=<

Targeting Real chemical accuracy at the EXascale

Library development
within TREX

Anthony Scemama

21/04/2021

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

(France)

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

R T

Presentation of TREX

r2—>< The supercomputing race
@ -
Worldwide technological competition

1x10%®

1x10Y7 [
1x10'° |

1x10%5 L

m 1997 : Teraflops/s*
m 2008 : Petaflops/s o
m 20207 : Exaflops/s vaaot |

1x1011 I I L L
1995 2000 2005 2010 2015 2020

Year

K
@
g
T 1x10¥ b

m Expected increase of computational power is exponential
m Moore's Law is ending
m Technological breakthrough needed (quantum computing?)

flops/s: floating point operations per second

-r2 ->< The supercomputing race

Worldwide technological competition

m 1997 : Terascale : Distributed parallelism
m 2008 : Petascale : Multi-core chips or accelerators

m 20207 : Exascale : Hybrid architectures are inevitable

Peak flops/s improved by 1000x. What about

m Memory capacity per core?

m Memory bandwidth? latency?
m |/O bandwidth? latency?

m Network bandwidth? latency?

TR=><

Transition to exascale will be painful

m Network becomes slow vs computation
m Memory per core decreases

m Heterogeneous machines (accelerators)
| |

Need to find even more fine-grained parallelism

Very few applications will scale

m Exascale machines will run high throughput computing (HTC) workloads

CORDIS

EU research results

European
Commission

English m

TR=><

Search ‘

HORIZON

il Targeting Real chemical accuracy at the EXascale

News & Multimedia

Project description

BEEE

Complex quantum molecul
accuracy

simul.

1s of unpr d speed and

Computers and the rapid mathematical calculations they are able to perform, which would take human beings years
to accomplish, have provided the fuel to power innovation. High-performance computing (HPC) and high-throughput
computing (HTC) have enabled us to simulate large-scale complex processes and analyse tremendous amounts of
data, benefitting applications ranging from climate research and drug discovery to material design. Emerging
exascale computers will make the best even better, 50 times faster than today's most powerful supercomputers. The
EU-funded TREX project is developing a platform that combines the upcoming exascale HPC and HTC
architectures for stochastic quantum chemical simulations of unprecedented accuracy. The software and services
will be designed for ease of use to ensure widespread utilisation, spurring a new age of discovery in molecular
simulations.

Hide the project objective

Project Information
TREX
Grant agreement ID: 952165

status
Ongoing project

Start date
1 October 2020

End date
30 September 2023

Funded under
H2020-E0.1.4.13.

Overall budget
€4/998 847,50

Coordinated by
UNIVERSITEIT TWENTE

= Netherlands

m Extremely precise model

. . 10 EFlop/s
Expensive in CPU

1 EFlop/s

]
| FU”y para||e| 100 PFlop/s
]

Perfectly well adapted to HPC (in 10 PFiops
2011, 0.96 PFlops/s) 1PFiopis

100 TFlop/s
o 10 TFlop/s
EOMPUTATIONAL . -
HEMISTRY &
1TFlop/s
Quantum Monte Carlo for Large Chemical Systems:
1ting Efficient St gies for Petascale Platforms 100 GFlop/s
and Beyond
Anthony Scemama,* Michel Caffarel,’ Emmanuel Oseret,”’ and William Jalby®™ 10 GFlop/s
Varous stateges 1o implement eficiently quantum Monte These strategies have been implemented in the QMC—Chemn 1 GFlopls
Cado (QMC) simulations for large chemical systems are code developed at Toulouse and illustrated with numerical
presented. These incude: () th introduction of an effiint appicatons on small peptides of incresing szes (156, 434,
Sigorithm o cakubte the computationally expensive Slater 1056, and 1731 eectrons). Using 10-80 K computing cores of
‘matrices. This novel scheme is based on the use of the highly the Curie machine (GENCITGCC-CEA, France), QMC=Chem has 100 MFlop/s
localized character of atomic Gaussian basisfunctions (no the been show 10 be capable o running at the petascl level,
‘moleculor orbitals as usually done), (i) the possibilty of thus demonstrating that for this machine a large part of 1990 1995 2000 2005 2010 2015 2020 2025
keeping the memory footprint minimal, (i) the important the peak performance can be achieved. Implementation of
ennancemen. of 5 e when effcent large-scle QUC smulstions for future exsicale patorms

optimization tools are used, and () the definition of a with a comparable level of efficency is expected to be.
universal, dynamic. faulitolerant, and load-balanced feasible. © 2013 Wiley Periodicals, Inc.
framework adapted 1o all kinds of computat

ional platiorms
(massively parallel machines, dusters, or disubuted grids). DO 10.1002cc23:

T=><

Stochastic solution of the electronic Schrédinger equation (nuclei are fixed):

(B|A|®) (S|A|W) [o(r1,...,rn)HW(r,... ry)dry ... dry

E = = =
<¢|¢> <¢|\U> f d) ri,.. rN)\lf(rl, . I’N) dl’l cee drN
SO) ()] S A dry
B f[cb(rl,...,rN)\Il(rl,...,rN)] dr1...dN
~ L M sampled with (W x ®)

M Iy, \Il(rl,...,rN)

~ ge . r1,...,rn: Electron coordinates
H: Hamiltonian) _)
®: Quasi-exact (fixed-node) wave function
E: Energy] _
W: Trial wave function

=>4

In practice
m Walker: vector (ry,...,ry) € R3N of electron coordinates
m Diffusion + drift with a birth/death process to sample the 3N-dimensional density
(Vx o)
AV(ry,... .
m At each step, Eioc(r1,...,ry) = H is computed

m The total energy is the the average of all the computed Ej..

Very low memory requirements (no integrals)

Distribute walkers on different cores or compute nodes

No blocking communication: near-ideal scaling

Difficulty: parallelize within a QMC trajectory

y

-rQ ->< Fixed-node approximation

THE JOURNAL OF CHEMICAL PHYSICS 144, 151103 (2016)

Communication: Toward an improved control of the fixed-node =639 T RaLcr /
error in quantum Monte Carlo: The case of the water molecule + + DMC/CIPSI
Michel Caffarel,’ Thomas Applencourt, Emmanuel Giner, and Anthony Scemama' STOAOR L Etimated exact /
R himie et ., CNI é de Toulouse, Toulouse, France - /
“Dipanimento di Scienze Chimiche e Farmacetiche, Universit degi Sudidi Ferraa, Ferraro Taly = /
(Received 22 March 2016; accepted 6 April 2016; published online 20 April 2016) & ~TeALp 1
&
All-electron Fixed-node Diffusion Monte Carlo calculations for the nonrelativistic ground-state 5 7642}
energy of the water molecule at equilibrium geometry are presented. The determinantal part of the 4

trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration
Tnteraction using a Perturbative Selection done Treratively (CIPST) method] including up to about ~76.43 |
1.4 10° of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2
t05. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part

in presence of a Jastrow s performed. For the largest cc-pCVSZ basis set the lowest upper bound ~T6.44

fmp(h: ‘ground-state energypmponcd so far of 77§ 437 chm is obtained. The ﬁxedrnific energy 4 X 6Zs5z Qz | TZ X DZ,

is found to decrease regularly as a function of the cardinal number » and the Complete Basis Set 0.0 0.1 0.2 0.3 0.1 05
limit associated with exact nodes is easily extracted. The resulting energy of ~76.43894(12) — in .

perfect agreement with the best experimentally derived value — is the most accurate theoretical 1/n [ce-pCVnZ basis set |

estimate reported so far. We emphasize that employing selected configuration interaction nodes of

increasing quality in a given family of basis sels may represent a simple, deterministic. reproducible, ati ; ies 8

and systematic way of controlling the fixed-node error in diffusion Monte Carlo. Published by AIP FIG. 1. CBS extrapolation of F?‘ and DMC/ CIPSI energies. Error bars on
Publishing. [http://dx.doi.org/10.1063/1.4947093] DMC data are plotted but almost imperceptible.

m As (W x @) is a probability density, (W x ®) > 0 so ® has the same sign as V:
fixed-node (FN) approximation.

m FN: only approximation of QMC. If the nodes of W coincide with the exact nodes,
we obtain the exact energy

m Using increasingly large sCl determinant expansions (CIPSI), the fixed-node error
can be controlled

TR

©
o
OpenPositions CommunicationKit News &

CHAMP
QMC=Chem

m
m

UNIVERSITY CINECA =

OF TWENTE. @ 'J JULICH m TurboRVB
m
m

Partners

NECI

Quantum

= i
MEGWARE —— Package
m GammCor
- : UNIVERSITE DE S\“’/é_ . QML J
| el VERSAILLES s

ST-QUENTIN-EN-YVELINES

TR=><

m TREX CoE: Targeting REal chemical accuracy at the eXascale
m Started in Oct. 2020

m Objective: Make codes ready for exascale systems
m Two regimes:

m Single exascale run
m Thousands of petascale simulations in high-throughput (HTC)

m How: Instead of re-writing codes, provide libraries

m One library for high-performance (QMCkI)
m One library for exchanging information between codes (input of QMC is W)

R T

QMC kernel library (QMCKkI)

rQ ->< Programming for the exascale

Progress in quantum chemistry may require codes with new ideas/algorithms

]
m New ideas/algorithms are implemented by physicists/chemists

m Different scientists have different programming language knowledge/preference
]

Exascale machines will be horribly complex to program

Is it reasonable to ask physicists/chemists to write codes for exascale machines? I

TR=><

(from https://github.com/jeffhammond/dpcpp-tutorial)

std::vector<float> h_x(length,xval);
vector<float> h_v(length,yval);
std: :vector<float> h_z(length,zval);

try {

sycl::queue q(sycl::default_selector{});

L. const float A(aval);
Vector addition

buffer<float,1> d_X { h_X.data(), sycl

::range<1>(h_X.size()) };

sycl::buffer<float,1> d_Y { h_v.data(), sycl::range<i>(h_Y.size()) };
syc. buffer<float,1> d_zZ { h_Z.data(), sycl::range<i>(h_z.size()) };
do i=1,n
Z(i) - Z(i) + A * X(i) + Y(i) q.submit([&](sycl: :handler& h) {
end do auto X = d_X.template get_access<sycl::access::mode::read>(h);
auto Y = d_Y.template get_access<sycl::access::mode::read>(h);
auto Z = d_z.template get_access<sycl::access::mode::read_write>(h);
h.parallel_for<class nstream>(sycl::range<i>{length}, [=] (sycl::id<1> it) {
const int i = it[e];
Z[i] += A * X[i] + Y[il;
19
b
q.wait();
}

catch (sycl::exception & e) {
std::cout << e.what() << std::endl;
return 1;

}

https://github.com/jeffhammond/dpcpp-tutorial

::vector<float> h_x(length, xval);
vector<float> h_Y(length, yval);
Z(length, zval);

vector<float>

try {

queue q(sycl::default_selector{}};

sycl

float Afaval);

sycl::buffer<float,1> d_X { h_X.data(), sycl::range<1>(h_X.size()) };
t,1> d_¥ { h_v.data(), sycl::range<i>(h_Y.size()) };
t,1> d_Z { h_Z.data(), sycl::range<i>(h_Z.size()) };

get_access<sycl: :acce
get_access<sycl: :a
get_access<sycl::access: :mode::read_write>(h);

= d_X.template
= d_Y.tenpla
auto Z = d_Z.tenplate

range<i>(length}, [=] (sycl::idei> it) {

ream>(syc.

h.parallel for<class ns
onst int 1 = it[e];
Z[4] += A * X[1] + Y[i];
i
13
q.wait();
1
catch (sycl::exception & e) {
std::cout << e.what() << std::endl;

3

https://commons.wikimedia.org/wiki/File:Mad_scientist_transparent_background.svg

-rg :;x The dream

A compiler? that can read an average researcher's code and transform it into highly
efficient code on an exascale machine.

do i=1,n
Z(i) = 2(i) + A * X(i) + (i)

j end do|

2Wikipedia: A compiler is a computer program that translates computer code written in one
programming language (the source language) into another language (the target language)

'[.2 :-)(Reality

Artificial Intelligence is not ready yet . ..

do i=1,n
2 Z(1) = Z(1)y + A * X(1) + (1)
end do|

https://commons.wikimedia.org/wiki/File:Mad_scientist_transparent_background.svg

TQ :-)(Reality

so let's use Natural Intelligence and add a human layer between the machine and
the researchers : a bio-compiler

do i=1,n
2 Z(1i) = z(i) + A * x(1) + Y(1)
end do|

https://fcommons.wikimedia.org/wiki/File:Mad_scientist_transparent_background.svg

TR=><

Identify the common computational kernels of QMC
Implement these kernels in a human-readable library (QMC experts)

Bio-compile the human-readable library in a HPC-library (HPC experts)

Scientists can link either library with their codes

TR

m We don't impose a programming language

m The code can stay easy to understand by the physicists/chemists
Performance-related aspects are delegated to the library

m Codes will not die with a change in architecture

m Scientific code development does not break the performance

m Scientists don't lose control on their codes

v

Separation of concerns
m Scientists will never have to manipulate low-level HPC code
m HPC experts will not be required to be experts in theoretical physics

m Better re-use of the optimization effort among the community

4

TR

m The APl is C-compatible: QMCkI appears like a C library = can be used in all
other languages

m System functions in C (memory allocation, thread safety, etc)

m Computational kernels in Fortran for readability

m A lot of documentation (remember: the HPC compiler is a human!)

-rQ -—>< Literate programming

Literate programming is a programming paradigm introduced by Donald Knuth
in which a computer program is given an explanation of its logic in a natural
language, such as English, interspersed with snippets of macros and traditional
source code, from which compilable source code can be generated. (Wikipedia)

-rQ -—>< Documentation library

Literate programming with org-mode:
m Here, comments are more important than code
Can add graphics, IATEXformulas, tables, etc
Documentation always synchronized with the code

]
]
m Some routines can be generated by embedded scripts
m Web site auto-generated when code is pushed

]

Most of the the first EU report was auto-generated from the documentation

Instead of writing comments documenting code, we write code illustrating
documentation.

r2—>< Literate programming with org-mode

File Edit Options Buffers Tools Table Org Text Help

s @ 0O Zoe ~une L BB Q

_ f | ~context- | input | Global state |
~mie: Atomic Orbitals I | -X(3)~ | dnput | Array containing the coordinates of the points |
#+SETUPFILE: .. /docs/theme. setup | -R(3)~ | input | Array containing the x,y,z coordinates of the center |
#+INCLUDE: .. /tools/Lib.org | ~n~ | input | Number of computed Gaussians |
. . . | ~A(n)~ | input | Exponents of the Gaussians |
The atomic basis set is defined as a list of shells. Each shell s is | ~V6L(ldv,5)~ | output | Value, gradients and Laplacian of the Gaussians f
centered on a nucleus A, possesses a given angular momentun [and a | “dv- Spre || (o G o o ory T |
radial function R,. The radial function is a Linear combination of
\enphiprimitive} functions that can be of type Slater (p=1) or Requirements :
Gaussian (p =2
- ~context~ is not 0
. n s T
Ry(r) = Nlr = Ra[™ 3 arsexp (—yuslr — Ral?) - ldv- >= 5
- A1)~ > @ for all ~i-
. . . - -X- is allocated with at least 3 x § bytes
In the case of Gaussian functions, s is always zero. <R T allocated with ot Tesst 3¢5 byes
The normalization factor N, ensures that all the functions - -A s allocated with at least 1 x5 byte
of the shell are normalized to unity. As this normalization requires Ve 1S altocated with at least mx 5x § bytes
the ability to compute overlap integrals, it should be written in the
File to ensure that the file is self-contained and does not require #+begin_sre ¢ rtangle (eval h func
the client program to have the ability to compute such integrals. [qnckl_exit_code
. . . qck1_ao_gaussian_vgl(const qnekl_context context,
Atomic orbitals (AOs) are defined as s T £
) const double *R,
Xi(r) = Pygiy (1) Roi (r) const int64_t n,
i const int6d_t +A,
where 6(i) returns the shell on which the A0 is expanded, const double *VGL,
and 7(i) denotes which angular function is chosen. const int64_t ldv);
. . #rend_src
In this section we describe the kernels used to compute the values,
gradients and Laplacian of the atomic basis functions. SiEISrer o0 Eangla (evallT
integer function qnckl_ao_gaussian_vgl_f(context, X, R, n, A, V6L, ldv) result(info)
Headers inoe’ use qucl
© Context

implicit none

: integers8 , intent(in) :: context
O IS [EirEood realss , intent(in) :: X(3), R(3)
® Rad1a1 part integer*8 , intent(in) n I
aussian basis functions realss , intent(in)
reals8 intent(out)
~qnckl_ao_gaussian_vgl~ computes the values, gradients and integers8 , intent(in)
Laplacians at a given point of -n- Gaussian functions centered at)
the same point: integerss
alig

B2
Top (1459,0)

<N>_Giticontext (Org ARev ? Undo-Tree Fill) Ma

amckl_numprec_fh_func. f96
anckl_numprec_func.h
gnckl_numprec.org
gmckl_numprec_private_type.h
gnekl_numprec_type.h
gmekl.org

README.org
table_of_contents
test_amckl

test_qmekl_ao.c
test_gmekl_ao_f.f90
test_amckl.c
test_qmekl_context.c
test_qnckl_distance.c
test_amckl_distance_f.f90
test_gmckl_error.c
test_gmckl_memory.c
test_qmekl_numprec.c
test_gmekl.org
/TREX/amckl/src$ []

amckl_ao_f.f90
anckl_ao_fh_func.f98
gnekl_ao_func.h
anckl_ao.org
gnekl_ao_private_func.h
amckl_ao_private_type.h
amckl_context.c
gnekl_context_fh_func. 90
amckl_context_fh_type.f90
anckl_context_func.h
gnekl_context.org
amckl_context_private_type.h
gnckl_context_type.h
amekl_distance_f.f90
anckl_distance_fh_func.f90
istance_func.h

amckl_error_fh_func.f90
(base) scemama@lpqdhd2:

Generated code

Kl_exit_code) 103)
Kl_exit_code) 104)
ckl_exit_code) 105)
((amekl_exit_code) 106)

#define QMCKL_INVALID_CONTEXT
fine QMCKL_ALLOCATION_FAILED
#define QMCKL_DEALLOCATION_FAILED
#define QMCKL_INVALID_EXIT_CODE

|l _context handling %/

The context variable is a handle for the state of the library,
and is stored in a a structure wh
the library. To sin
pointer to the internal data structure
signed integer, defined in the ~g
ve of ~QMCKL_NULL_CONTEXT~ for the contex

~NULL~ pointer. */
#+NAME: qmcKl_context */
typedef int64_t gmekl_context ;

fine QMCKL_NULL_CONTEXT (amckl_context) @
/% Decoding errors /
~gnckl_string_of_error~ conve

the error messages,
de into a string. %/

o decod:
error

char* gmckl_get_ao_basis_shell_ang_mom (const amckl context context) {
if (gmekl_context_check(context) QMCKL_NULL_CONTEXT) {
return NULI

amckl_context_struct const ctx = (gmckl_context_struct* const) context;

assert (ctx != NULL);
int32_t mask = 1 << 4;

if ((ctx->ao_basis.uninitialized & mask) != 8) {
return NULL|

assert (ctx->ao_basis.shell_ang_mom != NULL);
return ctx->ao_basis.shell_ang_mon;

i
/TREX/gmckl/src/qmekl_ao.c [unix] [C] [15%] (104/674,16)

#+NAME: MAX_STRING_LENGTH

const charx gmckl_string_of_error(const gmckl_exit_code error);
void gmekl_string_of_error_f(const gmekl_exit_code error,
char result[128]);

Updating errors in the context */

ated in the context using ~gmckl_set_error~. */
mandatory to specify
essage

The error is up
When the error is set in the context,
from which function the error is triggered, and a

explaining the error. The exit code can't be ~QMCKL_SUCCESS~.

8 100% X 8%

us ¥ +6°C

LinksysRouter 2% = /: 216

x__ # Hea
/TREX/amckl/include/gmekl.h [unix] [CPP] [31%] (85/269,1)

3 04/19 10:21 ™

Generated web site

TR=XX

@ Atomic Orbitals x + @ Atomic Orbitals x 4
N c A & trex-coegithubiolgmekl/qmekl_ao.html al@ A CHCE:E N N c 0 6 teccoegithubiolgmckligmeklso @ | @ A @B e Ao

m Personal M OCaml M LCPQ @ QP2 M Biblo M ToUpdate M TREX B ERC M AiDA B Microsoft M Padlets » | M Personal @ OCaml M LCPQ W GP2 M Biblio B ToUpdate i TREX B ERC B ADA B Microsoft »

Vevp = —20:(X; — R.)vi
Atomic Orbitals)
up owe Av, = 0 (41X - Ra; — 6)v; uptrione
‘The atomic basis set is defined as a list of shells. Each shell ¢ is centered on a EECES context input Global state Teble of Contents
nucleus A, possesses a given angular momentum { and a radial function R,. The X(3) input Array containing the coordinates of the points
radial function is a linear combination of \emph{primitive} functions that can be of
type Slater (p = 1)or Gaussian (p = 2 R(3) input Array containing the .z coordinates of the center
. n input Number of compured Gaussians
(1) = Nalr = Ral™ Y i exp(—alr — Ry) A(n) input Exponents of the Gaussians
=
VGL(1dv,5) output Value, gradients and Laplacian of the Gaussians
In the case of Gaussian functions,m, i always zero. The normalization factor A, W input Leading dimension of array V6L
ensures that all the functions of the shell are normalized to unity. As this
normalization requires the ability to compute overlap integrals, it should be R
written in the file to ensure that the fileis selEcontained and does not require the
client program to have the ability to compute such integrals. + context isnot0
Atomic orbitals (AOs) are defined as s o
< lvss
X (¥) = Py (v) Rogiy (r) « A(i) >0forall i

‘where (i) returns the shell on which the AO is expanded, and 7}(i) denotes which
angular function is chosen.

In this section we describe the kernels used to compute the values, gradients and
Laplacian of the atomic basis functions.

1 Polynomial part

1.1 Powers of z — X;;

‘The qnckl_ao_power function computes all the powers of the n input data up
to the given maximum value given in input for each of the n points:

1\2|3\B-

lio| OrgWork | Web| eMail

Router

+ Xisallocated with at least 3 x 8 bytes
« R isallocated with at least 3 x 8 bytes
« A isallocated with at least n x 8 bytes

+ V6L is allocated with at least n x 5 x 8 bytes

aqnckl_exit_code
ackl_ao_gaussian_vgl(const guckl_context context,

const double *X,

const double *R,

const inte4_t *n,

const inted_t *A,

const double Ve,

const int6a_t ldv);

TR

I:I\IJ(rl,...,rN)_

At each QMC step, we need to evaluate Ejoc(r1,...,ry) = (1)

L] \U(rl, ey I’N)
m AjW(ry,...,ri,...,ry): kinetic energy
m ﬁ;\lf(rl, vy Fiy...,ry): drift in the stochastic process

m AOs: x(r), Vx(r), Ax(r)

= MOs: gb(r),§qb(r),Agb(r)

m Slater determinants (value, gradient, Laplacian)
m Pseudo-potential
"

Jastrow correlation factor (eN, ee, eeN)

TR

Kernel extraction: QMC experts agree on the mathematical expression of the
problem

A mini-application is written to find the best data layout with HPC experts from
real-size examples

The kernel is written in the documentation library
HPC experts provide an HPC version of the kernel with the same API
The library is linked in the QMC codes of the CoE

-r2:>< Our first application : 3-body Jastrow factor

Nhnucl Nelec i—1 Npord p—1 P_k_25k70
Jeen(r, R) - Z Clkpa (rU)k [(Ria)/ + (Rja)l] (Ria Rjoz)(p_k_/)/2

can be rewritten as

Nnord p—1 P—k—25k7o Nnycl Nelec
Jeen(|'7 R) = Clkpa Z Ri,a,(p—k—/)/2 Pi,a,k,(p—k+/)/2 (4 complexity)
p=2 k=0 1=0 a=1 i=1
with
Nelec
Pi ok, = Z Tijk Rja,- (GEMM)
j=1

-r2:>< Our first application : Gradient and Laplacian

—1p—k—25k,0 Npyel Nelec

Vim-jeen(ra R) = Clkpa Z (_;i,m,a,(p—k—l)/2 13i,oz,k,(p—k—f—l)/Z +
/=0 a=1 i=1

2
2
e
a
e}

T
||
N
>~
I
o

i.m,a,(p—k+1)/2 Pi.ak,(p—k—1)/2 + Ria(p—k—1)/2 Qi,moci ki, (p—k-+1)/2 +
iran(p—k+1)/2 Qi m,aky(p—k—1)/2 + Om.a

itas(p—k-+1)/2 Uitk (p—k—1)/2 + Gi2,0,(p—k+1)/2 Qi 2,0,k (p—k—1)/2 +
i3.0,(p—k-+1)/2 i 3,0,k (p—k—1)/2 + Gi1,0,(p—k—1)/2 Qi 1,00k (p—k-+1)/2
i2.00(p—k—1)/2 Qi 2,0k (p—k1)/2 + Gi3 0, (p—k—1)/2 Qi 3,0k, (p—k+1)/2)

D QI QI T QI

with

! k Nej
_ B 9 (Ria) _ . a(rij) d @ — - R
Gi.m,a, = o Eimjk = or and Qi m,ak,l = E 8i.mjk Ria,l
i 1 j=1

TR=XX

Speedup

1 1 1
1500 2000 2500

500 1000
Number of electrons = 5x(number of nuclei)

~ 80% of the AVX-512 ieak is reached on a Skilake CPU.

R T

TREXIO: The TREX 1/0 library

rQ ->< Current situation
@ -

XYZ
coordinates
ntegrals Molecular
in MO basis orbitals

Integrals >
NECI TurboRVB
QMC=Chem

Density Determinant.
matrices expansion

GammCor

CSF
expansion

o

QML

TR

m Definition of an API for to read/write wave functions

m C-compatible API: Easy bindings in other languages

m HDF5: Efficient 1/O
m Text: debugging, fallback when HDF5 can't be installed

TR=>K TREXIO

TR=><

Electron AO Basis ECP OneRDM
Nucleus MO Determinants Jastrow TwoRDM

4

m Inside each group, multiple values.

m Strong conventions (atomic units, ordering of cartesian orbitals, etc)

m File is self-contained: no external knowledge is necessary to compute W(ry,...,r,)
(normalization factors, basis set parameters, etc)

TR

m Computable function names:
trexio_<read|write|has>_<group>_<data>[_32|_64]

m return code for error handling
m Auto-generated from a JSON config file defining groups, data and types

"electron": {

"up_num" ["int", [1]
, "dn_num" ["int", []1]
|
"nucleus": {
"num" ["int" , [1]
, "charge" : ["float", ["nucleus.num" 1]
, "coord" : ["float", ["nucleus.num", "3"]]
, "label" : ["char” , ["nucleus.num", "32"]]
, "point_group" : ["char™ , ["32" 1]

TR=><

subroutine read_xyz(trex_file, xyz_filename)
use trexio
implicit none
integer*8, intent(in)
character*(128), intent(in)
integers8
character(256)
character#(32), allocatable
real*s, allocatable
real*s, allocatable

: trex_file
xyz_filename
nucl_num
title
nucl_label(:)
nucl_charge(:)
nucl_coord(:,

Number of nucled
Title of the file
Atom labels
Nuclear charges
Nuclear coordinates

integer+8 i
integer j

integer info

double precision, parameter :: a0 = 0.52917721067d0

open(unit=10,file=xyz_filename)

read(10,+) nucl_num

allocate(nucl_label (nucl_num), &
nucl_charge(nucl_num), &
nucl_coord(3,nucl_num))

read(10,'(A)') title

do i=1,nucl_num
read(10,%) nucl_label(i), nucl_coord(1:3,i)

info = trexio_element_number_of_symbol (trim(nucl_label(i)), j)
call check_success(info, 'Unable to convert symbol to number')

nucl_charge (i) = dble(j)
end do

close(10)

! Conmvert into atomic units
nucl_coord = nucl_coord / a0

info = trexio_write_nucleus_num(trex_file,nucl_num)
call check_success(info, 'Unable to write number of nuclei')

info = trexio_write_nucleus_coord(trex_file,nucl_coord)
call check_success(info, 'Unable to write nuclear coordinates')

info = trexio_urite_nucleus_charge(trex_file,nucl_charge)
call check_success(info, 'Unable to write nuclear charges')

info = trexio_write_nucleus_label(trex_file,nucl_label)
call check_success(info, 'Unable to write nuclear labels')

beta_num = int(sum(nucl_charge(:)))/2

alpha_num = int(sum(nucl_charge(:))) - beta_num

info = trexio_write_electron_up_num(trex_file,alpha_num)
call check_success(info, 'Unable to write up electrons')

info = trexio_write_electron_dn_num(trex_file,beta_num)
call check_success(info, 'Unable to write dn electrons')

end subroutine read_xyz

TR

m TREX web site : https://trex-coe.eu
m QMCkl documentation : https://trex-coe.github.io/qmckl
m QMCKI repository : https://github.com/trex-coe/qmckl

m TREXIO repository : https://github.com/trex-coe/trexio

https://trex-coe.eu
https://trex-coe.github.io/qmckl
https://github.com/trex-coe/qmckl
https://github.com/trex-coe/trexio

	Presentation of TREX
	QMC kernel library (QMCkl)
	TREXIO: The TREX I/O library

