Dataset Open Access

TimeSen2Crop: a Million Labeled Samples Dataset of Sentinel 2 Image Time Series for Crop Type Classification

Giulio Weikmann; Claudia Paris; Lorenzo Bruzzone


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4715631</identifier>
  <creators>
    <creator>
      <creatorName>Giulio Weikmann</creatorName>
    </creator>
    <creator>
      <creatorName>Claudia Paris</creatorName>
    </creator>
    <creator>
      <creatorName>Lorenzo Bruzzone</creatorName>
    </creator>
  </creators>
  <titles>
    <title>TimeSen2Crop: a Million Labeled Samples Dataset of Sentinel 2 Image Time Series for Crop Type Classification</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-04-19</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4715631</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/JSTARS.2021.3073965</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;TimeSen2Crop is a pixel based dataset made up of more than 1 million samples of Sentinel 2 Time Series associated to 16 crop types, during an agronomic year ranging from September 2017 to August 2018. The dataset contains atmospherically corrected samples, as well as information related to snow, clouds and shadows.&lt;/p&gt;

&lt;p&gt;This benchmark dataset has been developed in the framework of the ExtremeEarth project, which received funding from the European Union&amp;rsquo;s Horizon 2020 research and innovation programme under grant agreement No 825258.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825258/">825258</awardNumber>
      <awardTitle>From Copernicus Big Data to Extreme Earth Analytics</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
364
200
views
downloads
Views 364
Downloads 200
Data volume 101.5 GB
Unique views 320
Unique downloads 151

Share

Cite as