, and the ALL library would improve the weak
scalability results even further.

E-CAM Deliverable 7.10 Page 11

3.3.2 Load-balancing for the Material Point Method

The Material Point Method (MPM) is used to simulate continuous matter and is especially suited for the simulation of
large deformations. Once large deformations are present, a dynamic load balancing solution is sensible to efficiently
simulate large systems. Even if the initial work distribution is good, it is very often changing during the simulation
due to the dynamics of the system or changes in geometry. An example of such dynamic imbalance is shown in Fig. 7
with a sphere moving through a ring.

8.8e+04

60000

40000

- 20000

1.2e+00

Figure 7: Load balancing of highly dynamic movements, a sphere flying through a ring.

The load balancing library ALL provides an easy plug and play solution to this problem. Thanks to the good load
balancing provided by the library larger systems can be simulated with less computational cost.

The reference modules for this work are:
¢ the Integration of ALL in the MPM code GMPM-PoC, and the
¢ ALL Fortran Interface module which it required.
Taking the example seen in Fig. 7, we can study the quality of the load balancing, g, using the formula

_ Wmax = Wmin
Wmax + Wmin

q 1)

where w,qx, Wmin is the maximum and minimum work, respectively, on a single domain. With ideal balance, the
value of g would be zero.

—ALL - EQUI
_] B \/ T T]
051 :
O L | | | | |
0 2000 4000 6000 3000 10000
time steps

Figure 8: Evolution of g (from Eq. 1) over time as the sphere of Fig. 7 passes through the ring. We show the result with
an equi-distribution of work across processes and when using ALL. The ideal value of g is zero.

http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/MPM_integration/MPMIntegration.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/fortran_interface/readme.html

E-CAM Deliverable 7.10 Page 12

In Fig. 8, we compare the evolution of g as the sphere moves through the ring, with and without the ALL library. We can
clearly see that ALL provides far greater load balancing. It never reaches an ideal g value of zero as we are eventually
restricted by a grid alignment requirement of the code, and a minimum domain size per processor.

— ALL — EQUI \
qa) I I
£ 4000 | .
=
2
< 2000 1
3
Q
s
¢ O L | | | | | | |
0 2000 4000 6000 8000 10000
time steps

Figure 9: Evolution of required simulation walltime of the example from Fig. 7 with an equi-distribution of work across
processes and when using ALL.

In Fig. 9, we show that this improved load-balance leads to a ~30% reduction in the time to solution for this problem
over 10,000 time steps.

3.3.3 Expanding the Capabilities of the Ludwig Lattice Boltzmann Code

Finally, we provide some scalability results related to two modules that expand the capabilities of the Ludwig lattice
Boltzmann code for complex fluids:

¢ Externally imposed chemical potential gradient for binary fluid mixture
¢ Implementation of simple cubic, body-centered cubic, and face-centered cubic crystalline capillaries

Ludwig was one of the original codes that we initially benchmarked in E-CAM [4], we again benchmark the most
recent version of Ludwig which includes the crystalline capillaries module mentioned above. The benchmarks are
carried out on MareNostrum 4 which has 48 physical cores per node.

4 $- no_crystal
1.00 i! scc
§ } BCC
Hitet ey }- Fcc
YIS
0.95 fil 24 " ”"0"c"n”‘tc""’c“’,"‘ R N R s LI S
b ¥ 3""%23‘ GO TR U P
- e 794
% ‘ﬂ‘t:u"#;‘.:t‘g 14
b TEE & 3
§0.90 i V%000 o
i i
$0404%
‘;:."‘:‘»._’}ﬂ.o:o;.,.c"
0.85 P b """ ¥y "¢,"‘30“.:”-, ,
)
U o "t““:.:u
+
0.80
0 20 40 60 80

Number of cores

Figure 10: Weak scaling efficiency of Ludwig with and without simple cubic, body-centered cubic, and face-centered
cubic crystalline capillaries.

In Fig. 10 we see the weak scaling efficiency results for Ludwig, where each CPU core simulates a 40 x 40 x 40 region.
Without capillaries we note that Ludwig, stabilises at about 95% scaling efficiency. When capillaries are included,

https://ludwig.epcc.ed.ac.uk/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/external_chemical_potential_gradient/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/crystalline_capillaries/readme.html
https://www.bsc.es/marenostrum/marenostrum

E-CAM Deliverable 7.10 Page 13

regardless of type, we note that efficiency falls as the node count increases. The capillaries also seem to be particu-
larly susceptible to network conditions as there is a notable dip in performance when as we move beyond 48 cores
(which is 1 node on MareNostrum). The origin of, and mitigation for, this performance impact is still under investiga-
tion.

------ linear scaling
- no_crystal o
80 scc T :3
- BCC e
- FCC
60
o
=)
°
(9]
2
» 40
20
ﬂc""'f‘f
-
of
' = m 60 80

Number of cores

Figure 11: Strong scaling speedup of Ludwig with and without simple cubic, body-centered cubic, and face-centered
cubic crystalline capillaries.

In Fig. 11, we take a single system of size 450 x 450 x 450 and increase the core count up to 2 full nodes. In this case,
the performance with and without capillaries are roughly consistent within errors but there are again indications that
if we can increase the core counts that we will see a deviation from the results with no crystal.

Together, these results indicate that for very large systems we are likely to get reasonable efficiency, but that the im-
plementation of capillaries does have an overall impact on Ludwig performance that will be exposed at scale.

E-CAM Deliverable 7.10 Page 14

4 Impact

WP7 has sought to prepare the extended E-CAM community for the demands of upcoming exascale systems. We have
addressed core cross-cutting topics such as

¢ Load balancing - through the development of the ALL load-balancing library,
¢ Intelligent High Throughput Computing - through the development of the jobqueue_features library

¢ Accelerator portability - through the promotion of libraries such as Kokkos, and implementations in E-CAM
codes,

¢ Portability of entire software stacks - through contributions to EasyBuild and, now, EESSI E-CAM has paved the
way for the portability of entire application stacks and workflows to all the architectures that will be available
through EuroHPC.

These alone are major contributions to preparing the E-CAM community, providing them with some of the tools
that they will need to address major issues that will occur at scale: hardware diversity, portability of workflows, load
imbalance, resiliency, coordinating ensemble petascale calculations. .. WP7 has gone far beyond cross-cutting work,
however, and has repeatedly worked with individual applications to evaluate and improve their performance, col-
laborating with other projects in the EuroHPC eco-system along the way. A primary example of this is given by the
DL_Meso application which, as a result of E-CAM, has been shown to be scalable to 4096 GPUs (the largest GPU par-
tition available in Europe).

In addition, E-CAM has raised awareness of best practices in scientific computing, attempting to encourage people to
consistently use

¢ version control,

¢ documentation,

e continuous integration,

¢ modular software development,

¢ configure/build/install installation processes and the tools that can support these,
¢ open source software licences.

E-CAM has trained hundreds of scientists and exposed them to HPC resources and tools that they might never oth-
erwise have known. It has raised awareness of the EuroHPC eco-system among the thousands of scientists that are
associated with Centre Européen de Calcul Atomique et Moléculaire (CECAM), and trained the next-generation of
those scientists so that HPC is a go-to tool in their computational workflows.

The legacy of the efforts of WP7 will be felt in the community as the increasing amount of EuroHPC resources be-
gin to materialise. E-CAM has put the community in a position where their entire software stack will be portable to
these systems, and created the tools for them to use these resources to create great science without an overwhelming
technical burden.

http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://github.com/E-CAM/jobqueue_features
https://docs.easybuild.io/en/latest/
https://eessi.github.io/docs/

E-CAM Deliverable 7.10 Page 15

References

Acronyms Used

CECAM Centre Européen de Calcul Atomique et Moléculaire
HPC High Performance Computing

PRACE Partnership for Advanced Computing in Europe
ESDW Extended Software Development Workshop

WP Work Package

CoE Centre of Excellence

MPI Message Passing Interface

ABI Application Binary Interface

MD Molecular Dynamics

EESSI European Environment for Scientific Software Installations
MPM Material Point Method

URLSs referenced

Page ii
https://www.e-cam2020.eu... https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables ... https://www.e-cam2020.eu/deliverables
E-CAM Zenodo Community page.... https://zenodo.org/communities/e-cam/search?page=1&size=20&
g=deliverable&type=publication&subtype=deliverable
Internal Project Management Link ... https://redmine.e-cam2020.eu/issues/51
a.ocais@fz-juelich.de ... mailto:a.ocais@fz- juelich.de
http://creativecommons.org/licenses/by/4.0 ... http://creativecommons.org/licenses/by/4.0

Page 1
ALL load-balancing library ... http://slms.pages. jsc.fz-juelich.de/websites/all-website/
jobqueue_features... https://github.com/E-CAM/jobqueue_features
EasyBuild ... https://docs.easybuild.io/en/latest/
EESSI... https://eessi.github.io/docs/

Page 3
EESSI initiative ... https://eessi.github.io/docs/
JUWELS... https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/
Configuration_node.html
PRACE Preparatory Access Call ... http://www.prace-ri.eu/prace-preparatory-access/
PRACE Project Access Terms of Reference... https://prace-ri.eu/wp-content/uploads/Terms_of_Reference_
Call20.pdf
European Environment for Scientific Software Installations (EESS]) ... https://www.eessi-hpc.org/
academic and industrial partners in the HPC community ... https://eessi.github.io/docs/partners/

Page 4
CernVM-FS... https://cernvm.cern.ch/portal/filesystem
Gentoo Prefix... https://wiki.gentoo.org/wiki/Project :Prefix
EasyBuild ... https://easybuild.readthedocs.io/
ReFrame ... https://reframe-hpc.readthedocs.io/
EESSI documentation ... https://eessi.github.io/docs/

Page 5
full set of repositories related to EESSI ... https://github.com/EESSI/
documentation website for EESSI... https://eessi.github.io/docs/
6th EasyBuild User meeting website ... https://easybuild.io/eum/
configuring a CernVM-FS client to use the EESSI repositories... https://github.com/EESSI/filesystem-layer#
clients
covered in the EESSI documentation... https://eessi.github.io/docs/pilot/#accessing-the-eessi-pilot-repos
GitHub Action ... https://github.com/features/actions
EESSI GitHub Action ... https://github.com/marketplace/actions/eessi
EESSI-based GitHub Action for Continuous Integration ... https://e-cam.readthedocs.io/en/latest/
Classical-MD-Modules/modules/EESSI/eessi_github_action.html
Scalasca... https://wuw.scalasca.org/

Page 6

https://www.e-cam2020.eu
https://www.e-cam2020.eu/deliverables
https://zenodo.org/communities/e-cam/search?page=1&size=20&q=deliverable&type=publication&subtype=deliverable
https://zenodo.org/communities/e-cam/search?page=1&size=20&q=deliverable&type=publication&subtype=deliverable
https://redmine.e-cam2020.eu/issues/51
mailto:a.ocais@fz-juelich.de
http://creativecommons.org/licenses/by/4.0
http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://github.com/E-CAM/jobqueue_features
https://docs.easybuild.io/en/latest/
https://eessi.github.io/docs/
https://eessi.github.io/docs/
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/Configuration/Configuration_node.html
http://www.prace-ri.eu/prace-preparatory-access/
https://prace-ri.eu/wp-content/uploads/Terms_of_Reference_Call20.pdf
https://prace-ri.eu/wp-content/uploads/Terms_of_Reference_Call20.pdf
https://www.eessi-hpc.org/
https://eessi.github.io/docs/partners/
https://cernvm.cern.ch/portal/filesystem
https://wiki.gentoo.org/wiki/Project:Prefix
https://easybuild.readthedocs.io/
https://reframe-hpc.readthedocs.io/
https://eessi.github.io/docs/
https://github.com/EESSI/
https://eessi.github.io/docs/
https://easybuild.io/eum/
https://github.com/EESSI/filesystem-layer#clients
https://github.com/EESSI/filesystem-layer#clients
https://eessi.github.io/docs/pilot/#accessing-the-eessi-pilot-repository-through-singularity
https://github.com/features/actions
https://github.com/marketplace/actions/eessi
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/eessi_github_action.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/eessi_github_action.html
https://www.scalasca.org/

E-CAM Deliverable 7.10 Page 16

MPI support for EESSI-based containers... https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/
modules/EESSI/singularity.html

EESSI and vGPU support in Magic Castle... https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/
modules/EESSI/learnhpc_gpu.html

Page 7
PRACE Unified European Applications Benchmark Suite for Gromacs ... https://repository.prace-ri.
eu/git/UEABS/ueabs#gromacs
MPICH ABI Compatibility Initiative ... https://www.mpich.org/abi/
n2p2 - Improved link to HPC MD software... https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/
modules/n2p2/n2p2_improved_link_hpc/readme.html
CabanaMD support ton2p2... https://github.com/CompPhysVienna/n2p2/pull/49
DL_MESO (DPD) on Kokkos: Verlet Velocity step 1... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-]
modules/DL_MESO_DPD_onGPU/Kokkos_VV1/readme.html
DL_MESO (DPD) on Kokkos: Verlet Velocity step2... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-]
modules/DL_MESO_DPD_onGPU/Kokkos_VV2/readme.html
updating the LAMMPS installation process in EasyBuild for the latest stable release ... https://github. com/
easybuilders/easybuild-easyblocks/pull/2213
training materials for running LAMMPS at scale ... https://fzj-jsc.github.io/tuning_lammps/

Page 8
Cubble Static... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/cubble_coarsening/cubble_coarsening_static/readme.html
Cubble Flow ... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/cubble_coarsening/cubble_coarsening_flow/readme.html

Page 9
CUBBLEHIP... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/cubble_coarsening/cubble_hip/readme.html
CUBBLEHIP... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/cubble_coarsening/cubble_hip/readme.html
ALL load balancing library ... http://slms.pages. jsc.fz-juelich.de/websites/all-website/
Ludwig ... https://ludwig.epcc.ed.ac.uk/
implementation of ALL libraryin DL MESO... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Model
modules/DL_MESO_DPD_onGPU/loadBalance/readme.html

Page 11
ALL... http://slms.pages. jsc.fz-juelich.de/websites/all-website/
Integration of ALLin the MPM code GMPM-PoC... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Mc
modules/ALL_library/MPM_integration/MPMIntegration.html
ALL Fortran Interface... https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/
modules/ALL_library/fortran_interface/readme.html

Page 12
Ludwig... https://ludwig.epcc.ed.ac.uk/
Externally imposed chemical potential gradient for binary fluid mixture ... https://e-cam.readthedocs.
io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/external_chemical_
potential_gradient/readme.html
Implementation of simple cubic, body-centered cubic, and face-centered cubic crystalline capillaries... https:
//e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/
crystalline_capillaries/readme.html
MareNostrum 4 ... https://www.bsc.es/marenostrum/marenostrum

Page 14
ALL load-balancing library ... http://slms.pages.jsc.fz-juelich.de/websites/all-website/
jobqueue_features... https://github.com/E-CAM/jobqueue_features
EasyBuild ... https://docs.easybuild.io/en/latest/
EESSI... https://eessi.github.io/docs/

Citations

[1] A. O’Cais, J. Castagna, and G. Sutmann, “D7.7: Hardware developments IV,” Jun. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3256137

https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/singularity.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/singularity.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/learnhpc_gpu.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/EESSI/learnhpc_gpu.html
https://repository.prace-ri.eu/git/UEABS/ueabs#gromacs
https://repository.prace-ri.eu/git/UEABS/ueabs#gromacs
https://www.mpich.org/abi/
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/n2p2/n2p2_improved_link_hpc/readme.html
https://e-cam.readthedocs.io/en/latest/Classical-MD-Modules/modules/n2p2/n2p2_improved_link_hpc/readme.html
https://github.com/CompPhysVienna/n2p2/pull/49
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV1/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV1/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV2/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/Kokkos_VV2/readme.html
https://github.com/easybuilders/easybuild-easyblocks/pull/2213
https://github.com/easybuilders/easybuild-easyblocks/pull/2213
https://fzj-jsc.github.io/tuning_lammps/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_static/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_static/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_flow/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_coarsening_flow/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/cubble_coarsening/cubble_hip/readme.html
http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://ludwig.epcc.ed.ac.uk/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/loadBalance/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/DL_MESO_DPD_onGPU/loadBalance/readme.html
http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/MPM_integration/MPMIntegration.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/MPM_integration/MPMIntegration.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/fortran_interface/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/fortran_interface/readme.html
https://ludwig.epcc.ed.ac.uk/
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/external_chemical_potential_gradient/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/external_chemical_potential_gradient/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/external_chemical_potential_gradient/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/crystalline_capillaries/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/crystalline_capillaries/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/Lattice_Boltzmann/crystalline_capillaries/readme.html
https://www.bsc.es/marenostrum/marenostrum
http://slms.pages.jsc.fz-juelich.de/websites/all-website/
https://github.com/E-CAM/jobqueue_features
https://docs.easybuild.io/en/latest/
https://eessi.github.io/docs/
https://doi.org/10.5281/zenodo.3256137

E-CAM Deliverable 7.10 Page 17

[2] M. Boissonneault, B. E. Oldeman, and R. P. Taylor, “Providing a unified software environment for canada’s national
advanced computing centers,” in Proceedings of the Practice and Experience in Advanced Research Computing
on Rise of the Machines (Learning), ser. PEARC '19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3332186.3332210

[3] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 —
3216, 2014, domain-Specific Languages and High-Level Frameworks for High-Performance Computing. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0743731514001257

[4] A. O’Cais, L. Liang, and J. Castagna, “E-CAM Software Porting and Benchmarking Data I,” Sep. 2017. [Online].
Available: https://doi.org/10.5281/zenodo.1191428

https://doi.org/10.1145/3332186.3332210
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.5281/zenodo.1191428

	Executive Summary
	Introduction
	Porting and Optimisation
	Available Resources
	Primary Resources
	PRACE Resources

	European Environment for Scientific Software Installations
	Scope of EESSI
	Architecture of EESSI
	Current Status
	Accessing the EESSI infrastructure
	Optimisation using EESSI

	Modules and Application Codes
	Performance of the EESSI software stack
	Customising the MPI installation

	Accelerator Portability
	Kokkos
	HIP

	Application Specific Porting and Scaling
	Porting and Scaling of DL_Meso on PRACE resources
	Load-balancing for the Material Point Method
	Expanding the Capabilities of the Ludwig Lattice Boltzmann Code

	Impact
	References

