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A B S T R A C T

We develop a new method to estimate the parameters of threshold distributions for market participation based
on an agent-specific attribute and its decision outcome. This method requires few behavioral assumptions, is not
data demanding, and can adapt to various parametric distributions. An application to export decisions by French
firms shows that threshold distributions are generally right-skewed. We then reveal the asymmetric effects of
past policies over different quantiles of the threshold distributions.

1. Introduction

This paper proposes a method to estimate barriers to market par-
ticipation. The distinctive feature of our method lies in the absence of
strong requirements: it needs few behavioral assumptions, it is not data
demanding, and it can adapt to various parametric distributions, insti-
tutional contexts, and more importantly, markets. As such, our method
offers a simple and intuitive solution to measuring barriers that inhibit
market participation.

Previous works have attempted to measure such barriers, focusing
essentially on costs. Das et al. (2007) developed a structural model that
allows the empirical estimations of sunk and fixed costs of exporting for
Colombian manufacturing firms. They found that sunk entry costs into
export markets amount to, on average, $400,000, while the fixed costs
appeared to be negligible. Using a dynamic model of optimal stock mar-
ket participation, Khorunzhina (2013) estimated that stock market par-
ticipation costs for consumers amount to 4–6% of labor income. More
recently, Fan and Xiao (2015) estimated that entry costs in the U.S.
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local telephone industry reach $6.5 million.
Barriers, however, are more general than costs, and stem from the

existence of technical, regulatory, and information barriers. Possible
examples include, inter alia, the presence of a minimum efficiency for a
firm to participate in foreign markets (Eaton et al., 2011); the existence
of a minimum efficient plant size to enter an industry (Lyons, 1980); a
required level of absorptive capacity for a firm to efficiently assimilate
new technologies (Cohen and Levinthal, 1989); the availability of suf-
ficient collateral for a bank to grant a loan (Jiménez et al., 2006); and
the presence of a wage offer above the reservation wage for a worker to
accept it (DellaVigna et al., 2017). In all these instances, barriers repre-
sent a minimum value above (below) which an economic agent decides
(not) to participate in a given market.

In this paper, we focus on thresholds, defined as unobservable firm-
specific attributes that condition the market participation of an eco-
nomic actor. While barriers pertain uniformly to all economic agents,
thresholds relate to an agent-specific characteristic conditioning mar-
ket participation. More precisely, an agent will participate in the mar-
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ket only if some of his/her attributes – say productivity – exceeds
the required threshold value of productivity. Conversely, if an agent’s
attribute falls short of the threshold, he/she will choose not to partic-
ipate in the market – or to exit it. Hence, it is the gap between the
agent-specific attribute and the threshold value that ultimately dictates
the decision.

The major problem is that thresholds are empirically unobserv-
able to social scientists or policymakers. In some instances, specific
surveys may explicitly focus on particular thresholds. In their analy-
sis of wage formation and unemployment, Brown and Taylor (2013)
exploited information on individual-specific reservation wages obtained
from the British Household Panel Survey (BHPS), a nationally represen-
tative random sample survey of more than 5000 private households
to elicit participation thresholds. However, because of the setup costs
for data generation, existence of such information remains scant. An
alternative is to model thresholds as a theoretical parameter that firms
must overcome to participate in market activities. For example, Eaton
et al. (2011) modeled export costs with a series of behavioral assump-
tions and of data requirement which are needed in order to estimate
the associated structural parameters. Although analytically rigourous,
such models remain hard to replicate, first and foremost because they
cannot be easily adapted to other contexts.

In this paper, we develop a parametric method where the obser-
vation of (i) the agents’ decision outcomes and (ii) some individual
characteristics of the decision makers fostering market participation
are sufficient information for recovering the statistical properties of
the underlying threshold distribution. Our method is extremely flexi-
ble to a variety of contexts and data. As such, it should be viewed as
a reduced form of a more complex web of forces determining market
participation that although embodying costs, may include unobserved
agent-specific characteristics that may increase or decrease the required
level of endowments in order to enter a given market. Thus, thresholds
are more general than mere costs, and two agents coping with the same
entry costs may cope with different thresholds for market entry.

Knowledge of threshold distributions is also important for policy
assessment. In fact, a policy fostering market entry may affect partic-
ipation either for all potential entrants or for specific agents, and as
such, it may represent a symmetric or conversely an asymmetric shock.
Symmetric shocks are those policies that affect the common determi-
nants of thresholds, shifting the whole distribution on its support, but
keeping constant the relative position of agents. Asymmetric shocks are
shocks that affect specific categories of agents within the distribution,
thereby affecting higher moments of the distribution. To be able to
qualify whether a given policy shock has constituted a symmetric or
asymmetric shock is important for a more precise and nuanced policy
assessment. It also helps depict unintended consequences of given poli-
cies in terms of market participation by agents.

Our contribution is four-fold. First, we develop a parametric max-
imum likelihood estimation (MLE) method to reveal the underlying
parameters characterizing threshold distributions. Conditional on the
agent’s decision outcome and a critical variable called the 𝜃-attribute,
we derive a likelihood function that allows the recovery of the con-
cealed threshold distribution. Importantly, we make use of Vuong
(1989)’s procedure to select the most qualified density among the vari-
ous candidate distribution laws. Second, we use stochastic Monte Carlo
simulations to study the reliability of our approach when two impor-
tant underlying assumptions – one distributional and one behavioral –
are violated, and we broadly define the boundaries of its application.
Third, we provide a primer empirical application to the problem of
export thresholds. The existing literature on international trade gener-
ally assumes the existence of fixed/sunk costs associated with export
activities. We also detect and estimate threshold distributions at the
sectoral level documenting significant right-skewness and leptokurtosis
within most industries. Fourth, we employ year by year estimates to
investigate the possible effects of two structural shocks in the European
Union on different quantiles of threshold distributions. We also show

that the establishment of the single market and the introduction of the
euro translated into significantly lower thresholds for the majority of
firms. However, while the first shock has been symmetric, the second
one has been asymmetric, excluding a minor share of manufacturing
firms from international trade.

This paper is structured as follows. Section 2 formally describes the
economic problem under consideration and the tool employed to solve
it. An empirical application of our strategy to the export decision prob-
lem of French firms is presented in Section 3, together with an exer-
cise designed to explain participation rates through the moments of the
threshold distributions. Section 4 concludes the paper.

2. Econometric strategy

2.1. The intuition

We consider a series of agents i = 1,…,N making an economic
decision, the outcome of which can be encoded as a binary variable
𝜒i ∈ {0,1} representing their market participation. Each agent is char-
acterized by a specific attribute 𝜃i that affects the decision outcome.
This 𝜃-attribute can be considered a single characteristic or a combi-
nation of several distinct features that ease or hinder the realization
of a positive outcome 𝜒 i = 1. We assume that an agent decides to par-
ticipate only when the 𝜃-attribute is sufficiently large and it exceeds
threshold ci. Conversely, if an agent’s attribute falls short of the thresh-
old, the agent will choose not to participate in the market. Thresholds
can, thus, be defined as unobservable barriers that dictate the market
participation of an economic agent. What we call the “perfect sorting
hypothesis” can be formalized as follows:{

𝜒i = 1 if 𝜃i ≥ ci

𝜒i = 0 if 𝜃i < ci
(1)

The theoretical economic literature typically assumes homogeneous
thresholds across agents, i.e., ci ∼ 𝛿, with 𝛿 representing the Dirac delta
distribution (see Pissarides, 1974; McDonald and Siegel, 1986; Dixit,
1989, as early developers of such an approach).1 Fig. 1 describes this
particular case by assuming an agent-specific, normally distributed 𝜃i
and a unique threshold c. The shaded area highlights the part of the
distribution where all the agents withdraw from the market (𝜒 i = 0)
over the 𝜃-attribute domain (𝜃i < c). This representation implies a com-
plete separation of agents, where only those whose 𝜃i values exceed
threshold c participate in the market.

From an empirical perspective, the issue is that the social scien-
tist observes the decision outcome 𝜒 i and the agent’s 𝜃-attribute. How-
ever, in most situations, the threshold variable ci is the private infor-
mation of the decision maker and is thus unobservable to the external
observer. This is why the empirical literature has instead focused on the
probability of an agent’s market participation, conditional on his/her 𝜃-
attribute (e.g., Kau and Hill, 1972; Wei and Timmermans, 2008, among
a large series of papers). This type of exercise is technically straight-
forward using, for example, a simple probit model. This approach also
matches the fraction of actors with a positive (negative) decision out-
come with the 𝜃-attribute and produces the probability of participation
conditional on the 𝜃-attribute: P(𝜒 = 1|𝜃i). The caveat is that such a
modeling approach cannot reveal the threshold distribution per se.

Furthermore, evidence in several empirical fields, in particular those
on the efficiency of exporters (Bernard and Jensen, 2004) and the effi-
ciency of labor market bargaining processes (Alogoskoufis and Man-
ning, 1991), generally contradicts the simple implication that non-
participating agents are located in the left tail of the 𝜃 distribution,
whereas participating agents are located in the right tail. The rule

1 To the best of our knowledge, Cogan (1981) is the sole work to have esti-
mated heterogeneous thresholds in the labor market by means of a 2-step strat-
egy relying on a structural equations model.
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Fig. 1. Example of a 𝜃-attribute distribution with a common threshold c for all the individuals.

appears to be that some agents well-endowed in their 𝜃-attribute do not
participate in a given market, and conversely, some poorly endowed
agents nevertheless choose to participate. In other words, the supports
of the two populations significantly overlap. To account for this per-
sistent overlap, one must relax the assumption of a unique threshold
and favor the converse assumption that thresholds are, instead, agent-
specific, as is done, for example, in the theoretical work of Mayer et
al. (2014). This makes it possible that well-endowed agents choose to
withdraw from a market, given that their specific threshold ci exceeds
their own 𝜃-attribute or, conversely, that poorly endowed agents choose
to participate.

An important element in our framework is to assume heterogeneity
in thresholds. Because they extend well beyond costs, thresholds must
reflect agent-specific characteristics that cannot be easily quantified.
For example, in the labor market, two individuals applying for the same
job with similar diplomas may cope with different thresholds, depend-
ing on their gender, ethnicity, or geographical location. In a similar
fashion, two potential entrepreneurs with an identical project, hence
identical entry costs, may cope with different likelihood of entering the
market, depending on their own access to external financial resources,
that is, on personal networks, family background, or any other unob-
servable factors affecting one’s ability to access financial resources.
Thus heterogeneity in thresholds is the rule, not the exception.2

Assuming away the homogeneity of thresholds represents an oppor-
tunity to shift the traditional perspective of Fig. 1. Our perspective
inverts the representation proposed by Fig. 1 of the 𝜃 distribution and
a unique threshold c. Fig. 2 now takes the observed, agent-specific 𝜃-
attribute as given and locates it in an unknown distribution of agent-
specific thresholds ci.3 The left panel represents the case where an agent
participates in a given market. Given 𝜃i, observing a positive decision
outcome 𝜒 i = 1 implies that agent-specific threshold ci is located some-
where to the left of 𝜃i, as indicated by the shaded area. The right panel
represents the converse, that is, given the attribute 𝜃i, observing a neg-
ative decision outcome 𝜒 i = 0 implies that agent-specific threshold ci is
located to the right of 𝜃i, as indicated by the shaded area.

Our framework does not change the fundamental mechanism at
work, as Equation (1) holds. However, it allows the implementation
of a new strategy that can estimate threshold distributions by means of
maximum likelihood estimation, where the parameters of interest are
those that define the whole threshold distribution.

2 More formally, one may think of thresholds as the aggregation of different
components such that: ci,t,s,r = c + ct + cs + cr + ci, where c represents a common
component pertaining to all agents, ct , cs and cr are specific components linked
to time, sectoral and regional characteristics, while ci is a very fine-grained
component linked to all the possible agent-specific characteristics. For the sake
of simplicity in the paper, we equate ci with ci,t,s,r.

3 In Fig. 2, we arbitrarily assume normally distributed thresholds.

2.2. The model

We define the probability of an agent participating in the market as
the probability that the unobserved, agent-specific threshold ci is lower
than the agent-specific attribute 𝜃i:

p(𝜒 = 1|𝜃i) = F(𝜃i;𝛀), (2)

where F represents the cumulative density function of the probability
distribution f and 𝛀 is the vector of distribution-specific parameters
to be estimated. In turn, the probability that the unobserved, agent-
specific threshold ci is higher than the agent-specific attribute 𝜃i is:

p(𝜒 = 0|𝜃i) = 1 − F(𝜃i;𝛀). (3)

The likelihood function L(𝛀) then takes the generic form:

L(𝛀; 𝜃i, 𝜒i) =
N∏

i=1

[
F(𝜃i;𝛀)

]𝜒i ×
[
1 − F(𝜃i;𝛀)

]1−𝜒i (4)

The log-likelihood 𝓁 function reads:

𝓁(𝛀; 𝜃i, 𝜒i) =
N∑

i=1
𝜒i log

[
F(𝜃i;𝛀)

]
+ (1 − 𝜒i) log

[
1 − F(𝜃i;𝛀)

]
(5)

The decision for the social scientist is to choose a given parametric
density function f(𝛀), where 𝛀 is the vector of parameters characteriz-
ing the distribution f. Given f, the objective function is that of estimating
𝛀 such that �̂� = arg max

𝛀
L̂(𝛀;𝜒i, 𝜃i).

We have two remarks. First, an important ingredient of our frame-
work is the monotonicity of the relationship between the probability of
participating in a given market and the 𝜃-attribute. If monotonicity is
not empirically verified, then our behavioral assumption formalized in
Equation (1) does not hold, and the corresponding likelihood function
L(𝛀) will prove difficult to converge.4

Second, in the case in which the cumulative distribution function
is Gaussian, Equation (4) resembles a traditional probit model. How-
ever, it differs from it in two important aspects. On the one hand, in a
probit model, one assumes specific values for 𝛀 by setting 𝜇 = 0 and
𝜎 = 1, whereas in our case, our aim is to estimate 𝛀. On the other hand,
while in our framework, the domain of the support is fully observed
with the vector of agent-specific attribute 𝜃i, in a probit model, the
support of the distribution is an unobserved domain. Given a vector
of explanatory variables Z and a decision variable yi, the objective
function of the probit model is then to choose a vector 𝜷 such that
𝜷 = arg max

𝜷

L̂(𝜷;Z, yi|𝜇 = 0, 𝜎 = 1).

Taking stock of the above, our framework relies on the following
core assumptions:

4 Besides, the case in which the 𝜃-attribute is a limiting rather than an
enhancing factor can easily be envisaged. The formal model simply becomes
the complement of Equation (1). This yields following log-likelihood function:
𝓁(𝛀) = ∑N

i=1 (1 − 𝜒i) log
[
F(𝜃i;𝛀)

]
+ 𝜒i log

[
1 − F(𝜃i;𝛀)

]
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Fig. 2. Example of threshold distribution with observed 𝜃-attribute.

• Assumption A1. Agents are heterogeneous in their 𝜃-attribute 𝜃i.
• Assumption A2. Thresholds are agent-specific (ci) and follow a den-

sity distribution f with unknown vector of parameters 𝛀: C ∼ F(𝛀).
• Assumption A3. The relationship between the probability of par-

ticipating in a market and the 𝜃-attribute is either monotonically
increasing p(𝜒 = 1|𝜃i,t1 ) > p(𝜒 = 1|𝜃i,t0 ),∀𝜃i,t1 > 𝜃i,t0 , as in the case
of an enhancing 𝜃-attribute, or monotonically decreasing p(𝜒 =
1|𝜃i,t1 ) < p(𝜒 = 1|𝜃i,t0 ),∀𝜃i,t1 > 𝜃i,t0 , as in the case of a limiting 𝜃-
attribute. Importantly, subscripts t0 and 1 refer to different values of
the 𝜃-attribute that pertain to the same economic agent i.

• Assumption A4. Agents decide to participate if and only if their
specific attribute 𝜃i exceeds (is below) threshold ci (perfect sorting
hypothesis).

Provided that Assumptions A1-A4 hold, the observation of vec-
tor 𝝌 = (𝜒1,…, 𝜒N) stacking all decision outcomes 𝜒 i and vector 𝜽 =
(𝜃1,… , 𝜃N) of agent-specific attributes 𝜃i is sufficient information to
estimate the vector of parameters 𝛀 defining the underlying threshold
distribution F. Hence the distinctive feature of our method resides in
the absence of strong requirements: it needs few behavioral assump-
tions, it is not data demanding, and it can adapt to various parametric
distributions.

The critical choice concerns the distribution of thresholds, as the sci-
entist may choose among a large series of data generating processes. In
the absence of prior information about the true distribution of thresh-
olds, we rely on Vuong’s test (Vuong, 1989) for the selection of non-
nested models (see Appendix A). The attractive features of Vuong’s test
in our framework is two-fold: (i) it does not require preexisting knowl-
edge of the true density and (ii) it is directional, allowing one to arbi-
trate between any pair of assumed density functions.

A first possible application is to examine the performance of the
method on simulated data. Appendix B conducts several Monte Carlo
simulations and investigates the estimation of Equation (5) when
Assumptions A1-A4 hold. It then explores the robustness of the esti-
mator under violations of Assumptions A2 and A4. In what follows, we
apply our framework on empirical data, investigating the case of firm
export decisions in French manufacturing.

3. Empirical application to international trade

Following the seminal contributions by Melitz (2003) and Melitz
and Ottaviano (2008), the recent international trade literature has mod-
eled the export decision as being conditional on a unique export pro-
ductivity threshold called the “export productivity cutoff”. Only the
most productive firms, which have a productivity level that exceeds
the homogeneous threshold, enter foreign markets. The assumption of

a unique threshold is extremely restrictive and is at odds with robust
empirical evidence about the coexistence of high-efficiency firms that
do not export and inefficient firms that export (Bernard and Jensen,
2004; Eaton et al., 2011; Impullitti et al., 2013).5

Based on Assumptions A1-A4, we estimate the export threshold dis-
tribution for French manufacturing firms using firm-specific productive
efficiency as the 𝜃-attribute. Our framework allows us to reconcile the
appearing empirical paradox with the theory.

3.1. Choice of support

We use a panel database of French manufacturing firms covering
the period 1990–2007 and found in the annual survey of companies
(Enquête annuelle d’entreprises) led by the statistical department of the
French Ministry of Industry. The survey covers all firms with at least
20 employees in the manufacturing sector (excluding food and bever-
ages), and the data provide information about their income statements
and balance sheets. The complete dataset gathers the financial state-
ments of 43,000 companies, yielding 350,000 firm-year observations.
We also use information on sales, exports, value added, the wage bill,
the number of employees and hours worked, capital stock, investments,
and intermediate inputs as the main variables used to compute the firm-
specific 𝜃-attribute.

We have two eligible measures for 𝜽, namely apparent labor pro-
ductivity (ALP) or total factor productivity (TFP), as these two mea-
sures are used interchangeably in the empirical literature.6 We choose
to use TFP as the preferred 𝜃-attribute. This choice is motivated by the
fact that TFP is the one that is most tightly related with the efficiency
term used in the theoretical literature (e.g. Melitz, 2003). Although TFP
is more prone to measurement errors, it accounts for more inputs and
firm characteristics than mere ALP.7 The fact that TFP is prone to mis-

5 The authors of the theoretical literature also recognize this limitation, but
for reasons of analytical tractability, they cannot leave this assumption aside.
Only recent versions of these models overcome this issue by accounting for
product variety and a heterogeneous product mix. Thresholds are equal within
varieties, but product mixes are firm specific and, in turn, generate firm-specific
productivity cutoffs (Mayer et al., 2014).

6 Appendix C provides the details of the industry-wide deflators used and the
computations that yield labor and total factor productivity.

7 There are various reasons underlying mismeasurement in TFP. We mainly
think of the potential misspecification of the production function, measure-
ment errors in capital stocks, or assumptions on the endogeneity of produc-
tion factors. See, among others, Wooldridge (2009), Ackerberg et al. (2015),
and De Loecker and Goldberg (2014) for a thorough discussion on these issues.
Appendix D provides all of the results using ALP.
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Table 1
Participation rates and productivity premium, by industry.

Industry Name ♯ Obs. PR TFPP

Market participation

All Manufacturing 339,088 .740 .042
Automobile 9276 .798 .022
Chemicals 35,360 .836 .025
Clothing and Footwear 27,632 .675 .136
Electric and Electronic Components 14,421 .773 .059
Electric and Electronic Equipment 18,522 .752 .063
House Equipment and Furnishings 23,707 .822 .049
Machinery and Mechanical Equipment 62,094 .702 .043
Metallurgy, Iron and Steel 60,856 .728 .008
Pharmaceuticals 9067 .914 .030
Printing and Publishing 29,307 .612 .046
Textile 21,659 .800 .075
Transportation Machinery 5125 .795 .057
Wood and Paper 22,062 .692 -.014

Market entry

All Manufacturing 74,832 .231 .017
Automobile 1635 .252 .006
Chemicals 5026 .266 .008
Clothing and Footwear 7358 .197 .055
Electric and Electronic Components 2858 .246 .035
Electric and Electronic Equipment 3775 .218 .018
House Equipment and Furnishings 3488 .280 .029
Machinery and Mechanical Equipment 15,612 .236 .014
Metallurgy, Iron and Steel 14,362 .231 .006
Pharmaceuticals 660 .312 -.039
Printing and Publishing 9735 .218 .020
Textile 3687 .234 .037
Transportation Machinery 886 .234 .003
Wood and Paper 5750 .203 -.019

Market remaining

All Manufacturing 219,747 .929 .044
Automobile 6577 .947 .021
Chemicals 26,278 .956 .029
Clothing and Footwear 15,974 .913 .129
Electric and Electronic Components 9762 .943 .056
Electric and Electronic Equipment 11,918 .942 .074
House Equipment and Furnishings 17,018 .948 .048
Machinery and Mechanical Equipment 38,160 .912 .048
Metallurgy, Iron and Steel 38,957 .926 .010
Pharmaceuticals 7334 .975 .062
Printing and Publishing 15,490 .870 .044
Textile 15,233 .947 .071
Transportation Machinery 3570 .947 .073
Wood and Paper 13,476 .920 .001

PR: participation rate. TFPP: Total Factor Productivity Premium.

measurement is also a test for the robustness of our framework.
The top panel of Table 1 provides the preliminary descriptive statis-

tics for market participation. In our sample, the export participation
rate reaches 74%. This is a relatively large participation rate, which is
due to the fact that our dataset comprises larger firms, which are more
likely to export vis-à-vis smaller firms. Table 1 also displays the export
premium, that is, the productivity differential between exporters and
non-exporters. Consistent with the economic literature, exporters are,
on average, more productive than non-exporters, with a productivity
differential of 4.2% for all manufacturing. Although we observe signifi-
cant cross-industry variation, all sectors display a positive productivity
premium, with the exception of Wood and Paper.

3.2. Export participation thresholds

We set the outcome decision variable 𝜒 i to unity if we observe
positive exports by firm i, or 0 otherwise: 𝝌 = (𝜒1,… , 𝜒N). In our
framework, total factor productivity represents the 𝜃-attribute: 𝜽 =

(𝜃1,… , 𝜃N). Given vectors 𝝌 and 𝜽, we estimate Equation (5) for all
the manufacturing firms. Because the support must be strictly positive
for the gamma density and below unity for the beta density, we trans-
form 𝜃 (whether ALP or TFP) such that 𝜃i ∈ (0;1), as follows:

𝜃i =
(

𝜃′i − min 𝜃′

max 𝜃′ − min 𝜃′

)
,

where 𝜃′ represents the labor productivity measure net of sector-year
fixed effects, 𝜃′i = 𝜃i − 𝜃sy + 𝜃, and where subscript sy indicates the sec-
tor × year identifier. We also estimate 𝛀 for each sector:

�̂�s = arg max
𝛀s

L̂(𝛀s;𝜒i, 𝜃i) ∀s ∈ S

where subscript s stands for sector s. We have no prior information
about the functional form of the density distribution for export thresh-
olds. Therefore, we perform the estimation exercise using the normal,
the gamma, and the beta densities. The results are reported in the top
panel of Table 2 for the estimated first two moments (𝜇 and 𝜎2). For
the gamma and beta densities, we also report the estimated median to
provide initial insights into the presence of skewness. We have three
major observations.

First, a clear pattern emerges in the mean and variance of the three
densities. The normal density systematically estimates the lowest mean,
whereas the gamma estimated mean is systematically the largest. Con-
versely, the normal density yields the largest variance (with the excep-
tion of Metallurgy, Iron and Steel, whereas the beta distribution produces
the lowest one. Hence, the choice of the underlying density is a choice
which predetermines the ultimate distribution shape. This reinforces
the need for Vuong’s procedure for model selection.

Second, most estimated mean export thresholds lie within the (0;1)
interval. This is especially true when we assume gamma or beta dis-
tributed thresholds. This is consistent with the idea that the participa-
tion rates are generally high, exceeding 70% in most industries. When
we focus on the assumption of normally distributed thresholds, we also
observe negative mean values when we impose normally distributed
thresholds on the data, for Automobile, Chemicals, Metallurgy, Iron and
Steel and Pharmaceuticals. Although this is at odds with the positive sup-
port for the 𝜃-attribute, it reflects an interesting feature of the normal
law. In fact, a negative mean implies that the shape of the distribution
is truncated normal on ℝ+, allowing for the presence of right skewness
and fat right tails in threshold distributions.

Third, the gamma and beta densities discard the possibility of nor-
mally distributed thresholds. In fact, we observe positive skewness in
most, if not all sectors, including All Manufacturing, and the estimated
median is significantly below the estimated average. Metallurgy, Iron
and Steel and Pharmaceuticals stand out with median values which are
extremely low. These two sectors are precisely those with the lowest
(positive) productivity premium (Metallurgy, Iron and Steel) and highest
export participation rates (Pharmaceuticals). Looking at the parameter
estimates for these two sectors suggests that searching for alternative
densities may be advocated.

Altogether, we find heterogeneity in two dimensions. We find cross-
density heterogeneity and cross-sectoral heterogeneity in the shapes of
the threshold distributions, their mean values, their variances, their
medians, and their (unreported) higher moments.

3.3. Threshold distributions for entry into and remaining in export markets

Our method also applies to decisions about market entry and
remaining, conditional on the availability of a time dimension in the
data. We now exploit it and condition the decision on the export status
observed the preceding year. We define (i) the pool of potential entrants
into export markets as the firms that do not export at time t − 1 and (ii)
the pool of potential remaining firms as those that already exported at
time t − 1. We then define actual entering and actual remaining firms
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Table 2
Maximum likelihood estimation of participation threshold distributions, using Total Factor Productivity as the 𝜃-attribute.

Industry Name  𝜇  𝜎2 Γ𝜇 Γ𝜎2 Γp50 𝜇 𝜎2 p50

Market participation

All Manufacturing .195 .284 .397 .189 .254 .315 .100 .198
Automobile -.079 .550 .336 .291 .118 .238 .103 .050
Chemicals -.212 .587 .276 .230 .079 .198 .090 .023
Clothing and Footwear .419 .060 .455 .050 .419 .426 .049 .412
Electric and Electronic Components .229 .168 .359 .119 .256 .307 .077 .227
Electric and Electronic Equipment .279 .142 .382 .116 .287 .334 .074 .272
House Equipment and Furnishings .105 .216 .302 .105 .197 .247 .075 .131
Machinery and Mechanical Equipment .332 .152 .436 .120 .348 .375 .080 .325
Metallurgy, Iron and Steel -.995 6.451 1.463 18.098 .022 .279 .174 .000
Pharmaceuticals −1.253 1.711 .157 .215 .002 .094 .063 .000
Printing and Publishing .370 .363 .582 .387 .381 .425 .126 .359
Textile .194 .161 .334 .087 .252 .281 .072 .194
Transportation Machinery .185 .181 .337 .101 .244 .284 .075 .194
Wood and Paper – – – – – – – –

Market entry

All Manufacturing 1.581 2.048 6.516 87.751 2.878 – – –
Automobile 2.354 7.426 – – – – – –
Chemicals 2.022 5.666 – – – – – –
Clothing and Footwear – – 1.665 2.133 1.263 .771 .090 .934
Electric and Electronic Components 1.018 .526 2.073 4.856 1.364 .741 .110 .930
Electric and Electronic Equipment 1.532 1.692 6.988 99.457 3.128 – – –
House Equipment and Furnishings 1.002 .673 2.017 5.164 1.254 – – –
Machinery and Mechanical Equipment 1.456 1.665 4.701 4.062 2.322 – – –
Metallurgy, Iron and Steel 3.060 11.710 – – – – – –
Pharmaceuticals – – – – – – – –
Printing and Publishing 1.605 1.918 5.241 49.044 2.620 – – –
Textile 1.140 .748 2.220 5.665 1.449 .755 .116 .965
Transportation Machinery 6.046 57.867 – – – – – –
Wood and Paper – – – – – – – –

Market remaining

All Manufacturing -.335 .355 .148 .065 .043 .109 .045 .004
Automobile -.873 .769 .100 .077 .002 .071 .037 .000
Chemicals -.719 .543 .089 .052 .004 .066 .031 .000
Clothing and Footwear .126 .094 .256 .037 .210 .206 .042 .136
Electric and Electronic Components -.265 .259 .132 .049 .041 .105 .037 .009
Electric and Electronic Equipment -.084 .157 .158 .042 .083 .131 .036 .038
House Equipment and Furnishings -.357 .305 .125 .046 .036 .091 .035 .003
Machinery and Mechanical Equipment -.021 .173 .210 .054 .133 .168 .047 .067
Metallurgy, Iron and Steel −2.765 5.249 .210 .989 .000 .079 .060 .000
Pharmaceuticals -.898 .537 .063 .026 .003 .036 .019 .000
Printing and Publishing -.287 .546 .227 .161 .061 .165 .077 .010
Textile -.263 .243 .136 .041 .056 .100 .035 .007
Transportation Machinery -.087 .148 .164 .035 .100 .129 .034 .042
Wood and Paper −3.187 476.9 – – – .080 .072 .000

 𝜇: Estimated mean of the normal distribution;  𝜎2 : estimated variance of the normal distribution; Γ𝜇 : estimated mean of the gamma
distribution; Γ𝜎2 estimated variance of the gamma distribution; Γp50

: estimated median of the gamma distribution; 𝜇: estimate mean of
the beta distribution; 𝜎2 : estimated variance of the beta distribution; and p50

: estimated median of the beta distribution.

as those that decide to start exporting or remain exporters at time t.
Such a distinction between entry and exit produces sharp differences in
rates, where the entry rate drops to 23% whereas the remaining rate
reaches 94%.8

We first focus on the results for threshold distributions for entry
into export markets. Table 1 shows that the share of firms entering into
export markets reaches 23% for all manufacturing. Thus, novel entry
into export market reflects a fiercer selection process. The estimation
results are reported in the middle panel of Table 2. The most immedi-
ate observation is the poor performance of the beta prior, but this is not
surprising. Entry thresholds are presumably higher than mere market

8 Whether we focus on remaining or exit thresholds is essentially a semantic
matter. By setting 𝜒 i = 1 if the firm exits export markets or 0 otherwise would
become an exit decision instead of a remaining one.

participation as it focuses on pure entry, incorporating sunk entry costs,
which are otherwise not borne. Hence, one should expect entry thresh-
olds to significantly increase, notably above the maximum value of the
𝜃-attribute. However, the beta distribution imposes an upper limit for
the support at unity. This imposes that the cumulative distribution of
beta be unity when 𝜃 = 1. In practice, this is very unlikely to hold. On
the contrary, when focusing on entry, we should expect the threshold
distribution to go well beyond the 𝜃 support.

This is confirmed when looking at the estimated mean values for the
normal and the gamma entry threshold distributions. When using the
normal prior, we find convergence for all industries with the exception
of Clothing and Footwear, Pharmaceuticals and Wood and Paper. This is
not surprising for Pharmaceuticals, and Wood and Paper, due to their
negative export premia (−0.039% for the former, −0.019% and for the
latter), implying that Equation (1), on average, does not hold for these
sectors. There is less convergence with the gamma density, although
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the algorithm seem successful in industries where the normal density
fails to converge.

Table 1 shows instead that the share of firms remaining in export
markets reaches almost 93% for all manufacturing. Exit from export
market is, therefore, a relatively rare phenomenon, and that the asso-
ciated threshold distribution must allow for the vast majority of firm
to remain in such market. The estimation results are reported in the
bottom panel of Table 2. Looking at All Manufacturing, the average
threshold for remaining in export markets is substantially lower than
that for market entry. Also, this result is valid across all sectors and
irrespective of the prior MLE densities. Since entry costs are essentially
sunk, one would expect higher thresholds for entering firms than for
remaining firms. Previous exporters have already borne any sunk entry
costs and only have to cope with fixed and variable costs. This suggests
that whereas the entry thresholds are substantial, the remaining thresh-
olds are of a much lower magnitude. This is consistent with Das et al.
(2007), who found that fixed costs borne in each period are negligible,
whereas sunk entry costs are of a considerable magnitude.

The normal density yields systematically negative mean values for
thresholds for market remaining. In fact, this reflects the flexibility of
the normal distribution whose support spans over the entire spectrum
for real numbers. This search for the maximum likelihood produces a
distribution that easily accommodates for a truncation at zeros. In all
instances, all densities estimate low mean thresholds with a low vari-
ance. This suggests that for the vast majority of companies, remaining
in export markets is far less challenging than market entry into export
markets.

3.4. Vuong’s test for model selection of export markets

The key question is to discriminate between the candidate densi-
ties. We perform Vuong’s model selection procedure testing the best
fit among the three selected densities. Any pairwise comparison can
be interpreted as evidence of a specification error, when we find evi-
dence that a tested density provides less information than a rival den-
sity. Vuong’s test for model selection provides us with a tool to detect
specification error, but it cannot confirm that the selected model is
indeed the optimal fit for our data. However, the sign and magnitude of
Vuong’s z allow for a direct interpretation of the better model, among
the finite set of alternatives. Table 3 displays all pairwise Vuong’s z:
z ,Γ comparing the normal and the gamma density, z , comparing
the normal and the beta density, and zΓ, comparing the gamma and
the beta density. The last two columns of Table 3 provide the overall
ranking of the densities and the conclusion of model selection, where
the proper density is displayed with the associated vector of parameter
estimates.

The most immediate observation is that the gamma density out-
performs the normal and the beta densities for All Manufacturing and
for market participation, market entry, and market remaining. This is
evidence of the presence of right-skewness and leptokurtosis in export
thresholds. For market participation and remaining, this implies that
most firms cope relatively low export thresholds, whereas a minority of
them cope with higher export thresholds. As for market entry, the pres-
ence of right-skewness is secondary. Bearing in mind that the average
threshold exceeds six and the median thresholds locates at about three,
whereas the 𝜃 support ranges from zero to unity, this means that a large
number of these firms are excluded from international trade.

The second observation concerns the cross-sectoral heterogeneity in
the best density functions among the three alternatives. Although the
gamma distribution dominates the overall industry threshold distribu-
tion, sector-specific threshold distributions do not necessarily follow
a gamma density. We also find evidence of beta densities for mar-
ket remaining in Transportation Machinery and Wood and Paper. In
many instances, the normal distribution is the advocated better density
according to Vuong’s z test for model selection. In Electric and Electronic

Components and Electric and Electronic Equipment, for example, the nor-
mal density is systematically selected as the best fit among the three,
irrespective of the type of market participation (participation, entry, or
remaining). More generally, caution is needed when the diagnosis is
dominance of the normal over the gamma.

Fig. 3 plots the estimated density functions for All Manufacturing
and for three selected 2-digit industries: Clothing and Footwear; Electric
and Electronic Components; and Printing and Publishing. It is important
to notice the difference in the magnitude of the support when consid-
ering alternatively mere market participation, market entry or market
remaining, as it underlines the different types of costs to be borne for
participation in general, entry, and remaining. The top two panels pro-
vide examples of the variety of possible shapes for threshold distribu-
tions that stem from a gamma density: whether the mode is located
at the minimum and higher values, whether there exist fat tails, etc.
The three distributions for Electric and Electronic Components are instead
examples of normal distributions truncated at zero. For market remain-
ing, we observe that the mode of the distribution is located at the left
of the minimum 𝜃-attribute, corroborating that for the vast majority
of already exporting firms, remaining thresholds are virtually nil. The
threshold distributions for Printing and Publishing display various densi-
ties.

Last, we estimate the vector of parameters for the normal, gamma,
and the beta densities at the industry×year level such that

�̂�st = arg max
𝛀st

L̂(𝛀st ;𝜒i, 𝜃i) ∀s ∈ S and t ∈ T

where subscripts s and t stand for sector s at time t. This amounts to run-
ning 13 industries × 18 years Vuong’s procedures for model selection
for market participation, yielding various ranking in densities. We pro-
ceed similarly for market entry and market remaining. Accounting for
entry or remaining imply the loss of the first year of observation due to
the use of a lagged year in identifying firm market entry and/or remain-
ing. Table 4 presents the various rankings obtained and the associated
count.

Of the 234 estimations performed for market participation (221 for
market remaining), convergence is achieved in 204 (respectively 194)
cases for all three candidate densities. In 22 (respectively 19) cases only,
none of the candidate densities succeed in estimating the densities. This
is in contrast with market entry, where no convergence is achieved for
67 of the 221 industry-year estimations, whereas all three candidate
densities can be estimated in only 37 cases. The lack of convergence
for market entry may stem from (i) a violation of Assumption A2 on
the proper density and the need for alternative densities with possibly
more parameters; (ii) a violation of Assumption A3 on the monotonicity
of the relationship between the support and the probability of export;
and (iii) a strong violation of Assumption A4 on perfect sorting, stem-
ming from either wrong decisions by firms or measurement errors in
the support. In fact, entry into export markets involves a host of fac-
tors that may stem well beyond mere productivity. This suggests that
a possible development of our framework is to consider more than one
support to accurately estimate the thresholds hindering entry decisions
by agents.

Table 4 illustrates the various rankings and arbitrage in the bet-
ter fit. Of all the three candidate densities, the gamma distribution
dominates in all types of market decisions. However, there is a need
for alternative densities. We see, for example, that the beta distri-
bution represents a better fit in a sizable number of occurrences.
Table D.4 of Appendix D shows that one shall not conclude that the
gamma density is the best prior, irrespective of the support. In fact, it
reveals that when using labor productivity as the 𝜃-attribute, the normal
density (left-truncated at 0) is the dominating density. Table D.4 also
implies that all three densities are relevant when using the alternative
support.
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Table 3
Vuong’s z test for model selection using Total Factor Productivity as the 𝜃-attribute.

Industry Name z ,Γ z , zΓ, Ranking Conclusion

Market participation

All Manufacturing −371.9 1601.1 66.5 Γ ≻  ≻  C ∼ Γ(.8, .5)
Automobile −146.3 1001.6 246.9 Γ ≻  ≻  C ∼ Γ(.4, .9)
Chemicals −397.5 608.2 352.3 Γ ≻  ≻  C ∼ Γ(.3, .8)
Clothing and Footwear −49 127.1 69.6 Γ ≻  ≻  C ∼ Γ(4.2, .1)
Electric and Electronic Components 75.4 372.3 −8.9  ≻  ≻ Γ C ∼  (.2, .4)a
Electric and Electronic Equipment 84.7 132.1 −111.8  ≻  ≻ Γ C ∼  (.3, .4)a
House Equipment and Furnishings −8.4 524.4 15.3 Γ ≻  ≻  C ∼ Γ(.9, .3)
Machinery and Mechanical Equipment 14.7 1146.0 132.1  ≻ Γ ≻  C ∼  (.3, .4)
Metallurgy, Iron and Steel −1031.4 1551.8 704.4 Γ ≻  ≻  C ∼ Γ(.1,12.4)
Pharmaceuticals −307.5 284.2 165.6 Γ ≻  ≻  C ∼ Γ(.1,1.4)
Printing and Publishing 26.6 30.5 63.7  ≻ Γ ≻  C ∼  (.4, .6)
Textile −193.2 23.3 14.8 Γ ≻  ≻  C ∼ Γ(1.3, .3)
Transportation Machinery -.6 179.5 42.4  ∼ Γ ≻  C ∼  (.2, .4) or C ∼ Γ(1.1, .2)
Wood and Paper – – – ∅ ∅

Market entry

All Manufacturing −18.7 – – Γ ≻  C ∼ Γ(.5,13.5)
Automobile – – –  C ∼  (2.4,2.7)
Chemicals – – –  C ∼  (2.0,2.4)
Clothing and Footwear – – .3 Γ ∼  C ∼ Γ(1.3,1.3) or C ∼ (.7, .2)
Electric and Electronic Components 33.3 98.8 −23.6  ≻  ≻ Γ C ∼  (1.0, .7)a
Electric and Electronic Equipment 133.6 – –  ≻ Γ C ∼  (1.5,1.3)
House Equipment and Furnishings 75.6 – –  ≻ Γ C ∼  (1.0, .8)
Machinery and Mechanical Equipment −149.1 – – Γ ≻  C ∼ Γ(.6,8.5)
Metallurgy, Iron and Steel – – –  C ∼  (3.1,3.4)
Pharmaceuticals – – – ∅ ∅
Printing and Publishing −287.4 – – Γ ≻  C ∼ Γ(.6,9.4)
Textile −154 337.9 171 Γ ≻  ≻  C ∼ Γ(.9,2.6)
Transportation Machinery – – –  C ∼  (6.0,7.6)
Wood and Paper – – – ∅ ∅

Market remaining

All Manufacturing −402.3 868.1 467.7 Γ ≻  ≻  C ∼ Γ(.3, .4)
Automobile −223.7 517.3 196.2 Γ ≻  ≻  C ∼ Γ(.1, .8)
Chemicals −106.7 236 94.6 Γ ≻  ≻  C ∼ Γ(.2, .6)
Clothing and Footwear −71.7 68.5 48.6 Γ ≻  ≻  C ∼ Γ(1.8, .1)
Electric and Electronic Components 9.7 -.4 −13.7  ∼  ≻ Γ C ∼  (−.3, .5) or C ∼ (.0,1.4)
Electric and Electronic Equipment 77 193.7 −84.1  ≻  ≻ Γ C ∼  (−.1, .4)a
House Equipment and Furnishings −157.4 372.2 15.6 Γ ≻  ≻  C ∼ Γ(.3, .4)
Machinery and Mechanical Equipment 228.6 832.6 22.4  ≻ Γ ≻  C ∼  (−.0, .4)
Metallurgy, Iron and Steel −94.9 1005.0 562.4 Γ ≻  ≻  C ∼ Γ(.0,4.7)
Pharmaceuticals −225.2 236.3 125.3 Γ ≻  ≻  C ∼ Γ(.2, .4)
Printing and Publishing 92.5 68.2 −4.3  ≻  ≻ Γ C ∼  (−.3, .7)a
Textile −175.9 435.2 161.8 Γ ≻  ≻  C ∼ Γ(.4, .3)
Transportation Machinery 19.6 −30 −11.5  ≻  ≻ Γ C ∼ (.3,2.0)
Wood and Paper – −993.3 –  ≻  C ∼ (.0, .0)

z ,Γ: H∼Γ ∶ |z| < +1.96 H≻Γ ∶ z ≥ +1.96 HΓ≻ ∶ z ≤ −1.96.
z ,: H∼ ∶ |z| < +1.96 H≻ ∶ z ≥ +1.96 H≻ ∶ z ≤ −1.96.
zΓ,: HΓ∼ ∶ |z| < +1.96 HΓ≻ ∶ z ≥ +1.96 H≻Γ ∶ z ≤ −1.96.
The [a] symbol indicates that caution is needed in the dominance of  over , as revealed by the Monte Carlo results presented in
Section B.3.3.

3.5. Threshold dynamics and globalization

We use our method to evaluate the impact of structural shocks on
export thresholds between 1990 and 2007. This period is character-
ized by major shocks, intended to reduce export barriers: the estab-
lishment of the single market in 1993; the birth of the euro in 1999;
and the implementation of the single currency for all transactions in
2002.9 Much has been written about the pro-competitive consequences
of European integration (e.g., Boulhol, 2009, among a large series of
contributions) or globalization (De Loecker and Goldberg, 2014) on
markups, but evidence of its effect on export thresholds is yet to emerge.
Two contrasting effects are expected. Because European integration is

9 More remotely, this period also witnessed the entry of China, India, and
more generally the BRICS countries as major players on the international trade
scene.

about decreasing trade barriers among member countries, one should
expect a significant decrease in thresholds overall. However, European
integration also fosters competition for firms across member states, rais-
ing the productivity threshold for potential exporters. How does this
translate into changes in the threshold distribution? In fact, although we
do expect a reduction in the first moment of the threshold distribution,
we remain agnostic about the effect of the aforementioned shocks on
higher moments of the threshold distribution. In particular, we explore
whether these shocks have been of the symmetric or asymmetric type
by estimating the threshold distribution for market participation as fol-
lows:

�̂�t = arg max
𝛀t

L̂(𝛀t ;𝜒i, 𝜃i) ∀t ∈ T = (1990,… , t,… ,2007)

We do not report the results of our estimations, but consistent with
prior findings, the gamma density is the best fit according the Vuong’s
test. Fig. 4 displays the dynamics of the first four moments of export
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Fig. 3. Threshold distributions for all manufacturing and three selected sectors.
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Table 4
Occurrence of diagnosis, according to the type of market
participation.

Ranking Participation Entry Remaining

No density fit

∅ 22 67 19
Unique density fit

 1 20 0
Γ 0 20 1
 1 10 0

Two density fits

 ≻ Γ 0 6 0
 ≻ 

a 3 2 2
Γ ≻  0 23 0
Γ ≻  0 22 0
 ≻  3 0 5
 ≻ Γ 0 12 0
Γ ∼  0 2 0

Tree density fits

 ≻ Γ ≻  25 3 16
 ≻  ≻ Γa 44 7 32
 ∼ Γ ≻  5 0 1
 ∼ Γ ∼  2 2 1
 ∼  ≻ Γ 0 1 0
Γ ≻  ≻  98 13 78
Γ ≻  ≻  11 7 14
Γ ∼  ≻  2 0 0
 ≻  ≻ Γ 14 2 48
 ≻ Γ ≻  3 2 3
 ≻  ∼ Γ 0 0 1

Overall dominance

 80 47 51
Γ 111 87 94
 21 26 57

Total

234 221 221

Figures represent counts of estimated densities for market
participation, market entry or market remaining. The overall
number of estimated densities for market participation is 13
industries observed for 18 years, yielding 234 trials of density
estimation. Accounting for entry or remaining imply the loss
of the first year of observation due to the use of a lagged year
in identifying firm market entry and/or remaining.
The [a] symbol indicates that caution is needed in the dom-
inance of  over , as revealed by Monte Carlo results pre-
sented in Section B.3.3.

thresholds. As expected, we observe an overall downward trend in
thresholds by 15%. A closer look at the evolution of the mean sug-
gests that the establishment of the single market in 1993 was a major
step towards lower export thresholds (−8%). The introduction of the
euro as a common currency for all transactions is also concomitant
to significant decreases in the mean value of export thresholds. This
may be due to the increased competition by rival eurozone firms or the
simultaneous arrival of major players outside Europe, such as China
joining the World Trade Organization in 2001, in the export mar-
kets, both of which would exclude the least efficient firms from export
markets.

Looking at higher moments of distribution, we observe that the
establishment of the single market and the introduction of the euro
represent shocks of different natures. The significant decrease in the
mean in 1993 leaves all higher moments nearly unchanged. By secur-
ing the free movement of goods, services, capital and persons and by
removing customs barriers between member states, the establishment
of the single market represented a symmetric shock, homogeneous to
all manufacturing firms. Higher moments of the distribution exhibit an
important upward trend from 1999 onwards, that is, after the birth of
the euro. The synchronized increase in the variance, skewness, and kur-
tosis implies that, oppositely, the euro constituted an asymmetric shock

to French firms. We argue that many firms have benefited from the
introduction of the euro through the direct effect of the reduction in
information costs. Thus, the mass of the threshold’s distribution moved
toward the left as barriers have diminished. However, for a number of
firms, the indirect effect due to an increase in competition with foreign
firms belonging to the European Monetary Union, has outplayed the
benefits, leading to an increase in thresholds located in the last decile
of the distribution. This interpretation is consistent with the observed
dynamics of the extreme deciles displayed in Fig. 4.

Overall, the establishment of the single market and the introduction
of the euro – together with the arrival of major countries in export mar-
kets – represented major shocks for French manufacturing firms. These
shocks translated into significantly lower thresholds for the majority
of firms. Whereas the former represented a symmetric and homoge-
neous shock to all firms, the latter constituted an asymmetric shock,
definitely excluding a minor share of large manufacturing firms from
international trade.

4. Conclusion

This paper has developed a new method to estimate the parame-
ters of the threshold distribution for market participation, requiring
few working assumptions. Stochastic Monte Carlo simulations have also
shown that our method is resilient to specification, sorting, and mea-
surement errors. We have applied our method to unravel the produc-
tivity threshold distribution for export markets for French manufactur-
ing firms. In most cases, the likelihood function needs few iterations
to converge, except when some underlying assumption is not empiri-
cally supported. We have implemented a hypothesis testing procedure,
based on Vuong (1989), to discriminate between a set of competing
priors.

We found that heterogeneity is relevant across several domains:
(i) within-sector estimates, suggesting that participation thresholds are
characterized by right-skewness and leptokurtosis; (ii) between-sector
estimates, conditional upon participating, entering, or remaining in
a market, suggesting that gamma, normal, or beta densities are all
empirically relevant; and (iii) across-year estimates, suggesting that
the establishment of the common market and the introduction of the
euro have decreased average thresholds. However, due to increased
foreign competition, the common currency has led to the exclusion of
a minor share of firms from international trade. Overall, our results
indicate that accounting for heterogeneity in thresholds allows one to
gain new insights on how policies affect barriers to market participa-
tion.

Our method can be applied to various issues within the realm
of economics. Beyond export productivity threshold distributions, our
method could be used to unravel distributions of reservation wages,
skill requirements, and financial constraints: all agent-specific charac-
teristics that support or limit the decision to participate in a market.
All that is required is to gather the two vectors of agent-specific deci-
sion outcomes and 𝜃-attributes. The existence of dynamic information
on whether agents enter or exit a market can also be exploited to reveal
distributions of entry and remaining thresholds. Moreover, this method
may also be of interest outside the realm of economics, although the
range of relevance is difficult to forecast.

We intend to extend this work in three directions. The most immedi-
ate extension is to condition the vector of parameters on agent-specific
characteristics. The gain is two-fold. First, one can analyze the deter-
minants affecting the parameters of the threshold distribution. Sec-
ond, one could then compute agent-specific thresholds. In other words,
beyond the estimation of distribution shapes, one could locate each
agent within the distribution with a certain degree of confidence. Such
an exercise would be particularly useful for policy purposes. In the
case of export thresholds, policymakers could target export subsidies
to a set of identified firms that combine a high level of productivity
but a high export threshold. Alternatively, policies could be designed
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Fig. 4. The dynamics of threshold distributions in French manufacturing: 1990–2007.

to maximize participation, conditional on a given budget. Second, by
broadening the meaning of the 𝜃-attribute toward a multivariate con-
text, we could envisage narrowing the definition of a market to a more
fine-grained scale. One could, for example, distinguish among destina-
tions for export markets or among industries for labor markets. In all
instances, the road ahead is to extend the univariate case presented
in this paper to multivariate (normal, gamma and beta) distributions
while accounting for the correlation between markets. Third, we intend

to identify the underlying relationship between thresholds and costs.
While the first can be applied to more domains, the second can provide
a direct monetary evaluation of the problem under investigation for
policymakers. Increases in thresholds imply higher barriers to market
participation. Although the support of the thresholds is expressed in a
linear scale, the underlying series of investments and efforts allowing
agents to climb the threshold ladder is likely to involve highly convex
costs.
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Appendix A. Model selection

The starting point is to select, among two candidate densities fp and fq, the model that is closest to the true, unknown, density f0. The statistic
tests the null hypothesis H0 that the two models (fp and fq) are equally close to the true data generating process, against the alternative that one
model is closer. We write:

H0 ∶ 𝔼0
⎡⎢⎢⎣log

fp(𝜒i|𝜃i,𝛀∗
fp
)

fq(𝜒i|𝜃i,𝛀∗
fq
)

⎤⎥⎥⎦ = 0, (A.1)

where 𝔼0 is the expectation indicator, and 𝛀∗
f is the candidate, pseudo-value of the true vector 𝛀. Interestingly, Equation A.1 does not necessitate

knowledge of the true the true density f0, but it provides information about the best model between the alternatives fp and fq. Under the null
hypothesis, the distributions Fp and Fq are equivalent (Fp ∼ Fq). The two directional hypotheses read:

HFp
∶ 𝔼0

⎡⎢⎢⎣log
fp(𝜒i|𝜃i,𝛀∗

fp
)

fq(𝜒i|𝜃i,𝛀∗
fq
)

⎤⎥⎥⎦ > 0, (A.2)

meaning that Fp is a better fit than Fq (F1 ≻ Fq), and:

HFq
∶ 𝔼0

⎡⎢⎢⎣log
fp(𝜒i|𝜃i,𝛀∗

fp
)

fq(𝜒i|𝜃i,𝛀∗
fq
)

⎤⎥⎥⎦ < 0, (A.3)

meaning that Fq is a better fit than Fp (Fp ≺ Fq). Vuong (1989) showed that the indicator 𝔼0 can be estimated by the Likelihood Ratio statistic such
that:

log LR(�̂�fp , �̂�fq ) = 𝓁p(�̂�fp ) − 𝓁q(�̂�fq ) =
N∑

i=1
(𝓁p,i(𝜒i|𝜃i, �̂�fp ) − 𝓁q,i(𝜒i|𝜃i, �̂�fq )) =

N∑
i=1

d𝓁i, (A.4)

where 𝓁p,i(𝜒i|𝜃i, �̂�fp ) (resp. 𝓁q,i(𝜒i|𝜃i, �̂�fq )) is observation i’s contribution to the log likelihood 𝓁p (resp. lq) using density fp (resp. fq). The ratio d𝓁i
simply represents the difference in the log-contributions of the ith observation. In addition, Vuong (1989) suggested to account for differences in
the number of parameters in the two models as the in the Akaike Information Criterion such that:

log L̃R(�̂�fp , �̂�fq ) = log LR(�̂�fp , �̂�fq ) − (kp − kq)
log N

2
(A.5)

where kp and kq represent the number of parameters in density functions fp and fq, respectively. Given the above setting, Vuong’s z statistic reads:

Vuong′sz = (𝜎dl

√
N)−1 log L̃R(�̂�fp , �̂�fq ) (A.6)

where 𝜎dl is the standard deviation of dl. Vuong test statistic is asymptotically normally distributed by the central limit theorem. In other words,
cumulative function Fp is preferred over cumulative density function Fq if Vuong′sz exceed the (1 − 𝛼)th percentile of the standard normal distribu-
tion. Setting a 5% significance level, the corresponding z statistic in a bilateral test is |z| >= 1.96.

A last attractive feature of Vuong’s test for the selection of non-nested models is that the ranking between any pair of models is transitive.
This implies that if Fp is preferred over Fq, and Fq is preferred over Fr , then Fp is preferred over Fr.10 This is relevant in that our method can
envisage a large number of density functions and then recover a complete rank order between the competing models. If Nf densities are being
tested, Nf × (Nf − 1)∕2 pairwise comparisons will allow one to recover a complete rank order of preferences across the competing density functions.

Appendix B. Monte Carlo simulations

B.1. Monte Carlo settings

The first choice concerns the candidate parametric densities to fit to the data. The number of candidate distribution being virtually infinite, we
arbitrarily choose parametric densities with two parameters only. Remember, however, that our framework can easily adapt to parametric density
functions which include a higher number of parameters.

We simulate the heterogeneous threshold distribution F as extracted from three distribution densities: the normal distribution  , the gamma
distribution Γ, and the beta distribution : F ∈ { ; Γ;}. The choice of the normal, gamma and beta distributions for thresholds is motivated
by the fact that they allow us to compare a symmetric distribution in the case of the normal and asymmetric distributions of thresholds in the
case of the gamma and the beta. In addition, the gamma, being very flexible, envisages various distributional shapes that may prove empirically
relevant in the presence of right-skewness. The choice of the gamma also implies that we constrain the support of 𝜃-attributes to be strictly positive:
𝜽 ∈ ℝ+. The beta distribution is by far the most flexible, as it encapsulates all sorts of distribution shapes, ranging from left-skewed, symmetric or
right-skewed distribution. The inclusion of the beta distribution implies that the support lies over the 0–1 segment: 𝜽 ∈ (0,1). This is extremely
binding, because it implies that the cumulative distribution function be unity when 𝜃 exceeds one.

Following the description in Appendix E, we fix the number of agents to N = 50,000, the number of Monte Carlo simulations to M = 1,000, and
impose a normally distributed 𝜃-attribute 𝜽 ∼  (.5, .15).11 In our simulation, threshold C is random variable drawn from: (i) a normal distribution

10 This is true for what concerns the comparisons of l scores. In few cases, the transitivity may be affected by the denominator of Vuong’s z, that is, the standard
deviation of individual log difference 𝜎dl.

11 We verified that our results are qualitatively robust to alternative distributions of 𝜃i. We tested Θ ∼  (min,max), Θ ∼ (𝛼, 𝛽), and Θ ∼  (min, 𝛼) where  ,,

represent the uniform, beta and Pareto type-II distributions, respectively. The results are available from the authors upon request.
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with 𝜇 = 0.7 and 𝜎 = 0.2, i.e., C ∼  (.7, .2); (ii) a right-skewed gamma distribution with shape and scale parameters 𝛼Γ = .1.5 and 𝛽Γ = 0.5, i.e.,
C ∼ Γ(1.5,0.5); and (iii) a left-skewed beta distribution with shape-one and shape-two parameters 𝛼 = 5 and 𝛽 = 2, i.e., C ∼ (5,2). For all three
threshold distributions, given the vector of 𝜃-attribute, we computed the vector of decision outcomes 𝝌 according to Equation (1).12

In what follows, we conduct several Monte Carlo simulation exercises to investigate whether the estimation of Equation (5) holds when Assump-
tions A1-A4 hold. We then explore the robustness of the estimator under violations of certain assumptions.

B.2. Baseline results

We begin with a perfect scenario, where all Assumptions A1-A4 hold. Using only limited information 𝜽 and 𝝌 , we then apply our MLE algorithm
to estimate the vector of parameters 𝛀 = {𝜇, 𝜎} for the Gaussian case, 𝛀 = {𝛼Γ, 𝛽Γ} for the gamma case, and 𝛀 = {𝛼, 𝛽} for the beta case.13 The
distributions of the estimated parameters across M = 1000 Monte Carlo simulations are displayed in the different panels of Fig. B.1 for the normal,
the gamma, and the beta scenarios, respectively.

Fig. B.1 Distribution of Monte Carlo estimates of the parameters 𝛀 for three different threshold distributions.

12 Details on the functional forms of the three distributions are available in Appendix F.
13 Note that estimations of 𝛼 and 𝛽 for the gamma and the beta distributions allow one to analytically retrieve the first four moments.
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Fig. B.1 shows that, on average, our estimation strategy accurately estimates the true parameters. In fact, a simple t-test never rejects the
null hypothesis of equality of the estimated parameters with the target, true, parameter. However, the MLE approach provides evidence that our
framework can sometimes be off target, i.e., it over- or underestimates the true parameters in a magnitude reaching approximately 10% of the true
parameter, especially for the gamma and beta cases. A closer inspection of the results suggests that this is due to a strong – respectively negative
and positive for the gamma and the beta distributions – correlation between the parameters 𝛼 and 𝛽. As shown in Fig. B.2, there is a tight negative
relationship linking the estimates of the two parameters in the gamma case (left panel) and in the beta case (right panel). Thus, in the gamma case,
when one of the two parameters is underestimated with respect to the true value, the other compensates and becomes overestimated. In the beta
case, the compensation effect goes instead in the same direction.

Fig. B.2 Scatter plot of the parameters estimates for the gamma and beta scenarios.

This compensation mechanism is a positive feature of the two asymmetric distributions. The depicted correlation between 𝛼 and 𝛽 simply
signifies that there are several parameter combinations that allow us to unravel the density function f sufficiently close to the true one.

In Section B.3, we move towards imperfect scenarios, testing the robustness of the estimation when at least one of the assumptions fails. We
focus on Assumptions A2 and A4, which may prove hard to meet.

B.3. Violations of assumptions

B.3.1. Violation of A2
Assumption A2 concerns the functional form f of the threshold distribution. Since thresholds are unobservable, we need a prior concerning the

density function. A specification error occurs when a functional form f assumed by the scientist is different from the true one. Without a strong prior,
any probability distribution is eligible. Given this uncertainty, understanding the consequences of a violated Assumption A2 is of crucial importance.
Our intuition is that the probability density function f must be sufficiently flexible to encompass a variety of shapes, so that it can adapt from case
to case.

We set N = 50,000 agents and run M = 1,000 Monte Carlo simulations, comparing three alternatives for the likelihood function, where the
cumulative distribution function F may be either a normal, gamma, or beta distribution F =

{
 (𝜇, 𝜎),Γ(𝛼Γ, 𝛽Γ),(𝛼, 𝛽)

}
. This represents our

prior about the threshold distribution. In turn, the true distribution of thresholds C may alternatively follow a normal, gamma or beta distribution.
For the gamma case, we consider a parametric configuration giving rise to a right-skewness with a fat right tail. For the beta distribution instead, we
instead choose a left-skewed distribution. We set the 𝜃-attribute such that it follows a normal distribution: 𝜽 ∼  (.5, .0225). The set of parameters
for threshold distributions is the following: (i) C ∼  (.7, .04); (ii) C ∼ Γ(1.5,0.5); and (iii) C ∼ (5,2).14 Combining all the possible choices for the
prior F and the true distribution of C, we obtain nine different cases. In three of them, Assumption A2 is satisfied and gives rise to the situations
observed in the previous section. In six of them, Assumption A2 is violated.

To evaluate the performance of our framework under a violation of Assumption A2, we are restricted to compare the moments estimated by
our densities, since one cannot estimate the parameters of the normal distribution (𝜇 and 𝜎) using a gamma or an beta prior. Instead, we compute
the root mean squared errors (RMSEs) of the estimated first four moments (the mean 𝜇; the variance 𝜎2; the skewness sk; and the excess kurtosis
k) and compare the estimated values with their true counterparts. We do this for all of the scenarios combining our prior, assumed, density for
the MLE exercise and the true densities. The results displayed in Table B.1 thoroughly corroborate the results of the previous section. Absent a
misspecification, the true moments are consistently recovered. However, when the false prior is used, a significant error is always present.

14 The guidelines for the algorithm followed for this Monte Carlo exercise are presented in Appendix E. The values for the variance 𝜎2 in the normal distribution
stem from setting 𝜎 to 0.15 for 𝜃 and 0.2 for the threshold normal distributions.
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Table B.1
Mean squared errors of the estimated first four moments over the different scenarios.

Assumed c True c A2 𝜇 𝜎2 sk k

True Values

 0.700 0.040 0.000 0.000
Γ 0.750 0.375 1.633 4.000
 0.714 0.026 0.596 0.120

RMSE as Share of True Values

  ✓ 0.003 0.023 – –
Γ  × 0.049 0.533 – –
  × 0.022 0.242 – –
 Γ × 0.203 0.452 1.000 1.000
Γ Γ ✓ 0.012 0.052 0.015 0.029
 Γ × 0.243 0.731 1.152 1.321
  × 0.104 1.508 1.000 1.000
Γ  × 0.074 1.158 2.025 5.675
  ✓ 0.002 0.016 0.015 0.064

M = 1,000 Monte Carlo simulations with N = 50,000 agents. ✓: Assumption A2 holds. × :
Assumption A2 is violated. sk: Skewness. ku: Kurtosis. For all of the simulations, we set the
𝜃-attribute such that it follows a normal distribution: 𝜽 ∼  (.5, .0225). The set of parameters
for the threshold distributions: (i) C ∼  (.7, .004); (ii) C ∼ Γ(1.5,0.5); and (iii) C ∼ (5,2).

The first three rows of the bottom panel display the performance of the three priors (F =
{
 (𝜇, 𝜎),Γ(𝛼Γ, 𝛽Γ),(𝛼, 𝛽)

}
) when the normal

density is true. Consistently with Section B.2, it shows that the normal prior performs well at recovering the first two moments of the true normal,
with errors amounting to only 0.3% and 2.3% of the true mean and variance, respectively. Under violation of Assumption A2, the beta prior (with
2% and 24% errors for mean and variance, respectively) outperforms the gamma prior (with errors amounting to 5% and 53%, respectively). Our
interpretation is that the beta prior outperforms the gamma one due to the impossibility of the latter to recover symmetric distributions.

We then investigate the case where thresholds are gamma distributed. Not surprisingly, the gamma prior properly recovers the first four moments.
The largest RMSE concerns the second moment and reaches 5.2% of the true variance. Instead, both the normal and beta priors deteriorate when
applied to a gamma distribution. This observation spans all of the investigated moments: errors amounting to 20% and 23% of the true mean, and
errors for all higher order moments exceed 100% of the true moments. This is due to two conditions. First, it is impossible for the normal prior to
recover asymmetric and fat-tailed distributions. Second, it is impossible for a beta prior to recover distribution outside the 0–1 support. The final
three rows present the results under a true beta distribution of thresholds. Our previous observation also prevails in this case. The beta prior under
a true beta distribution performs well, whereas the normal and gamma priors fail in accurately estimating the first four moments of the distribution.

The conclusion of the simulation exercise is clear: without proper knowledge about the true threshold distribution, misspecification can generate
off-target predictions, leading to a wrong inference about participation threshold distributions. In this context, Vuong’s likelihood ratio test for
model selection is fully advocated in order to recover a complete ranking of the candidate densities.

Table B.2 presents the relative frequencies of each ranking of distributions, according to the Vuong’s test using the simulations used above.
Similarly to the sensitivity (detecting true positives) and specificity (detecting true negatives) of the test, this exercise investigates whether Vuong’s
procedure correctly discriminates between the three alternative densities. Table B.2 reports the results. We observe that the test is successful at
pointing to the correct true density, with the exception of only two cases in the 3,000 simulation runs. Besides, the ranking of the two remaining
alternatives are, in the vast majority of cases, consistent with the percentage errors reported in Table B.1. When the true distribution of thresholds
is normal, the order of preference is  ≻  ≻ Γ in the majority of cases; when the thresholds are gamma distributed, then Γ ≻  ≻  is the typical
ranking; and when the true density of thresholds is the beta distribution, then  ≻  ≻ Γ is the emerging ranking. In all instances, the sensitivity
and specificity of Vuong’s test hold under violations of Assumption A2.

Table B.2
Vuong’s ranking of distributions, by type of true threshold distribution.

Vuong’s diagnosis True c:  True c: Γ True c: 

 ≻  ≻ Γ 0.961
 ≻ Γ ∼  0.025
 ≻ Γ ≻  0.011
 ∼  ≻ Γ 0.001 0.001

Γ ≻  ∼  0.026
Γ ≻  ≻  0.707
Γ ≻  ≻  0.267

 ≻  ≻ Γ 0.002 0.867
 ≻ Γ ≻  0.131
 ≻ Γ ∼  0.001

M = 1,000 Monte Carlo simulations with N = 50,000 agents for each
true threshold distribution. The figures represent the share of simulation
representing Vuong’s diagnosis appearing as row heads. For example:
 ≻  ≻ Γ must be read as ”The normal distribution is preferred over
the beta distribution, which is preferred over the gamma distribution.

206



M. Guerini, P. Musso and L. Nesta Economic Modelling 98 (2021) 192–217

Confident that: (i) in the absence of a specification error, one can use the MLE to consistently recover the true parameters, and (ii) Vuong’s test
for model selection successfully discriminates between competing prior densities, our procedure allows one to estimate participation thresholds in
various empirical setups.

B.3.2. Violation of A4
Assumption A4 concerns the decision process of economic agents and relates to the information set available, either to the entrepreneur or to

the external investigator. We examine two potential sources that may affect the robustness of the estimation framework.
The first source of imperfect sorting arises when economic agents have limited information about either their own threshold ci or their own

𝜃-attribute.15 The immediate consequence is that agents base their decision on an erroneous inference, violating the perfect sorting hypothesis. We
define a sorting error as a situation in which agent i, characterized by 𝜃i > ci (resp. 𝜃i < ci), selects the negative (resp. positive) outcome 𝜒 i due to
agent i having an imperfect evaluation of her threshold ci. With respect to Fig. 2, a sorting error implies that by observing 𝜒 i = 0 (resp. 𝜒 i = 1), we
wrongly assign a threshold ci to the right (resp. to the left) of the observed 𝜃i. To generate a sorting error in our Monte Carlo exercise, we modify
the problem in Equation (1) as follows:{
𝜒i = 1 if 𝜃i ≥ ci + 𝜀c

i
𝜒i = 0 if 𝜃i < ci + 𝜀c

i

(B.1)

where we assume that ci represents the true threshold and 𝜀c
i iid∼̂ (0, 𝜎𝜀) measures instead the erroneous information of the agent, which is

summarized by 𝜎𝜀.
The second source of imperfect sorting is due to measurement errors of the 𝜃-attribute by the observer. The quality of an agent’s decision is not

at stake, but this issue may harm the estimation due to a measurement error in the support of the threshold distribution. With respect to Fig. 2,
a measurement error yields a noisy location of the 𝜃-attributes for all agents. To simulate it, we hold the original decision problem of Equation
(1) fixed, but we use the noisy measure of the 𝜃-attribute when maximizing the likelihood, defined as 𝜃i + 𝜀𝜃i , where again 𝜀𝜃i iid∼̂ (0, 𝜎𝜀) is a
mean-preserving spread.

Both the sorting and measurement errors may occur simultaneously within an empirical exercise.16 For all of these scenarios exploring the
robustness of the method under the violation of Assumption A4, we instead set Assumption A2 to be valid: no specification error can therefore arise.
Combining the possibility of imperfect sorting (IS) or/and imperfect measurement (IM) give rise to three possible scenarios (labeled as IS-PM, PS-IM
and IS-IM). We also discriminate for different sizes of the errors, characterized by 𝜎𝜀 which lies in 5%, 10% and 15% of the original variance of the
𝜃-attribute (𝜎𝜃). This exercise is performed for all the three (i.e., normal, gamma, and beta) threshold densities.17

Each scenario gives rise to 1000 Monte Carlo simulations, allowing us to compute the RMSE for the estimated first four moments. We express
each RMSE relatively to the true moments, i.e., as percentage errors, in Table B.3. We observe that, as long as the informational error is small or
medium sized (i.e., 5% or 10%) the moments are recovered without the generation of large errors for all the three densities. The largest error is an
8.5% deviation from the true value in the estimate of the kurtosis for the beta case in the PS-IM scenario. When the size of the shock reaches its
15%, the central moment is typically precisely estimated. However, for the IS-IM scenario, both the gamma and the beta distribution commit errors
(a sizeable 10%) for the variance and the kurtosis.

15 The contributions of Jovanovic (1982) and Hopenhayn (1992) on the dynamics of industries are examples of models where agents – firms – learn about their
own 𝜃-attribute and may make erroneous decisions.

16 Details of the algorithmic guidelines are presented in Appendix E.
17 The unreported results show that for the gamma and beta distributions, a pattern similar to Fig. B.2 on the correlation between estimates of 𝛼 and 𝛽 is found in

each of the three scenarios. A downward bias in the estimates of 𝛼Γ is compensated by an upward bias in the estimates of 𝛽Γ for the gamma case, while a downward
bias in the estimates of 𝛼 is compensated by a downward bias in the estimates of 𝛽 for the beta case.
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Table B.3
Root Mean Squared Errors (RMSE) as a share of the true value for the estimated
first four moments over the different scenarios.

MSE IS IM 𝜎𝜀 = 5% 𝜎𝜀 = 10% 𝜎𝜀 = 15%

 distributed thresholds

𝜇 ✓ 0.003 0.003 0.003
𝜎2 ✓ 0.023 0.024 0.026
sk ✓ – – –
ku ✓ – – –
𝜇 ✓ 0.003 0.003 0.003
𝜎2 ✓ 0.023 0.023 0.023
sk ✓ – – –
ku ✓ – – –
𝜇 ✓ ✓ 0.003 0.003 0.003
𝜎2 ✓ ✓ 0.023 0.024 0.026
sk ✓ ✓ – – –
ku ✓ ✓ – – –

Γ distributed thresholds

𝜇 ✓ 0.012 0.012 0.012
𝜎2 ✓ 0.052 0.052 0.052
sk ✓ 0.015 0.015 0.015
ku ✓ 0.030 0.030 0.030
𝜇 ✓ 0.012 0.014 0.020
𝜎2 ✓ 0.053 0.065 0.098
sk ✓ 0.015 0.018 0.027
ku ✓ 0.030 0.037 0.056
𝜇 ✓ ✓ 0.012 0.014 0.021
𝜎2 ✓ ✓ 0.054 0.066 0.101
sk ✓ ✓ 0.015 0.018 0.028
ku ✓ ✓ 0.031 0.037 0.056

 distributed thresholds

𝜇 ✓ 0.002 0.002 0.002
𝜎2 ✓ 0.016 0.017 0.020
sk ✓ 0.015 0.015 0.015
ku ✓ 0.064 0.063 0.068
𝜇 ✓ 0.002 0.003 0.006
𝜎2 ✓ 0.017 0.025 0.047
sk ✓ 0.016 0.025 0.045
ku ✓ 0.066 0.085 0.137
𝜇 ✓ ✓ 0.002 0.003 0.005
𝜎2 ✓ ✓ 0.017 0.029 0.058
sk ✓ ✓ 0.016 0.025 0.046
ku ✓ ✓ 0.066 0.077 0.111

M = 1,000 Monte Carlo simulations with N = 50,000 agents. ✓: Assumption in
the specific column is violated. sk: Skewness. ku: Kurtosis. For all simulations, we
set the 𝜃-attribute such that it follows a normal distribution: 𝜽 ∼  (.5, .0225).
The set of parameters for threshold distributions: (i) C ∼  (.7, .004); (ii) C ∼
Γ(1.5,0.5); and (iii) C ∼ (5,2). The true moment values are displayed in
Table B.1.

In general, we observe that the normal is more resilient to shocks, while the gamma follows and eventually might inconsistently estimate the
variance. The beta distribution seems instead the least resilient to violations of A4, possibly leading to errors of higher magnitude when both the
𝜃-attribute is badly measured and a significant fraction of the firms do not take decisions according to Equation (1).

B.3.3. Joint violation of A2 and A4
We observe in Section B.3.1 that, in the absence of measurement and sorting errors, the true density function is correctly recovered and its true

parameters are consistently estimated. Section B.3.2 has documented that, with the correct prior density, sorting and measurement errors mildly
impact the estimation precision. We now turn to investigating the effect of a joint violation of Assumptions A2 and A4. This amounts to questioning
the capacity of Vuong’s test to correctly identify the true density in the presence of measurement and sorting errors. This is an empirically relevant
issue, as in most cases: (i) a researcher does not have any prior knowledge about the true underlying density function (hence Assumption A2 is
violated) and (ii) some firms do not behave according to Equation (1) and/or the 𝜃-attribute is measured only imperfectly (hence, Assumption A4
is also violated).

We perform 1000 Monte Carlo simulations combining the settings performed in the two previous subsections. In particular, we use the three
threshold distributions, namely, the normal, gamma, and beta – with the joint presence of imperfect sorting and imperfect measurement (the IS-IM
scenario). For each simulation run, we confront the predicted density as identified by Vuong’s procedure for model selection with the true density.
The results are presented in Table B.4. They suggest that the Vuong’s test is successful at identifying the proper density, even in the presence of
a joint violation of Assumption A2 and Assumption A4. If the true underlying density is normal, the test always excludes the gamma and beta
alternatives. Similarly, if the thresholds are distributed gamma, the test predicts the correct density in virtually all of the cases (99.9% of the
performed simulations).
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The only issue concerns the beta case. In 32% of the simulation runs, Vuong z statistics points to a normal density, whereas the true density is
the beta. The excess presence of false normal in lieu of the beta one casts doubts on the reliability of Vuong’s test in the presence of sorting and
measurement errors. However, by truncating the normal distribution over the (0,1) support, we notice that the pattern of the estimated normal
distribution has a shape similar to the one of the true beta distribution. More generally, over the (0;1) support, truncation of the normal distribution
yields a similar distribution that is extremely close. We therefore conclude that the prediction of a gamma or a beta distribution according to the
Vuong’s test is reliable. When estimating a normal distribution instead, there remains a substantial degree of uncertainty about the true underlying
density function.

Table B.4
Vuong’s ranking of distributions, by type of true threshold distribution.

Vuong diagnosis True c:  True c: Γ True c: 

 ≻  ≻ Γ 0.990 0.326
 ≻ Γ ∼  0.008
 ≻ Γ ≻  0.002
 ∼  ≻ Γ 0.015

Γ ≻  ∼  0.016
Γ ≻  ≻  0.110
Γ ≻  ≻  0.873

 ≻  ≻ Γ 0.550
 ≻ Γ ≻  0.001 0.109

M = 1,000 Monte Carlo simulations with N = 50,000 agents for each
true threshold distribution under the presence of imperfect sorting and
imperfect measurement (IS-IM) with a 5% shock size. Figures represent
the share of simulation representing Vuong’s diagnosis appearing as
row heads. For example:  ≻  ≻ Γ must be read as ”The normal
distribution is preferred over the beta distribution which is preferred
over the gamma distribution.

After collecting all of the results by means of Monte Carlo simulations, we conclude that our estimation strategy is robust under Assumptions
A1-A4. Violations of Assumption A2 might lead to severe errors in the predicted moments, but Vuong’s test for model selection allows one to
correctly select among the set of competing densities. When Assumption A4 does not hold, both imperfect sorting and the imperfect measurement
have similar effects on the robustness of the framework. We found that estimation errors reflect the magnitude of the shock, i.e., they increase with
the shock size and that, in general, the estimation of the symmetric normal distribution seems more resilient than the asymmetric ones. Applications
to situations where Assumptions A2 and A4 are violated leads to satisfactory results, although caution must be taken when the normal law is
identified as the correct density.

Appendix C. Productivity measures

All nominal output and input variables are available at the firm level. Industry-level data are used for price indexes, hours worked and depreci-
ation rates.

Output
Gross output deflated using sectoral price indexes published by INSEE (French System of National Accounts).
Labor
Labor input is obtained by multiplying the number of effective workers (i.e., the number of employees plus the number of outsourced workers

minus the workers taken from other firms) by the average hours worked. The annual series for hours worked are available at the 2-digit industry
level and provided by the GGDC Groningen Growth Development Center). This choice has been made because there are no data on hours worked in
the EAE (Enquête annuelle d’entreprises) survey. Also note also that a large decline in the hours worked occurred between 1999 and 2000 because of
the specific “French 35 h policy” (on average, the hours worked fell from 38.39 in 1999 to 36.87 in 2000).

Capital input
Capital stocks are computed from the investment and book value of tangible assets, following the traditional perpetual inventory method (PIM):

Kt = (1 − 𝛿t−1) Kt−1 + It (C.1)

where 𝛿t is the depreciation rate and It is real investment (deflated nominal investment). Both investment price indexes and depreciation rates are
available at the 2-digit industrial classification from the INSEE data series.

Intermediate inputs
Intermediate inputs are defined as purchases of materials and merchandise, transport and traveling, and miscellaneous expenses. They are

deflated using sectoral price indexes for intermediate inputs published by INSEE (French System of National Accounts).
Input cost shares
With w, c and m denoting the wage rate, user cost of capital and price index for intermediate inputs, respectively, CTkt = wktLkt + cItKkt + mItMkt

represent the total cost of production of firm k at time t. Labor, capital, and intermediate input cost shares are then respectively given by

sLkt =
wktLkt
CTkt

; sKkt =
cItKkt
CTkt

; sMkt =
mItMkt
CTkt

(C.2)

209



M. Guerini, P. Musso and L. Nesta Economic Modelling 98 (2021) 192–217

To compute the labor cost share, we rely on the variable “labor compensation” in the EAE survey. This value includes the total wages paid as
salaries plus income tax withholding and is used to approximate the theoretical variable wktLkt . To compute the intermediate input cost share, we
use the variables on intermediate goods consumption in the EAE survey and the price index for intermediate inputs in industry I provided by INSEE.

We compute the user cost of capital by using the Hall (1988)’s methodology where the user cost of capital (i.e., the rental price of capital) in the
presence of a proportional tax on business income and of a fiscal depreciation formula is given by18

cIt = (rt + 𝛿It − 𝜋e
t )

(
1 − 𝜏t zI
1 − 𝜏t

)
pIKt (C.3)

where 𝜏 t is the business income tax in period t and ZI denotes the present value of the depreciation deduction on one nominal unit investment
in industry I. A complex depreciation formula can be employed for tax purposes in France. To simplify, we choose to rely on the usual following
depreciation formula

zI =
n∑

t=1

(1 − 𝛿I)t−1𝛿

(1 + r)t−1

where 𝛿I is a mean of the industrial deprecation rates for the period 1984–2002 and r is the mean nominal interest rate over the period 1990–2002.
We measure firm productive efficiency by means of two complementary indicators, namely, apparent labor productivity (ALP) and total factor

productivity (TFP). Labor productivity is defined as the log-ratio of real value added on labor (hours worked):

ln LPit = ln
(

Vit
Lit

)
(C.4)

where Vit denotes the value added of the firm deflated by sectoral price indexes published by INSEE (French System of National Accounts). Next, we
compute total factor productivity by using the so-called multilateral productivity index, first introduced by Caves et al. (1982) and extended by Good
et al. (1997). This methodology consists of computing the TFP index for firm i at time t as follows:

ln TFPit = ln Yit − ln Yt +
t∑

𝜏=2

(
ln Y𝜏 − ln Y𝜏−1

)
−
[

N∑
n=1

1
2
(Snit + Snt) (ln Xnit − ln Xnt) +

t∑
𝜏=2

N∑
n=1

1
2
(Sn𝜏 + Sn𝜏−1) (ln Xn𝜏 − ln Xn𝜏−1)

] (C.5)

where Yit denotes real gross output produced by firm i at time t using the set of n inputs Xnit , where input X is alternatively capital stocks (K), labor
in terms of the hours worked (L), and intermediate inputs (M). Snit is the cost share of input Xnit in the total cost. Subscripts 𝜏 and n are indexes for
time and inputs, respectively. Symbols with an upper bar correspond to measures for the reference point (the hypothetical firm), computed as the
means of the corresponding firm-level variables, over all firms in year t. Note that Equation (C.5) implies that reference points ln Y and ln X are the
geometric means of the firm’s output quantities and input quantities, respectively, whereas the cost share of inputs of the representative firms S is
computed as the arithmetic mean of the cost share of all the firms in the dataset.

This methodology is particularly well suited for comparisons within firm-level panel data sets across industries because it guarantees the
transitivity of any comparison between two firm-year observations by expressing each firm’s input and output as deviations from a single reference
point.

Appendix D. Robustness checks: application to labor productivity

This appendix presents robustness checks for all of the results on participation, entry, and remaining threshold distributions using labor produc-
tivity as the 𝜃-attribute. We stack all of the tables without commenting further.

18 In this equation, we abstract from tax credit allowance.
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Table D.1
Participation rates and labor productivity premium, by industry

Industry Name ♯ Obs. PR ALPP

Market participation

All Manufacturing 337,275 .738 .171
Automobile 9213 .797 .154
Chemicals 34,886 .836 .161
Clothing and Footwear 27,475 .668 .422
Electric and Electronic Components 14,413 .772 .252
Electric and Electronic Equipment 19,006 .753 .217
House Equipment and Furnishings 23,526 .822 .162
Machinery and Mechanical Equipment 61,870 .701 .131
Metallurgy, Iron and Steel 60,768 .727 .080
Pharmaceuticals 8677 .915 .170
Printing and Publishing 29,001 .608 .145
Textile 21,418 .796 .256
Transportation Machinery 5076 .794 .221
Wood and Paper 21,946 .691 .168

Market entry

All Manufacturing 74,832 .231 .017
Automobile 1635 .252 .006
Chemicals 5026 .266 .008
Clothing and Footwear 7358 .197 .055
Electric and Electronic Components 2858 .246 .035
Electric and Electronic Equipment 3775 .218 .018
House Equipment and Furnishings 3488 .280 .029
Machinery and Mechanical Equipment 15,612 .236 .014
Metallurgy, Iron and Steel 14,362 .231 .006
Pharmaceuticals 660 .312 -.039
Printing and Publishing 9735 .218 .020
Textile 3687 .234 .037
Transportation Machinery 886 .234 .003
Wood and Paper 5750 .203 -.019

Market remaining

All Manufacturing 218,102 .929 .157
Automobile 6517 .946 .122
Chemicals 25,926 .956 .193
Clothing and Footwear 15,708 .911 .373
Electric and Electronic Components 9759 .943 .220
Electric and Electronic Equipment 12,286 .943 .220
House Equipment and Furnishings 16,890 .948 .143
Machinery and Mechanical Equipment 37,983 .912 .122
Metallurgy, Iron and Steel 38,870 .925 .070
Pharmaceuticals 7015 .974 .241
Printing and Publishing 15,241 .869 .137
Textile 14,981 .946 .214
Transportation Machinery 3535 .946 .256
Wood and Paper 13,391 .920 .161

PR: participation rate. ALPP: Labor Productivity Premium.
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Table D.2
Maximum likelihood estimation of participation threshold distributions.

Industry Name  𝜇  𝜎2 Γ𝜇 Γ𝜎2 Γp50 𝜇 𝜎2 p50

Market participation

All Manufacturing .255 .116 .350 .087 .271 .311 .062 .255
Automobile .192 .113 .301 .068 .229 – – –
Chemicals -.001 .232 .242 .099 .125 – – –
Clothing and Footwear .385 .031 .405 .025 .385 .391 .028 .381
Electric and Electronic Components .281 .062 .332 .047 .286 .311 .041 .279
Electric and Electronic Equipment .298 .063 .346 .053 .296 .323 .044 .292
House Equipment and Furnishings .148 .122 .274 .065 .200 – – –
Machinery and Mechanical Equipment .310 .097 .385 .085 .314 .347 .059 .308
Metallurgy, Iron and Steel .138 .316 .380 .240 .201 – – –
Pharmaceuticals -.654 .669 .130 .111 .006 – – –
Printing and Publishing .353 .203 .499 .242 .350 .400 .095 .349
Textile .230 .081 .306 .052 .252 .280 .046 .233
Transportation Machinery .214 .096 .301 .066 .232 .273 .052 .215
Wood and Paper .321 .094 .391 .085 .321 .354 .058 .318

Market entry

All Manufacturing – – 2.653 1.074 1.543 .732 .120 .939
Automobile 1.117 1.044 4.421 4.311 1.956 .719 .138 .960
Chemicals – – – – – – – –
Clothing and Footwear – – .843 .268 .740 .668 .070 .725
Electric and Electronic Components .784 .273 1.300 1.481 .946 .678 .101 .791
Electric and Electronic Equipment – – 2.599 9.076 1.568 .738 .112 .930
House Equipment and Furnishings .782 .343 1.344 1.836 .925 .661 .110 .779
Machinery and Mechanical Equipment – – 2.572 9.387 1.503 .728 .120 .932
Metallurgy, Iron and Steel 1.397 1.644 6.125 8.437 2.613 .750 .135 .990
Pharmaceuticals – – – – – – – –
Printing and Publishing – – 5.002 47.2 2.393 .757 .125 .983
Textile .805 .271 1.318 1.453 .974 .690 .098 .807
Transportation Machinery 1.804 3.528 21.6 1522.1 5.438 .754 .150 .999
Wood and Paper – – 2.960 11.9 1.777 .759 .109 .956

Market remaining

All Manufacturing -.203 .215 .136 .047 .048 – – –
Automobile -.389 .289 .103 .041 .020 .080 .030 .002
Chemicals -.340 .225 .093 .030 .021 – – –
Clothing and Footwear .120 .071 .233 .027 .195 .196 .032 .144
Electric and Electronic Components -.080 .122 .139 .031 .075 – – –
Electric and Electronic Equipment -.025 .099 .151 .029 .094 – – –
House Equipment and Furnishings -.312 .235 .108 .036 .030 – – –
Machinery and Mechanical Equipment -.094 .179 .165 .052 .078 – – –
Metallurgy, Iron and Steel -.636 .600 .120 .096 .005 – – –
Pharmaceuticals -.806 .424 .047 .022 .000 – – –
Printing and Publishing -.158 .326 .202 .115 .064 .163 .061 .029
Textile -.222 .186 .118 .034 .044 .095 .028 .012
Transportation Machinery -.043 .101 .138 .028 .079 – – –
Wood and Paper -.114 .177 .155 .047 .072 – – –

 𝜇 : Estimated mean of the normal distribution;  𝜎2 : estimated variance of the normal distribution; Γ𝜇 : estimated mean of the gamma distribution;
Γ𝜎2 estimated variance of the gamma distribution; Γp50 : estimated median of the gamma distribution; 𝜇 : estimate mean of the beta distribution; 𝜎2 :
estimated variance of the beta distribution; and p50 : estimated median of the beta distribution.
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Table D.3
Vuong’s z test for model selection using Labor Productivity as the 𝜃-attribute.

Industry Name z ,Γ z , zΓ, Ranking Conclusion

Market participation

All Manufacturing 712.4 1294.7 −523.3  ≻  ≻ Γ C ∼  (.3, .3)a
Automobile 115 – –  ≻ Γ C ∼  (.2, .3)
Chemicals 51.2 – –  ≻ Γ C ∼  (−.0, .5)
Clothing and Footwear −1.4 113.6 44.3 Γ ≻  ≻  C ∼ Γ(6.6, .1)
Electric and Electronic Components 13.8 227.2 −82.3  ≻  ≻ Γ C ∼  (.3, .2)a
Electric and Electronic Equipment 42.7 67.8 −78.9  ≻  ≻ Γ C ∼  (.3, .3)a
House Equipment and Furnishings 252.2 – –  ≻ Γ C ∼  (.1, .3)
Machinery and Mechanical Equipment 591.6 1,39.1 −643.8  ≻  ≻ Γ C ∼  (.3, .3)a
Metallurgy, Iron and Steel 275.8 – –  ≻ Γ C ∼  (.1, .6)
Pharmaceuticals −196.4 – – Γ ≻  C ∼ Γ(.2, .9)
Printing and Publishing 37.8 51.6 −432.9  ≻  ≻ Γ C ∼  (.4, .5)a
Textile 219.9 506.6 −76.9  ≻  ≻ Γ C ∼  (.2, .3)a
Transportation Machinery 91.6 428.3 −49.2  ≻  ≻ Γ C ∼  (.2, .3)a
Wood and Paper 409.6 64.8 −586.1  ≻  ≻ Γ C ∼  (.3, .3)a

Market entry

All Manufacturing – – −197.1  ≻ Γ C ∼ (.5, .2)
Automobile 14.9 366.5 −179.4  ≻  ≻ Γ C ∼  (1.1,1.0)a
Chemicals – – – ∅ ∅
Clothing and Footwear – – 72.6 Γ ≻  C ∼ Γ(2.7, .3)
Electric and Electronic Components 76.6 198.3 −41  ≻  ≻ Γ C ∼  (.8, .5)a
Electric and Electronic Equipment – – −28.8  ≻ Γ C ∼ (.5, .2)
House Equipment and Furnishings 81.5 29.3 −176.6  ≻  ≻ Γ C ∼  (.8, .6)a
Machinery and Mechanical Equipment – – −176  ≻ Γ C ∼ (.5, .2)
Metallurgy, Iron and Steel −154.4 −93.2 315.3 Γ ≻  ≻  C ∼ Γ(.5,13.1)
Pharmaceuticals – – – ∅ ∅
Printing and Publishing – – −165.4  ≻ Γ C ∼ (.4, .1)
Textile 10.8 297.6 −78.2  ≻  ≻ Γ C ∼  (.8, .5)a
Transportation Machinery −67 92.8 121.1 Γ ≻  ≻  C ∼ Γ(.3,7.5)
Wood and Paper – – −303.9  ≻ Γ C ∼ (.5, .2)

Market remaining

All Manufacturing 1036.7 – –  ≻ Γ C ∼  (−.2, .5)
Automobile 29.9 525.6 52.8  ≻ Γ ≻  C ∼  (−.4, .5)
Chemicals 214.4 – –  ≻ Γ C ∼  (−.3, .5)
Clothing and Footwear −4.3 352.2 89.9 Γ ≻  ≻  C ∼ Γ(2.0, .1)
Electric and Electronic Components 245.2 – –  ≻ Γ C ∼  (−.1, .3)
Electric and Electronic Equipment 179 – –  ≻ Γ C ∼  (−.0, .3)
House Equipment and Furnishings 118.1 – –  ≻ Γ C ∼  (−.3, .5)
Machinery and Mechanical Equipment 636.9 – –  ≻ Γ C ∼  (−.1, .4)
Metallurgy, Iron and Steel 376.4 – –  ≻ Γ C ∼  (−.6, .8)
Pharmaceuticals −10.7 – – Γ ≻  C ∼ Γ(.1, .5)
Printing and Publishing 443.2 224.6 −42.2  ≻  ≻ Γ C ∼  (−.2, .6)a
Textile 244.9 191.4 −54.8  ≻  ≻ Γ C ∼  (−.2, .4)a
Transportation Machinery 23.1 – –  ≻ Γ C ∼  (−.0, .3)
Wood and Paper 44.4 – –  ≻ Γ C ∼  (−.1, .4)

z ,Γ: H∼Γ ∶ |z| < +1.96 H≻Γ ∶ z ≥ +1.96 HΓ≻ ∶ z ≤ −1.96.
z , : H∼ ∶ |z| < +1.96 H≻ ∶ z ≥ +1.96 H≻ ∶ z ≤ −1.96.
zΓ, : HΓ∼ ∶ |z| < +1.96 HΓ≻ ∶ z ≥ +1.96 H≻Γ ∶ z ≤ −1.96.
The [a] symbol indicates that caution is needed in the dominance of  over , as revealed by the Monte Carlo results presented in
Section B.3.3.
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Table D.4
Occurrence of diagnosis, according to the type of market participation.

Ranking Participation Entry Remaining

No density fit

∅ 1 38 4
Unique density fit

 0 9 0
 0 4 1

Two density fits

 ≻ Γ 49 0 83
 ≻ 

a 0 9 0
 ∼ Γ 1 0 3
Γ ≻  22 0 25
Γ ≻  0 45 0
Γ ∼  0 3 0
 ≻  0 6 0
 ≻ Γ 0 21 0

Tree density fits

 ≻ Γ ≻  13 4 15
 ≻  ≻ Γa 101 38 45
 ∼ Γ ∼  7 0 0
 ∼ Γ ≻  4 0 0
Γ ≻  ≻  28 11 28
Γ ≻  ≻  1 24 6
 ≻ Γ ≻  1 2 0
 ≻  ≻ Γ 6 6 11
 ≻  ∼ Γ 0 1 0

Overall dominance

 174 55 147
Γ 52 83 59
 7 45 11

Total
234 221 221

The figures represent the counts of estimated densities for market
participation, market entry or market remaining. The overall num-
ber of estimated densities for market participation is 13 industries
observed for 18 years, yielding 234 trials of density estimation.
Accounting for entry or remaining imply the loss of the first year
of observation, due to the use of a lagged year in identifying firm
market entry and/or remaining.
The [a] symbol indicates that caution is needed in the dominance
of  over , as revealed by the Monte Carlo results presented in
Section B.3.3.

Appendix E. Algorithms for the Monte Carlo simulation exercises

Baseline Monte Carlo Settings
The Monte Carlo simulations are carried out as follows:

1. Fix a sufficiently large number of agents N;
2. Simulate the true 𝜃-attribute data 𝜽T from a known distribution g;
3. Simulate the true threshold data CT from a known distribution f;
4. Let the agents compute their individual decision outcomes 𝝌 according to Equation (1);
5. Using the information available to the social researcher (i.e., 𝜽 and 𝝌), estimate via maximum likelihood the parameters Ω̂ that charac-
terize the threshold distribution f;
6. Repeat steps 2 to 5 a sufficient number of times M; and
7. Use the M estimates �̂� to evaluate the goodness of the estimation.
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Monte Carlo Settings - Testing Assumption A2
The Monte Carlo simulations are carried out as follows:

1. Fix a sufficiently large number of agents N;
2. Fix a set of probability density functions  = f1, f2,… , fK to be used for the generation of the true thresholds and as priors (i.e. ̂ ) for

the estimation of the threshold distribution parameters;
3. Simulate the true 𝜃-attribute data 𝜽T from a known distribution g;
4. Simulate the true threshold data CT from the distribution fk;
5. Let the agents compute their individual decision outcomes 𝝌 according to Equation (1);
6. Using the information available to the social researcher (i.e., 𝜽 and 𝝌), estimate via maximum likelihood the parameters Ω̂ that

characterize all the threshold distributions priors ̂ ;
7. Compute all of the pairwise Vuong’s z statistics;
8. Repeat steps 3 to 7 a sufficient number of times M;
9. Use all of the M estimates �̂� to evaluate the goodness of the estimation;
10. Repeat steps 3–9 K times, each time using as true distribution of threshold a new the density function belonging to the set  , as defined

at step 2;
11. For each of the true fk evaluate and compare the estimation errors generated by all of the priors in ̂ ;
12. For each of the true fk evaluate and compare the Vuong’s tests, to verify if the correct prior density f̂ k has been preferred to the

alternative priors in the set ̂ .

Monte Carlo Settings - Testing Assumption A4
The Monte Carlo simulations are carried out as follows:

1. Fix a sufficiently large number of agents N;
2. Fix a vector of noise 𝝈 = 𝜎1, 𝜎2,…, 𝜎K ;
3. Simulate the true 𝜃-attribute data 𝜽T from a known distribution g;
• Also generate also the noisy 𝜃-attribute data 𝜽𝜀 = 𝜽T + 𝜺𝜃 ;

4. Simulate the true threshold data CT from the known distribution fk;
• Also generate also the noisy threshold data C𝜀 = CT + 𝜺c;

5. Let the agents compute their individual decision outcomes 𝝌 according to Equation B.1;
6. Using the information available to the social researcher, estimate via maximum likelihood the parameters Ω̂ that characterize the

threshold distribution fk;
7. Repeat steps 3 to 6 a sufficient number of times M;
8. Use the M estimates �̂� to evaluate the goodness of the estimation;
9. Repeat steps 3 to 8 for all of the noise levels 𝝈, as defined at step 2; and
10. Evaluate and compare the goodness of all the values of 𝝈.

Appendix F. Distributions

F.1. Univariate normal distribution

In the case of a normal distribution, the probability density function is defined as:

f (x) = 1
𝜎
√

2𝜋
exp

(
−1

2
(x − 𝜇)2

𝜎2

)
(F.1)

where 𝜇 and 𝜎 represent the average and the standard deviation, respectively. This distribution is typically denoted as x ∼  (𝜇, 𝜎2). Integrating
over the interval (−∞, x] yields the cumulative density function:

F(x) = 1
𝜎
√

2𝜋
exp∫

x

−∞

(
−1

2
(x − 𝜇)2

𝜎2

)
dx (F.2)
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F.2. Univariate gamma distribution

In the case of a gamma distribution, the probability density function is defined as:

f (x) = 1
Γ(𝛼)𝛽𝛼 x𝛼−1exp

(
−x
𝛽

)
(F.3)

where 𝛼 > 0 and 𝛽 > 0 represent the shape and scale parameters, respectively, and Γ(𝛼) = ∫ ∞
0 t𝛼−1exp(−t)dt is the gamma function. The mean and

variance of this distribution are a combination of shape and scale parameters and read as 𝜇 = 𝛼𝛽 and 𝜎2 = 𝛼𝛽2, respectively. This distribution is
typically denoted as x ∼ Γ(𝛼, 𝛽). Integrating over the interval (0, x] yields the cumulative density function:

F(x) = 1
Γ(𝛼)𝛽𝛼 ∫

x

0
x𝛼−1exp

(
−x
𝛽

)
dx (F.4)

F.3. Univariate beta distribution

For a beta distribution, the probability density function is defined as:

f (x) = 1
B(𝛼, 𝛽)x𝛼−1(1 − x)𝛽−1 (F.5)

where 𝛼 > 0 and 𝛽 > 0 represent the shape1 and shape2 parameters, and B(𝛼, 𝛽) = Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽) is the beta function, a normalization constant derived

from the composition of gamma functions and that ensures the total probability is one. The mean and variance of this distribution are a combination
of shape1 and shape2 parameters and read as 𝜇 = 𝛼

𝛼+𝛽 and 𝜎2 = 𝛼𝛽2, respectively. This distribution is typically denoted as x ∼ (𝛼, 𝛽). Integrating
over the interval (0,1) yields the cumulative density function:

F(x) = Ix(𝛼, 𝛽) =
∫ x

0 t𝛼−1(1 − t)𝛽−1dt

∫ 1
0 t𝛼−1(1 − t)𝛽−1dt

(F.6)

where Ix(𝛼, 𝛽) is the regularized incomplete beta function, which is the ratio between the incomplete beta function (integral between 0 and x), while
the denominator is the complete beta function (integral between 0 and 1).

Examples of the three distributions are reported in Fig. F.1.

Fig. F.1 Examples of normal, gamma and beta distributions.
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