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ABSTRACT
In this paper, we investigate whether information related to touches
and rotations impressed to an object can be effectively used to
classify the emotion of the agent manipulating it. We specifically
focus on sequences of basic actions (e.g., grasping, rotating), which
are constituents of daily interactions. We use the iCube, a 5 cm cube
covered with tactile sensors and embedded with an accelometer,
to collect a new dataset including 11 persons performing action
sequences associated with 4 emotions: anger, sadness, excitement
and gratitude. Next, we propose 17 high-level hand-crafted features
based on the tactile and kinematics data derived from the iCube.
Twelve of these features vary significantly as a function of the
emotional context in which the action sequence was performed.
In particular, a larger surface of the object is engaged in physical
contact for anger and excitement, than for sadness. Furthermore,
the average duration of interactions labeled as sad, is longer than
for the remaining 3 emotions. More rotations are performed for
anger and excitement than for sadness and gratitude. The accuracy
of a classification experiment in the case of four emotions reaches
0.75. This result shows that the emotion recognition during hand-
object interactions is possible and it may foster development of
new intelligent user interfaces.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interaction devices.
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1 INTRODUCTION
Studies regarding touch-based communication in the context of
human-human (HHI) [14, 17] and human-robot (HRI) [2, 6] interac-
tion usually focus on social touch and exploit tactile data of people
who are explicitly asked to perform some conventional touch ges-
tures such as a handshake or a hug [6]. The way one enters into
contact with a surface of an object (different from the other’s body
part) and manipulate it might also convey information revealing
his/her affective state. In this line, Wang and colleagues discussed
"non-symbolic touch", such that "no predefined meaning or code is
needed for affect conveyance using touch" [30]. Our long-term aim
is to develop emotion recognition models from multimodal data
collected during natural hand-object interaction (HOI). Natural
interaction in our scope refers to performing basic actions such as
grasping, rotating, holding, passing and their combinations, which
are elements of every day interactions with a variety of objects
[27]. Previous works often have focused on: 1) interaction based on
symbolic touch gestures, e.g., [8, 15] (the important exception is the
research on multi-touch screens and keyboards, e.g., [7, 9]), or 2)
non-symbolic interaction with soft objects by exploiting the data on
pressure applied during the contact, e.g., [11, 18, 26] or by measur-
ing directional photoreflectivity [28]. In this work, we focus on HOI,
which can, but does not have to, be performed in a social context,
i.e., in the presence of another person. We show that emotions can
be differentiated using hand-crafted features extracted from tactile
and kinematics data (without data about applied pressure), and we
provide the results of 4 emotions classification. At the same time,
we acknowledge that the way one interacts with an object depends
on certain properties of this object (e.g., its dimension, shape, hard-
ness etc.) as well as the activity performed. In this study, we control
these two factors by choosing one specific semantically-neutral ob-
ject, and by restricting the number of activities. Keeping these two
factors fixed, we investigate whether the contact with the object’s
surface is being influenced by the portrayed emotion. When affect
classification using such data become possible, this technology may
be applied in several user interfaces designed for entertainment,
well-being and motor rehabilitation. It can be a communication
device for people with reduced verbal communication abilities [26],
a general purpose affect sensor e.g., for self-monitoring [11, 22]
and remote communication [31], a game interface. It can also be
embedded in “smart” versions of several every day objects to sense
the user’s emotions.

2 ICUBE DEVICE
iCube is a 5 cm hard cube weighing about 150 grams (see Figure 1)
developed at Istituto Italiano di Tecnologia. It generates asynchro-
nous combination of tactile (i.e., 2D tactile maps) and kinematics
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(i.e., angle rotations in quaternions) data. Touch sensing is based on
a set of Capacitive Button Controllers enabling detection of simulta-
neous touches and the 4×4 cells on each of six pads of the cube. The
device is wireless and equipped with a battery. It does not collect
the touch pressure data. This choice permits to reduce the cost of
the device and the amount of the data to be transmitted to the PC. In
past research, iCube was used to analyze the multimodal patterns in
an exploratory task [24, 25]. The main advantage of using the iCube
to collect affect-related data is its semantically-neutral and simple
shape. Given its similarity to several common objects, such as small
boxes and containers, it allows us to carry out natural interactions.
This choice is in line with Guribye and colleagues, who state that
when designing the tangible interfaces, such familiarity is useful as
it exploits “users’ pre-existing understanding and interaction with
similar objects from their everyday world” [11].

3 DATA COLLECTION
We collected data of people performing a sequence of actions (grasp-
ing, rotating, passing from one hand to another, and handing over
the iCube) associated with 4 emotions. We asked our participants
to imagine that they feel specific emotions. We are aware that this
procedure might result in more stereotyped (or exaggerated) ac-
tions, but we believe it is an acceptable simplification, keeping in
mind the aim of this study. We focus on anger, sadness, excitement
and gratitude. We selected them because they are placed in 4 dif-
ferent quadrants of the two-dimensional valence-arousal model.
More specifically, the first 3 labels are mentioned in the Russell’s
paper [21] with anger and excitement characterized by high arousal,
whilst anger and sadness by negative valence. The gratitude does
not appear in [21], but it was evaluated later. For example, in [13]
gratitude is positive, but the 6th lowest arousal emotion, receiving
the score of “3” in a 9-point scale between 62 studied labels. Thus,
it is reasonable to assume that this state is characterized by a lower
arousal compared to excitement. Suitability of this two-dimensional
model to describe the touch-based interactions was postulated in
[1] and it is inline with the previous works on video games. For
istance, in [7] the authors, after performing a pilot study, focus on
4 emotions corresponding to 4 quadrants of valence-arousal model
(i.e., frustrated, bored, excited and relaxed).

The participants were asked to perform one of two assignments
(assigned randomly). In the first assignment (A1), 4 scenarios were
used to provide "emotional context". The task (i.e., the sequence of
actions performed with hands) does not vary, while the emotion
and the imaginary object mentioned in the scenario change: 1)
grabbing and passing a small box of chocolates as a gift for a favor
received (gratitude), 2) grabbing and passing a beloved wooden
figure now broken (sadness), 3) grabbing and passing an empty
packet to a confederate accusing him of stealing its content (anger),
4) grabbing and passing a closed "surprise" parcel to a confederate
asking him to open it for you (excitement). Thus, all scenarios
require: grasping the iCube, rotating it to find a marker placed
on one of its faces, approaching the confederate, and handing the
iCube over to the confederate. When defining the scenarios, we
paid attention to choose the "imaginary" objects (e.g., small box of
chocolates) that would match the iCube dimensions. The scenarios
were written on 4 different pieces of the paper. The order was
randomized and the procedure was as follows. First, participants

drew one scenario and read it. They were given some time to think
about the story and try to imagine themselves being the protagonist.
They performed 5-6 trials. There was a 5-10s pause between trials.
Next, they drew another scenario. For the second assignment (A2),
the participants were instructed to perform the same task with the 4
above mentioned emotions. Unlike A1, in A2 instructions regarding
what the imaginary object and the scenario could be were not given
to the participants. Thus, in A2, the paper sheets contained only 4
emotion labels. Each participant performed only one assignment.
Before all this, emotion definitions taken from [20, 23] were given
in writing.

For both assignments, participants were asked to behave natu-
rally. No precise instructions were given on how to perform the
task. This choice was made because we believe that the way the
person manipulates the object contains affective information, e.g.,
a person may rotate the object more or faster when she is angry
than when she is sad. Hence, we intentionally did not request the
participants to perform exactly the same number of rotations, nor
to grab the cube always in exactly the same manner. By combining
the data of 2 different assignments in one dataset, we expect that the
classifiers robustness might be improved. Indeed, classifiers need to
recognize portrayed emotions and not specific actions related to the
A1’s scenarios, such as touching according to the characteristics
of an imaginary object, e.g., a fragile vase. Initial positions of the
participants, confederate and tables were kept always the same.
When a participant faces a confederate, the iCube is placed on a
table on the left of the participant, and the text scenario is placed
on a table on the right. The confederate is 3-4 meters away from
the participant’s initial position. The confederate’s position is fixed.
The iCube has a marker (i.e. sticker) which symbolizes the front
of the imaginary object (e.g., the opening of a box). The marker is
located in a way that participants cannot see it at beginning of a
trial.

4 FEATURES
According to the literature humans tend to perform more expansive
and quick gestures when they feel high-arousal emotions such
as anger, whist they may tend to slow down the same gestures
when feeling sadness [5, 29]. Regarding social touch, a positive
correlation between rated arousal and touch action motion energy
during interpersonal socio-affective touch events was revealed [17].
Emotions associated to attachment (e.g., gratitude, sadness) were
characterized by longer tactile contact than rejective ones (e.g.,
anger, disgust) in a HRI study [2]. Hauser et al. [12] shows that the
total contact area, touch duration and hand velocity can be used to
differentiate portrayed emotions during the hand-forearm contact.
We took inspiration from these works realized in the context of HHI
and HRI to design a set of features for HOI. Our features estimate:
the task duration, the amount of movement, the number of touch
actions, number of touch changes and the area of contact with the
cube surface.
4.1 Tactile data
Let ai jkm = 1 if a cell on intersection of i-th row and j-th column
of the k-th face of iCube is touched at the time (i.e., data frame)m
of a segment; and ai jkm = 0 if the same cell is not touched. A data
segment in this study corresponds to the data captured from the
time a participant makes physical contact with the iCube for the
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first time until she hands over the iCube.
Touch density. The touch density estimates how large is the por-
tion of surface of the cube engaged in a contact. For this purpose,
we compute an average number of touched cells in one data frame.
We introduce AVG_TD (average touch density) as:

AVG_TD =

4∑
i=1

4∑
j=1

6∑
k=1

n∑
m=1

ai jkm

n
(1)

where n is the number of frames in a segment. The higher the
AVG_TD is, a larger surface of the cube is touched on average.
We also compute the standard deviation (SD_TD), standard error
(SE_TD), and the maximal value (MAX_TD) on the data segment.
Dominant Pad. It is used estimate whether the same cube face
is mainly touched for most of the time. We call “dominant pad”
the iCube pad that is touched the most in the frame m and we
compute how often the dominant pad changes in a data segment.
Let kmaxm , 1 ≤ kmaxm ≤ 6, be the index of the pad of the frame

m that maximizes the value
4∑
i=1

4∑
j=1

ai jkm in the framem. We define

TDPC (total number of dominant pad changes) andADPC (average
number of dominant pad changes):

TDPC =
n∑

m=2
d(m) ADPC =

n∑
m=2

d(m)

n − 1 (2)

where d(m) is defined as follows:

d(m) =

{
1 if ai jkmaxm−1m−1 , ai jkmaxmm

0 otherwise
(3)

Touch variability. The touch variability is used to estimate the
quantity of contact changes during the task. We compute the num-
ber of changes in touched cells between two consecutive frames,
and then we compute the average value for a data segment. We
introduce AVG_TV (average touch variability):

AVG_TV =

4∑
i=1

4∑
j=1

6∑
k=1

n∑
m=2

|ai jkm − ai jkm−1 |

n − 1 (4)

where n is the number of frames in a segment. We also compute
the standard deviation (SD_TV ), standard error (SE_TV ), and the
maximal value (MAX_TV ) of the touch variability on the data seg-
ment.

4.2 Kinematics data
Rotation. To estimate the movement quantity we compute the
total number of rotations. More specifically, first we compute the
instantaneous angular variation by measuring the angle traversed
over time for each of the three unitary axes orthogonal to the faces
of the cube using the method described in [25]. To quantify the
total amount of rotation T_TR, we compute the maximum value
among three cumulative sums of the rotations. Next, we compute
the average (AVG_TR), standard deviation (SD_TR), standard error
(SE_TR), and the maximum value (MAX_TR) on the data of “mostly
rotated” axis over the whole segment.
Dominant Rotation. Using the method [25] applied to the data
framem and the approach presented in Section 4.1, we compute

TDAC (total number of dominant axes changes) andADAC (average
number of dominant axes changes).
5 DATA ANALYSIS AND EXPERIMENTS
5.1 Statistical Analysis
11 persons participated (8 female, 1 left handed) in the data col-
lection. This resulted in 237 trials in total (60 sadness trials, and
59 anger, excitement and gratitude trials). For each trial, we have
extracted one data segment. The average segment length is 3.9s
(SD = 1.48s). We run a series of Kruskal-Wallis tests with Emotion
as independent variable and by considering each data segment sepa-
rately. The tests show significant differences for 12 out of 17 features.
A significant main effect of Emotion (F (3, 228) = 3.665, p < .001)
on the segment duration (the variable T IME) was observed. Post
hoc comparisons using the Dunn-Bonferroni test showed that
sadness (mean = 4.83s) was significantly longer compared to
anger (p < .001), excitement (p < .001), and gratitude (p < .005),
whist gratitude segments (mean = 4.2s) were longer than anger
(mean = 3.13s , p < .001) and excitement (mean = 3.56s , p < .01).
These results are in line with the previous studies on full-body
expressive behaviors [5, 29], which showed that emotions influence
a gesture velocity and acceleration. The significant results were
also observed for the average (AVG_TD), standard error (SE_TD)
and maximum (MAX_TD) of touch density; the average (AVG_TR)
and standard error (SE_TR) of touch variability; the total number
of dominant pad (TDPC) and angles changes (TDAC); the average
rotation (AVG_TR), standard error (SE_TR) and deviation (SD_TR),
as well as maximum rotation (MAX_TR). The post hoc compar-
isons for all features are in Figure 1. On average a larger surface
of the iCube was contacted for anger and excitement compared
to sadness. At the same time, less touch variability can be seen
for sadness as compared to anger and excitement. More rotations
were performed for the two high arousal emotions (i.e., anger and
excitement) as compared to sadness and gratitude. This finding is
consistent with the results mentioned just above (please compare
the graphs for AVG_TR and AVG_TV in Figure 1). From Figure
1, it can be also seen that features TDPC and TDAC show similar
tendency as feature T IME, and their values are particularly high
for sadness. Indeed these two features may depend on the task
duration.

These results show that it can be possible to differentiate some of
the targeted emotions. The effect of emotion was observed for most
features. In particular, several significant results were obtained for
anger and sadness, whist it might be more difficult to differentiate
the pairs: excitement and gratitude, anger and excitement, as well
as sadness and gratitude. At the same time, it seems that both
kinematics and tactile data can be useful for emotion classification.

5.2 Classification
In this section we check whether 1) automatic emotion recognition
is possible above chance level, and 2) the features from both modal-
ities contribute to the classification. Therefore, we applied only 2
classifiers: a) SVMwith RBF kernel and b) Localized Multiple Kernel
Learning (LMKL) [10]. To train them, we used 12 features for which
the effect of Emotion was observed in Section 5.1. Leave-one-out
cross-validation was performed. SVM-RBF was chosen as it was
widely used in the past to classify emotions from the tactile [15, 18]
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Figure 1: iCube device (left); Statistical analysis for 12 features (right). The significant differences (p < 0.05) indicated with“*”.

and kinematics data [16, 19]. Among several parameters that were
tested for SVM-RBF, the best performance was obtained for C = 5
and γ = −5 when all 12 features were used; C = 3 and γ = −2
when touch features were used, and C = 1, γ = −2 when kinemat-
ics features were used. Before training SVM-RBF, z-normalization
was applied. We compared the SVM-RBF with LMKL. The latter
was considered, as it has shown impressive performance for many
applications involving human nonverbal behaviors analysis (e.g.,
[3, 4]). LMKL uses nonlinear kernel weights combination. In this
work, for fair comparisons it was combined with SVM. As gating
model, which selects the optimum kernel function locally, softmax
function was used with linear kernels varying from two to seven.
The best performance was obtained for C = −1 and two kernels
when 12 features were used.

The results obtained from SVM and LMKL are in the Table 1. In
all cases the accuracy is highly above the random guess (i.e., 0.25).
The best results were obtained for sadness, which still is often con-
fused with the second low arousal emotion, i.e., gratitude. Gratitude
is often confused with the other positive emotion, i.e., excitement.
The worst recognition on average was observed for excitement. To
study the contribution of each modality we run 2 experiments with:
1) 5 kinematics (AVG_TR, SD_TR, SE_TR, MAX_TR, TDAC), and
2) 6 tactile features (AVG_TD, SE_TD, TDTC , SE_TV , MAX_TD,
AVG_TV ) with SVM-RBF. According to the results both sets con-
tribute to classification: the accuracy for kinematics features only
was higher than the accuracy for tactile features (0.45 and 0.41).
In both cases the accuracy is lower than the accuracy of SVM-RBF
baseline experiment, but higher than the chance level. When SVM-
RBF and LMKL are compared, LMKL performed much better, which
is consistent with previous works that use both methods [3, 4].

6 CONCLUSIONS
In this paper, we presented a pioneering work aiming to explore
whether it is possible to recognize emotions from the tactile and
kinematics data during the everyday hand-object interactions. To
the best of our knowledge, this is the first work that proposes a
computational approach to deal with affect-related multimodal data
of this type. In more detail, the main contributions of this work
are: 1) we presented a set of high-level easily interpretable features
for tactile data; 2) we demonstrated that our tactile and kinematics
features can be used to differentiate affective states; the results on

Algorithm Classes Features Samples Acc Fscore
SVM-RBF 4 12 237 0.5 0.5
SVM-RBF
(only tactile) 4 6 237 0.41 0.40
SVM-RBF
(only rotation) 4 5 237 0.46 0.46
LMKL-SVM 4 12 237 0.75 0.74

Table 1: Classification results

tactile data are novel contribution to the field of affective interaction;
3) we showed that emotion classification using multimodal data is
possible reaching the accuracy of 0.75 for 4 emotions. We also have
shown that the iCube can be used to learn about how the interaction
with hard hand-held objects is influenced by humans’ emotions
even without gathering the information about the pressure applied
during the contact.

Several future works are planned. To improve the performance,
the effects of interpersonal differences and the assignment need to
be studied and addressed within the extended data collection. To
evaluate the versatility of this approach we will collect the data us-
ing objects of different physical properties (e.g., significantly smaller
and lighter) and other semantically-neutral 3D shapes. More re-
search is also needed to see whether one can distinguish emotions
which are similar in terms of arousal and valence such as anger, frus-
tration and anxiety. We will also collect data in ecological setting,
e.g., games scenario, to gather spontaneous affective interactions.
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