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SUMMARY

Lettuce (Lactuca sativa L.) is an important vegetable crop species worldwide. The primary metabolism of

this species is essential for its growth, development and reproduction as well as providing a considerable

direct source of energy and nutrition for humans. Here, through investigating 77 primary metabolites in 189

accessions including all major horticultural types and wild lettuce L. serriola we showed that the metabo-

lites in L. serriola were different from those in cultivated lettuce. The findings were consistent with the

demographic model of lettuce and supported a single domestication event for this species. Selection signals

among these metabolic traits were detected. Specifically, galactinol, malate, quinate and threonate were

significantly affected by the domestication process and cultivar differentiation of lettuce. Galactinol and raf-

finose might have been selected during stem lettuce cultivation as an adaption to the local environments in

China. Furthermore, we identified 154 loci significantly associated with the level of 51 primary metabolites.

Three genes (LG8749721, LG8763094 and LG5482522) responsible for the levels of galactinol, raffinose, qui-

nate and chlorogenic acid were further dissected, which may have been the target of domestication and/or
affected by local adaptation. Additionally, our findings strongly suggest that human selection resulted in

reduced quinate and chlorogenic acid levels in cultivated lettuce. Our study thus provides beneficial genetic

resources for lettuce quality improvement and sheds light on the domestication and evolution of this impor-

tant leafy green.

Keywords: domestication, genome-wide association studies, Lactuca sativa, primary metabolism.

INTRODUCTION

The daily intake of a variety of vegetables is highly recom-

mended by dietary guidelines in many countries owing to

their health promoting properties (U.S. Department of

Health and Human Services and U.S. Department of Agri-

culture, 2015; Chinese Nutrition Society, 2016). Vegetables

are important sources of energy, dietary fibers, minerals,

and other beneficial phytochemicals such as antioxidants

(Slavin and Lloyd, 2012). Primary metabolites are direct

sources of energy and nutrition for humans and are also

essential for plant growth, development and reproduction

(Rojas et al., 2014; Sulpice and McKeown, 2015). Under-

standing the natural variation and genetic bases of plant

primary metabolism will thus ultimately contribute to bio-

fortification of plants in a manner that is beneficial to

humans in terms of both food security and quality (Fernie

and Tohge, 2017).

In order to decipher the genetic basis of primary meta-

bolism, both linkage mapping and genome-wide analysis

study have been performed in a variety of plant species

(Strauch et al., 2015; Wen et al., 2015, 2018). Variation of

primary metabolites tends to be affected by multiple loci

with small effect (Rowe et al., 2008; Chan et al., 2010; Wen

et al., 2018). Most identified candidate genes for primary

metabolites were structural genes in biosynthetic path-

ways whilst genes which are not essential to the metabolic
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biosynthesis may also relate with the contents of primary

metabolites (Wen et al., 2015, 2018). For instance, ACD6

(ACCELERATED CELL DEATH6) balances primary metabo-

lism with biotic stress defense in Arabidopsis (Fusari et al.,

2017). Metabolomics has been used to investigate the

genetic architecture of metabolism of plant species with

high quality reference genome and well sequenced genetic

populations, such as rice, maize and tomato (Fang and

Luo, 2019). On the other hand, the diversity and genetic

basis of metabolism of many important but less studied

species remain to be unveiled.

Lettuce (Lactuca sativa) is an important vegetable world-

wide and belongs to the Compositeae family, which is one

of the largest, most widespread and successful families of

flowering plants on earth (Funk et al., 2009). As a popular

vegetable worldwide, lettuce has diversified genotypes

and is rich in nutrition for daily consumption such as

fibers, vitamins and amino acids (Yang et al., 2018). In

addition, recent research revealed that lettuce could be a

potential natural manufacturer of pharmaceuticals for the

treatment of hepatitis B virus by producing small artificial

RNA, which indicates a bright prospect of lettuce industry

(Lei, 2019). The initial domestication of lettuce is believed

to have begun in ancient Egypt as early as 4500 years ago

with the evidence of wall paintings in tombs, and Lactuca

serriola is commonly believed to be the direct ancestor of

cultivated lettuce (Kesseli et al., 1991; deVries, 1997).

According to demographic modeling, lettuce had a single

domestication event. The ancient cultivated lettuce proba-

bly originated in the Fertile Crescent ~10 800 years B.P and

several lettuce types such as butterhead, and romaine

were developed in the following few thousands of years in

Europe (Zhang et al., 2017). Primitive cultivars were intro-

duced into China and subsequent selection led to the for-

mation of stem lettuce. In the sixteenth century, cultivated

lettuce was brought to America and as a product of selec-

tion a modern type of cultivar, crisphead, was subse-

quently generated (Zhang et al., 2017). Domestication

results in numerous biochemical and physiological

changes in lettuce including variation in metabolite com-

position and abundance (Zhang et al., 2017; Yang et al.,

2018). Increasing studies have demonstrated that many

agriculturally and economically important traits especially

flavors were tightly associated with alterations in metabo-

lite composition or abundance (Shang et al., 2014; Ye

et al., 2017; Sanchez-Perez et al., 2019). For instance, the

cyanogenic diglucoside amygdalin is a bitter toxic com-

pound in almond and a non-synonymous point mutation

in a bHLH2 gene leads to reduced bitterness in the domes-

ticated almond (Sanchez-Perez et al., 2019). On the other

hand, alteration of metabolite profiles may also be the con-

sequence of selection on other classical traits during

domestication (Beleggia et al., 2016; Zhu et al., 2018). Fur-

thermore, Kleessen et al. (2012) demonstrated that

metabolic phenotypes could be tightly linked to the geo-

graphic distribution in Arabidopsis, which indicates that

metabolite profiling is also a powerful tool to explore plant

evolutionary and domestication processes. Recently, Yang

et al. (2018) reported a non-targeted metabolomic analysis

of 30 lettuce cultivars and another research group com-

pared the levels of sesquiterpene lactones, phenolic acids

and flavonoids in mature and blotting stage of 22 lettuce

cultivars (Assefa et al., 2019). However, the limited sample

size in these studies did not fully cover all horticultural

types of lettuce, especially the evolutionarily and economi-

cally important type - stem lettuce, and the wild ancestral

species L. serriola were not included in other studies

either. Furthermore, the lack of genetic data in these stud-

ies hindered the identification of causal genes and mecha-

nistic investigation. To better understand the underlying

genetic basis of and domestication related effects on natu-

ral metabolic variation of Lactuca necessitates a detailed

systematic investigation using a diverse population cou-

pled with high-throughput genomic information.

Generation of a comprehensive lettuce reference gen-

ome was challenging due to its large size and high propor-

tion of repetitive regions. The genome of L. sativa has

been sequenced and assembled recently, which provides

high-quality, comprehensive reference genome for analy-

sis of the Compositeae family (Reyes-Chin-Wo et al., 2017).

Soon after the release of the lettuce reference genome,

Zhang et al. (2017) reported the RNA sequencing of 240 let-

tuce accessions sampled from the major horticultural types

and wild relatives. This RNA sequencing generated 1.1 mil-

lion single-nucleotide polymorphisms (SNPs) and expres-

sion data for 22 039 genes across the lettuce genome. In

addition, genome-wide association studies (GWAS) identi-

fied 5311 expression quantitative trait loci (eQTL) affecting

the expression of 4105 genes, including nine eQTL associ-

ated with flavonoid biosynthesis. Moreover, GWAS for leaf

color detected six candidate loci responsible for the varia-

tion of anthocyanin in lettuce leaves (Zhang et al., 2017).

This study thus provides a rich resource for lettuce genetic

studies and will facilitate the breeding of cultivars for

improved traits such as nutritional value.

Here we used a collection of 189 wild and cultivated let-

tuce accessions to identify metabolites that are involved in

domestication and cultivar differentiation. We also unravel

the genetic basis and molecular mechanisms underlying

the naturally occurring variation in primary metabolism in

this large lettuce association panel by integrating analyses

of metabolomics, genome-wide association mapping,

eQTL and transcriptional network. Our metabolome-based

experiment profiles the largest yet panel of lettuce acces-

sions used for this purpose allowing the characterization of

the genetic architecture of the primary metabolism of let-

tuce and providing evolutionary insights into this impor-

tant vegetable.
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RESULTS

Metabolic composition of all horticultural types and wild

lettuce

A total of 189 lettuce accessions from the above-mentioned

GWAS panel were used to study the metabolism of lettuce.

This sub-panel consisted of 130 cultivars, 33 accessions

from a RIL population, 6 intermediate accessions (i.e.,

accessions with characteristics of both wild and cultivated

lettuce, likely derived from crosses between wild and culti-

vated lettuce) and 20 wild accessions, including 16 L. ser-

riola, 2 L. saligna and 2 L. virosa accessions. We identified

and quantified 77 metabolites from leaves of 3-month-old

lettuce. Of them, 69 metabolites were chemically identified

and were classified into six groups: amino acids, organic

acids, sugars, polyols, polyamines and purines. Detailed

information of these metabolites is provided in Table S1.

The heritability (H2) of all 77 metabolites was greater than

0.5 while 32 metabolites (41.6%) displayed an H2 of greater

than 0.7 (Table 1). In order to explore the natural variations

of these metabolites among different types of lettuce, we

first performed unsupervised PCA using cultivated lettuce

and wild lettuce L. serriola (Figure 1a,b). The PCA results

based on metabolites is quite different from those based

on the genetic data, in which each type of lettuce formed a

distinct group (Zhang et al., 2017). Nevertheless, L. serriola

were slightly separated from other types based on metabo-

lites. We next conducted PLS-DA, a supervised method

and distinct from PCA, because this method might improve

the separation among different groups. According to the

first three components revealed by PLS-DA, L. serriola

were obviously separated from other horticultural types

(Figure 1c). Regarding supervised methods, it is critical to

avoid overfitting problems especially for the datasets with

a large number of features (Broadhurst and Kell, 2006;

Rubingh et al., 2006). Therefore, we performed a permuta-

tion test in order to validate our PLS-DA model. The results

revealed that neither R2 nor Q2 of the permutation tests

(100 times) reached the observed data (Figure 1d), verify-

ing the significance of our discrimination model. In sum-

mary, both PCA and PLS-DA results suggested that the

primary metabolite contents of L. serriola were different

from cultivars.

We next calculated the intra- and inter-population Eucli-

dean distances (EDs) in order to estimate the metabolic

distance within and between populations (Figure 1e). We

found that looseleaf type, atypical types and the RIL popu-

lation exhibited relatively low inter-population EDs, which

was probably due to an effect of the crosses for the RIL

population or gene flow from other horticultural types in

case of the looseleaf lettuce. L. virosa and L. saligna dis-

played considerably higher inter-population EDs than culti-

vated lettuce and L. serriola, which is consistent with the

phylogenetic relationships among Lactuca species that

cultivated lettuce is closer to L. serriola than to either

L. virosa or L. saligna. Furthermore, wild Lactuca species

also exhibited relatively higher intra-population EDs than

cultivar lettuce, indicating high level of metabolic varia-

tions within wild lettuce.

Screening selection signals of metabolic traits

During the domestication and cultivar differentiation pro-

cesses, metabolite levels may be affected by adaptation to

different environments and/or as a consequence of human

preferences. Nested analysis of variance (NANOVA) was

used to explore the potential selection signals on metabo-

lites in lettuce. As a result, the levels of 61 metabolites

were found to be significantly different (P < 0.05) among

the six lettuce types (Table 1). We performed a Tukey’s test

to identify their major differences of metabolites. L. serriola

harbored the largest number (11) of metabolites which

show differences (P < 0.05) when compared to other types,

followed by butterhead (5), stem lettuce (3) and crisphead

(2). Detailed information on these metabolites is provided

in Table 1. For some of the metabolites harboring large

variations in the lettuce population, differentiation could

also have arisen by genetic drift. We, therefore, further cal-

culated quantitative trait differentiation of metabolites

(Qst). On an additive genetic basis, neutral Qst is expected

to be equal to the neutral Fst (Leinonen et al., 2013). Based

on this hypothesis, a trait is considered to be under direc-

tional selection if the Qst of the trait is significantly greater

than the neutral Fst. By contrast, stabilizing selection

across the populations is assumed if the Qst of a trait is

significantly less than the neutral Fst. Using this method,

we detected 23 metabolites may be under selection across

the lettuce populations at a threshold of P < 0.05. Twenty-

two of these 23 metabolites exhibited signals of directional

selection, with the exception of 6-phospho-gluconate,

which showed a Qst-Fst significantly (P < 0.05) less than 0

suggesting stabilizing selection. Among these 22 metabo-

lites, 9 were significantly (P < 0.05; Tukey’s test) different

between wild (L. serriola) and cultivated lettuce. Moreover,

7 of these 9 metabolites displayed higher levels in wild let-

tuce than in cultivars, while the remaining 2 (fucose and

myo-insitol) displayed reduced levels in wild lettuce. Fur-

thermore, glutamate and threonate not only showed the

highest levels in L. serriola but also displayed a decrease

in crisphead in comparison with other horticultural types.

On the other hand, 3 and 4 metabolites exhibited obviously

selection patterns in stem and romaine lettuce, respec-

tively (Table 1). Some of those metabolites harboring sig-

nificant Qst (P < 0.05) belong to the same or related

pathways. For instance, both quinate and chlorogenic acid

displayed higher levels in L. serriola than in cultivated let-

tuce, while galactinol and raffinose were highly accumu-

lated in stem lettuce. Three metabolites (malate, fumarate

and succinate) which are involved in the TCA cycle showed

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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Table 1 List of mean levels of metabolite contents of different types of lettuce, with Tukey’s test, NANOVA, Qst-Fst and heritability

No. Metabolites

Relative mean contents of metabolitesa

Qst-Fst
NANOVA
P-value

Qst
P-value

Heritability
(H2)Butterhead Crisphead Looseleaf Romaine Stem L. serriola

1 Adenine 1.14,a 0.61,b 1.02,ab 1.10,a 0.98,ab 1.16,a 0.16 ** 0.238 0.63
2 β-alanine 1.08,a 0.51,c 1.03,ab 0.90,ab 0.77,bc 0.99,ab 0.35 *** 0.030* 0.66
3 Arginine 0.41,b 0.85,b 0.99,b 0.76,b 0.72,b 3.55,a 0.21 ** 0.169 0.55
4 Asparagine 0.83,ab 1.48,a 1.24,ab 0.97,ab 0.36,b 1.36,a 0.13 * 0.294 0.58
5 Aspartate 0.92,a 1.03,a 1.01,a 1.17,a 0.57,b 1.11,a 0.32 *** 0.054 0.67
6 Alanine 0.78,bc 0.54,c 0.99,ac 1.23,ab 1.31,a 1.11,ac 0.21 *** 0.173 0.66
7 Citrate 1.47,a 0.28,b 1.17,ab 0.75,ab 0.55,b 1.51,a 0.25 *** 0.123 0.64
8 Cysteine-s-methyl 1.34,a 2.15,a 1.59,a 1.55,a 1.08,a 1.18,a −0.07 0.371 0.61
9 Cysteine 1.82,a 0.71,b 1.02,ab 0.53,b 0.62,b 1.02,b 0.27 *** 0.093 0.64
10 Dehydroascorbate

dimer
1.86,ab 3.14,a 1.57,b 1.05,b 1.31,b 1.78,ab 0.21 ** 0.166 0.76

11 Erythritol 1.21,a 1.19,a 0.90,a 1.01,a 0.85,a 0.96,a −0.09 0.335 0.72
12 Fructose 1.06,a 1.05,ab 0.87,ab 0.92,ab 0.89,ab 0.87,b 0.17 ** 0.217 0.66
13 Fructose-6-phosphate 0.84,b 1.22,ab 1.30,ab 1.40,a 1.32,a 1.26,ab 0.15 ** 0.254 0.65
14 Fucose 1.26,a 0.99,ab 0.97,ab 1.10,ab 0.89,b 0.44,c 0.40 *** 0.017* 0.82
15 Fumarate 1.36,a 1.31,a 1.10,a 1.15,a 0.78,b 0.66,b 0.41 *** 0.011* 0.74
16 GABA 1.18,a 0.62,a 1.11,a 1.09,a 0.76,a 0.62,a −0.05 0.399 0.53
17 Galactinol 0.56,cd 0.16,d 0.71,bc 0.53,cd 2.20,a 1.24,b 0.45 *** 0.001** 0.93
18 Galactonate 0.88,ab 0.83,ab 0.92,ab 0.74,b 1.11,a 0.81,ab −0.03 0.459 0.66
19 Glucose-1-phosphate 0.68,a 1.16,a 0.93,a 0.74,a 1.21,a 0.94,a 0.03 0.428 0.73
20 Glucose-6-phosphate 1.06,b 1.33,ab 1.33,ab 1.17,ab 1.44,a 1.31,ab 0.05 * 0.420 0.71
21 Glutamate 0.87,b 0.57,c 0.96,b 1.03,b 1.03,b 1.41,a 0.41 *** 0.011* 0.73
22 Glutamine 0.86,bc 2.19,a 1.46,ab 0.84,bc 0.18,c 0.84,bc 0.28 *** 0.091 0.65
23 Glutarate 1.91,b 6.44,a 2.15,ab 2.19,ab 4.33,ab 2.18,ab 0.07 * 0.360 0.59
24 Glycerate 1.40,a 1.16,ab 0.80,bc 0.93,bc 0.83,bc 0.63,c 0.33 *** 0.058 0.76
25 Glycerol 0.94,a 0.58,a 0.92,a 0.92,a 0.79,a 0.69,a −0.01 0.494 0.63
26 Glycerol-2-phosphate 0.94,b 1.44,a 1.16,ab 0.97,b 0.99,b 0.85,b 0.19 ** 0.190 0.65
27 Glycerol-3-phosphate 1.14,a 0.67,c 1.10,ab 0.95,ac 0.98,ab 0.83,bc 0.23 *** 0.160 0.66
28 Glycine 0.70,c 0.87,bc 1.10,bc 1.10,b 0.70,bc 1.61,a 0.36 *** 0.030* 0.74
29 Glycolate 0.94,a 1.23,a 1.02,a 1.25,a 0.96,a 1.00,a 0.01 0.480 0.56
30 Histidine 1.26,b 0.93,b 3.30,ab 1.87,b 0.70,b 7.79,a 0.21 ** 0.180 0.71
31 Homoserine 0.92,bc 1.16,ab 0.95,bc 1.04,ab 0.51,c 1.48,a 0.32 *** 0.068 0.76
32 Inositol-1-phosphate 0.73,a 0.55,a 0.81,a 0.79,a 0.76,a 0.79,a −0.01 0.473 0.6
33 Isocitrate 1.23,b 1.79,b 3.17,b 1.38,b 2.68,b 6.43,a 0.34 *** 0.049* 0.6
34 Isoleucine 0.87,ab 1.47,a 0.98,ab 0.99,ab 0.52,b 0.96,ab 0.12 * 0.299 0.55
35 Leucine 0.97,a 0.90,a 0.76,a 1.14,a 0.66,a 0.87,a −0.28 0.096 0.61
36 Lysine 1.24,a 0.38,b 0.86,ab 0.97,ab 0.54,ab 0.14,b 0.20 ** 0.161 0.58
37 Maleate 1.65,a 1.23,b 1.01,bd 1.16,bc 0.86,cd 0.75,d 0.39 *** 0.027* 0.81
38 Malate 1.22,a 0.97,b 0.98,b 0.94,bc 0.80,c 0.79,c 0.42 *** 0.009** 0.79
39 2-methyle-malate 0.91,bc 0.61,c 0.82,bc 0.87,bc 1.10,ab 1.44,a 0.34 *** 0.040* 0.79
40 Maltose 2.61,b 1.24,b 3.52,ab 5.01,a 1.62,b 2.10,b 0.23 *** 0.144 0.71
41 Manitol/manose 4.88,a 1.34,b 1.79,b 1.58,b 0.86,b 2.89,ab 0.25 *** 0.139 0.74
42 Methionine 1.14,a 0.80,a 0.65,a 0.89,a 0.71,a 0.99,a −0.21 0.175 0.67
43 Myo-insitol 1.04,a 0.98,ab 0.97,ab 0.92,b 0.92,b 0.70,c 0.41 *** 0.012* 0.66
44 Nicotinate 0.87,a 0.67,ab 0.83,ab 0.80,ab 0.75,ab 0.53,b 0.12 * 0.283 0.64
45 Ornithine 0.73,b 0.20,b 1.69,b 1.41,b 0.56,b 4.00,a 0.33 *** 0.069 0.64
46 Phenylalanine 1.12,a 1.10,a 0.78,a 0.89,a 0.83,a 0.88,a 0.03 0.447 0.7
47 Pipecolate 1.47,ab 4.24,a 1.99,ab 2.29,ab 0.54,b 1.88,ab 0.11 * 0.291 0.65
48 Proline 0.42,d 0.39,d 0.98,bc 1.08,b 0.52,cd 1.56,a 0.40 *** 0.021* 0.7
49 Putrescine 0.97,bc 1.78,a 1.25,ac 1.45,ab 0.58,c 0.87,bc 0.23 *** 0.168 0.73
50 Pyroglutamate 0.90,a 1.16,a 0.99,a 0.91,a 0.42,b 0.98,a 0.38 *** 0.025* 0.71
51 Pyruvate 1.80,b 9.74,a 3.28,ab 2.49,b 4.42,ab 1.98,b 0.13 * 0.270 0.67
52 Chlorogenic

acid (cis)
0.96,bc 0.66,c 1.57,ab 0.49,c 1.10,bc 2.07,a 0.37 *** 0.033* 0.81

53 Chlorogenic
acid (trans)

0.99,ab 0.68,bc 1.27,ab 0.41,c 0.80,ac 1.37,a 0.25 *** 0.124 0.67

(continued)
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an apparent enrichment in butterhead, while exhibiting

a decrease in stem lettuce and L. serriola. However,

the levels of the other 2 metabolites (isocitrate and

2-methy-malate) related to the TCA cycle were higher in

L. serriola than in other types. This result suggested that

metabolites related to TCA cycle were frequently selected

during lettuce domestication. When we set a stricter

threshold of P < 0.01, only four metabolites reached the

significant level. Galactinol was specifically higher in stem

lettuce than in other types. Quinate, threonate and malate

had remarkable differences between L. serriola and cultivar

types. Threonate and malate exhibited differences in crisp-

head and butterhead in comparison with other types,

respectively (Figure 2; Table 1).

Network analysis of metabolites

In order to investigate the metabolic variations in a more

systematic manner, we first constructed correlation meta-

bolic networks in each of the five cultivated lettuce vari-

eties and L. serriola (Figure 3). Nodes of these networks

represent the metabolites, while edges indicate significant

(P < 0.05) correlations between two metabolites. The lar-

gest number of significant correlations was observed in

romaine (266) followed by butterhead (251), stem lettuce

(123), crisphead (122), L. serriola (79) and looseleaf (68). In

other words, there are more than four times as many cor-

relations in romaine as in looseleaf lettuce. Among these

correlations, positive correlations were dramatically

greater than negative correlations in all types of lettuce

(Figure 3; Table S2). The correlation network exhibited a

great diversity among different types of lettuce (Figure 3).

To further investigate the relatedness of these networks,

we calculated the dispersion indices to evaluate the differ-

ence between each pair of lettuce types. Dispersion indices

were used to quantify the difference between two co-

expression networks with higher dispersion indices indicat-

ing more variations between two networks and it could be

affected by a small set of metabolites showing large corre-

lation difference between two types of lettuce or many

metabolites showing moderate correlation difference, or

both. L. serriola showed relatively high dispersion indices

in comparison to cultivated lettuce, while the lowest dis-

persion indices were observed between butterhead and

romaine lettuce (Figure 4a). In addition, we performed per-

mutation tests (1000 times) between each pair of lettuce

types in order to assess the statistical significance of the

dispersion indices. We discovered that the observed dis-

persion indices were strikingly greater than the

Table 1. (continued)

No. Metabolites

Relative mean contents of metabolitesa

Qst-Fst
NANOVA
P-value

Qst
P-value

Heritability
(H2)Butterhead Crisphead Looseleaf Romaine Stem L. serriola

54 Quinate 1.74,b 0.77,c 1.28,bc 0.94,c 1.32,bc 4.20,a 0.47 *** 0.001** 0.84
55 Raffinose 0.90,cd 0.55,e 1.03,bc 0.73,de 1.37,a 1.23,ab 0.42 *** 0.018* 0.84
56 Ribitol/or similar 1.39,a 1.19,ab 0.75,ab 0.72,b 0.92,ab 1.02,ab 0.05 * 0.408 0.61
57 Serine 1.21,a 0.84,cd 1.10,ab 0.89,bd 0.71,d 1.06,abc 0.38 *** 0.026* 0.77
58 Succinate 1.41,a 1.03,b 0.92,b 0.76,b 0.90,b 0.83,b 0.36 *** 0.037* 0.67
59 Sucrose 0.85,bc 0.67,c 1.06,a 0.99,ab 1.07,a 0.99,ab 0.34 *** 0.051 0.65
60 Trehalose 0.61,a 0.56,a 0.52,a 0.60,a 0.83,a 0.49,a 0.02 0.492 0.63
61 Threonate 1.10,b 0.60,d 1.13,b 0.86,c 1.13,b 1.91,a 0.47 *** 0.003** 0.81
62 Threonine 1.07,b 1.68,a 1.26,ab 0.99,b 0.48,c 0.90,bc 0.37 *** 0.024* 0.67
63 Tryptophan 1.02,a 1.06,a 0.85,a 1.07,a 0.40,a 0.83,a −0.04 0.422 0.67
64 Tyrosine 1.11,a 0.82,ac 0.77,bc 0.98,ab 0.80,bc 0.56,c 0.28 *** 0.096 0.61
65 Unknown 8 0.65,c 0.88,bc 0.81,bc 0.67,c 1.38,a 1.22,ab 0.32 *** 0.067 0.68
66 Unknown 1 0.72,c 0.83,bc 1.13,ab 1.15,a 0.82,c 0.91,ac 0.26 *** 0.129 0.66
67 Unknown 2 0.54,c 0.91,bc 1.54,ab 1.98,a 1.19,ac 0.43,c 0.27 *** 0.104 0.7
68 Unknown 3 1.65,a 2.94,a 1.60,a 1.13,a 1.63,a 2.59,a 0.04 0.427 0.52
69 Unknown 5 1.50,a 0.90,bc 1.01,bc 1.15,b 0.72,c 0.80,c 0.37 *** 0.033* 0.82
70 Unknown 6 0.46,c 0.78,bc 0.67,bc 1.05,bc 1.15,b 1.98,a 0.35 *** 0.038* 0.87
71 Unknown 7 1.17,a 0.79,ab 0.97,a 0.95,a 1.17,a 0.44,b 0.31 *** 0.066 0.72
72 Unknown 9 1.61,a 0.91,b 0.82,b 0.97,b 0.96,b 0.42,b 0.30 *** 0.069 0.71
73 Valine 0.93,a 0.91,a 1.06,a 0.91,a 0.63,a 1.16,a −0.02 0.485 0.69
74 3-Hydroxypropanoate 0.70,b 0.69,b 0.87,ab 0.84,ab 0.92,a 0.79,ab 0.13 * 0.282 0.67
75 4-hydroxy-proline 0.72,ab 0.44,ab 0.72,ab 0.83,a 0.32,b 0.56,ab 0.08 * 0.359 0.58
76 6-phospho-gluconate 1.27,a 1.18,a 1.24,a 1.20,a 1.28,a 1.32,a −0.38 0.027* 0.65
77 Xylose 1.28,ab 1.49,a 0.81,bc 1.04,ab 0.92,ab 0.22,c 0.32 *** 0.069 0.78

aDifferent letters indicate the significant difference (Tukey’s test; P-value < 0.05).
*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.
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permutation results in the comparison between cultivated

varieties and L. serriola, and similar patterns were

observed in romaine, crisphead and looseleaf when

compared with stem lettuce, indicating that the pattern of

metabolite network was remarkably distinct between dif-

ferent types of lettuce (Figure 4a).

Figure 1. Metabolic profiles of different types of lettuce.

(a, b) PCA results of primary metabolic profile of lettuce. Points indicate independent accessions of Lactuca and colors represent different types of Lactuca.

(c) 3D scatter plot of PLS-DA results of primary metabolic profile of lettuce. The points in the plot indicate the accessions of Lactuca and different colors display

the different types of Lactuca.

(d) Permutation test of PLS-DA. The Blue and coral points represent the R2 and Q2 of permutation results, respectively. The blue and coral lines indicate the R2

and Q2 of observed data, respectively.

(e) Scatter plot of intra and inter-group Euclidean distances which are calculated using primary metabolic profile of lettuce. (f) Picture of all horticultural types

and wild lettuce.
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Figure 2. Boxplot of four metabolites harbored significant Qst (P-value < 0.01) across multiple types of lettuce.

The letters below indicate the statistical significance (Tukey’s test; P-value < 0.05).
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In order to investigate which pairs of metabolites dis-

played the greatest variances in correlation patterns

among different types of lettuce, we used the R package

DiffCoEx (Tesson et al., 2010) to identify differential co-

expression modules of metabolites in lettuce. Instead of

discovering differential co-expression modules between

two types of lettuce, we extended the DiffCoEx (Tesson

et al., 2010) method to all types of lettuce, which allowed

us to identify the most variable modules across the lettuce

population. In total, we detected three differential co-ex-

pression modules (Figure S1) and subsequent application

of permutation tests to assess statistical significance all

three modules showed significantly different co-expression

patterns across the populations (P-value of module

1 = 0.002, P-value of module 2 = 0.008 and P-value of

module 3 = 0.001). In order to display these results in a

more intuitive manner, we used a heatmap to present the

correlation changes in each module (Figure 4b–d). Six

metabolites were involved in module 1 including adenine,

glycerol, glycerol-2-phosphate, leucine, lysine and pheny-

lalanine; module 2 contained five metabolites, citrate, ery-

thritol, malate, 2-methyle-malate and threonine; module 3

harbored six metabolites, Cysteine-s-methyl, glutamine,

histidine, pyroglutamate, valine and 6-phospho-gluconate.

In module 1, each type exhibits a unique co-expression

pattern (Figure 4b). However, in module 2, butterhead,

crisphead, looseleaf and romaine shared similar co-expres-

sion patterns. The first four metabolites exhibited strong

positive correlations with each other and negatively corre-

lated with threonine. By contrast, the correlation patterns

were absent in stem lettuce and L. serriola (Figure 4c). In

module 3, the first four metabolites were negatively corre-

lated with 6-phospho-gluconate in L. serriola, while

romaine showed positive correlations between the first

four and 6-phospho-gluconate. Moreover, the connectivity

of the first five was weaker in the stem lettuce when com-

pared with the other lettuce types (Figure 4d).

Identification of QTL and candidate genes for primary

metabolic variation

Due to the strong population differentiation between culti-

vated and wild lettuce, we conducted genome-wide associ-

ation studies only using cultivated lettuce varieties to

identify metabolic quantitative trait loci (mQTL). We identi-

fied 154 significant mQTL for 51 metabolites

(P ≤ 6.02 × 10−5; Figure S2; Table S3) and 88 of these 154

Figure 3. Metabolite correlation networks for butterhead, crisphead, looseleaf, romaine, stem lettuce and L. serriola.

Colors in each network display the classification of metabolites. Numbered nodes indicate independent metabolites and the corresponding names can be found

in Table 1.
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mQTL overlapped with selective sweeps identified by our

previous RNA-seq study (Zhang et al., 2017). Among these

51 metabolites, 76.5% (34 metabolites) had at least 2 asso-

ciated loci and 23.5% (12) possessed more than 5 mQTL.

We determined the candidate genes for each locus by

integrating the gene functional annotations, eQTL and the

correlation between metabolite and gene expression levels

(Table S3).

Galactinol and raffinose family oligosaccharides (RFOs)

are important carbohydrates in higher plants. It has been

(a) (b)

(c) (d)

Figure 4. Similarity analysis of metabolite correlation networks and the detection of differential co-expression modules among different types of lettuce.

(a) The similarity of networks of different types of lettuce. The upper right corner showed the dispersion indices between each two types of lettuce. The colors,

circle sizes and the numbers represent the degree of dispersion indices. Scatter plot in the lower-left corner showed the permutation test of dispersion indices

between each two types of lettuce. The blue lines in each plot indicate the observed dispersion indices. X axis displays the dispersion indices of each permuta-

tion results and Y axis shows the similarity between the rearranged and real data sets. Coral colors show that the observed dispersion index is greater than

most permutation results (>95%; P-value < 0.05).

(b–d) Heatmaps of metabolites in differential co-expression modules. M1 to M6 in (b) represent adenine, glycerol, glycerol-2-phosphat, leucine, lysine and

phenylalanine, respectively. M1 to M5 in (c) represent citric acid, erythritol, malate, malate-2-methyl and threonine, respectively. M1 to M6 in (d) represent cys-

teine-s-methyl, glutamine, histidine, pyroglutamate, valine and 6-phospho-gluconate, respectively. Colors from blue to coral indicate the level of PCC from −1 to 1

and the asterisk denotes the significant level of correlations calculated from 1000 times permutation test (*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001).
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The Plant Journal, (2020), doi: 10.1111/tpj.14950

8 Weiyi Zhang et al.



reported that galactinol and raffinose are involved in the

response to abiotic and biotic stresses in many species

(Taji et al., 2002; Zhuo et al., 2013). In this study, galactinol

and raffinose harbored high heritability in the lettuce popu-

lation (0.93 and 0.84, respectively) and also exhibited speci-

fic accumulation in stem lettuce (Figure 2; Table 1),

indicating they may be involved in the differentiation

between stem lettuce and other lettuce types. Furthermore,

GWAS results showed galactinol and raffinose had nine

and three strikingly associated loci, respectively. Moreover,

all three loci for raffinose overlapped with the loci for

galactinol (m43 and m46 in Figure S2; Table S3). In order

to ensure the reliability of our candidate gene discovery,

we focused on the overlapping loci of galactinol and raffi-

nose. One overlapping locus was localized on chromo-

some 8 from 28 380 334 to 28 514 448 bp, and we detected

a strong LD block covered the entire candidate region. This

candidate region contained seven genes (Figure 5a).

Among them, LG8749721 encoded a galactinol synthase

which is the ortholog of Arabidopsis GolS2. In plants,

galactinol synthases catalyze the formation of galactinol

from UDP-D-galactose and myo-inositol (Taji et al., 2002;

Nishizawa et al., 2008) (Figure 5c). We first classified haplo-

types in the candidate region, and a total of 5 distinct

haplotypes were detected with haplotypes H2 and H4 as

the two major ones. Galactinol and raffinose contents of

the H2 haplotype were significantly higher than those of

the H4 haplotype (P < 0.001; t-test; Figure 5d). To further

validate the function of LG8749721, we overexpressed this

gene in tobacco, and significant increase of galactinol and

raffinose were detected in the transgenic lines (P < 0.05;

Figure 5b).

Detection of metabolite related genes affected by

domestication

We developed a pipeline to discover genes under selection

or affected by domestication (see method). In our previous

RNA-seq study, a total of 889 candidate selective sweeps

ranging from 10 to 160 Kb (with an average of 41 Kb in

length) were detected (Zhang et al., 2017). We combined

these selective sweeps with gene annotation, gene expres-

sion levels and metabolite content and then assessed the

correlations between them. Taking into account the well-

studied primary metabolism in model plants, we first used

the PMN (Plant Metabolic Network) database (Schlapfer

et al., 2018) to search for genes in Arabidopsis related to

the 69 annotated metabolites in this study. We detected a

total of 1170 genes in Arabidopsis, and found their homo-

logs in lettuce using OrthoMCL (Li et al., 2003). A total of

1252 genes were discovered in lettuce, of which 201 were

located in the regions with selective sweeps. A gene is

considered as a candidate gene if: (i) it is related to a

metabolite with significant Qst (P-value < 0.05) and (ii) its

expression level has a significant Qst (P-value < 0.05) and

(iii) its expression level significantly correlates with the

metabolite contents (P-value < 0.05; 1000 times permuta-

tion test). Four candidate genes met the above-mentioned

criteria, and notably three of them were related with qui-

nate, which displayed high accumulation in L. serriola but

low in cultivated lettuce (Table 1).

Dissection of genes involved in the quinate-chlorogenate

pathway

Of the four metabolite related genes potentially associated

with domestication, LG8763094 and LG5482522 were cho-

sen for further analysis due to the high correlation levels

between their expression amount and metabolite contents

(LG8763094: PCC = 0.475; P-value = 2.11 × 10−9; LG54825

22: PCC = 0.398; P-value = 2.67 × 10−6; Table S4).

LG8763094 was annotated as a hydroxycinnamoyl-CoA

quinate hydroxycinnamoyl transferase (HQT) like protein,

which is known to play a key role in chlorogenic acid

(CGA) biosynthesis (Niggeweg et al., 2004). Further phylo-

genetic analysis revealed that LG8763094 was similar to an

artichoke (Cynara cardunculus subsp. scolymus) HQT

gene, which catalyzed the synthesis of the quinate esters

of p-coumaroyl and caffeoyl from p-coumaroyl-CoA and

caffeoyl-CoA, respectively, in artichoke (Comino et al.,

2009; Sonnante et al., 2010; Moglia et al., 2016) (Figure 6a;

Figure S3). Based on the RNA-seq data, a total of seven

SNPs were identified in 173 accessions and 5 of them

caused amino acid changes in lettuce population (Fig-

ure 6b). However, all these seven SNPs were with minor

allele frequency (MAF) <5% in our association panel. In

order to validate whether LG8763094 is located in the

selective sweep we further obtained its sequences from 29

cultivars and 26 L. serriola accessions, and constructed a

phylogenetic tree. All the cultivars as well as seven wild

accessions belong to the same clade, while the majority of

wild accessions formed distinct clades (Figure S4a). To test

if the functional variants also exist in the promoter region

of this gene we next re-sequenced the 2 Kb upstream of

LG8763094 and detected 73 variants in 39 accessions

including eight accessions from L. serriola and 31 acces-

sions from different types of cultivars. A neighbor-joining

tree obtained from the re-sequencing data revealed that all

31 cultivars harbored exactly the same sequence in the re-

sequencing data. All L. serriola accessions except W25

formed two distinct well-supported clades. We used the 73

variants in 39 accessions to fit a linear regression model to

identify variants that were associated with the contents of

quinate and chlorogenic acid and the expression of

LG8763094. Several variants showed association with qui-

nate and chlorogenic acid contents and gene expression

levels, including a 12 bp InDel at −381 (from initiation

codon) of LG8763094 and a strong LD block was detected

in this region (Figure 6e). In addition, we developed a PCR-

based marker based on the 12-bp InDel to genotype a large

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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lettuce population. This 12-bp InDel significantly affected

the expression levels of LG8763094 and the contents of

quinate and chlorogenic acid (n = 85; P-value = 0.0004975;

n = 73; P-value = 1.394e-06; n = 73; P-value = 4.673e-05,

respectively; t-test; Figure 6f).

Another candidate gene LG5482522 is an ortholog of Ara-

bidopsis REF8 (reduced epidermal fluorescence 8) encoding

a coumarate 3-hydroxylase (C’3H), a P450-dependent

monooxygenase. The C’3H uses the products of HCT/HQT

as substrates to catalyze the synthesis of shikimate and qui-

nate esters of caffeoyl (Franke et al., 2002). Using the RNA-

seq data, we detected 17 SNPs in the coding region, and 15

of them were with MAF < 5% and the remaining two did

not alter the amino acid sequence (Figure S5a). To investi-

gate whether LG5482522 was under selection during lettuce

domestication we obtained its sequences from 31 cultivars

and 26 wild accessions. The LG5482522 gene from 30 of the

31 cultivars have identical sequences and formed a unique

clade with the only exception from accession C21 (Lsa-

tiva.8), which grouped with L. serriola accessions (Fig-

ure S4b). LG5482522 showed much higher diversity in wild

accessions as compared to cultivars (Figure S4b).

The expression level of LG5482522 was significantly

higher in L. serriola than in lettuce cultivars (Figure S5c;

P-value < 0.05; Tukey’s test; Table S4). We sequenced 2 Kb

upstream of this gene from 43 accessions and a total of 69

variants were identified (Figure S5a). A Neighbor-joining

tree was constructed using all the polymorphic information.

All the 27 sequenced cultivars formed a unique and well-

supported clade while L. serriola formed several distinct

clades (Figure S5b). A selection signal was identified

upstream of LG5482522. Polymorphisms discovered by re-

sequencing were used to fit the linear regression model to

investigate the functional variants in this region. Four vari-

ants marked by red arrows in Figure S5d exhibited the most

significant association with quinate, chlorogenic acid con-

tents and LG5482522 expression levels (Figure S5d).

Taken together, we conclude that the variations in the

promoter regions of LG8763094 and LG5482522 may result

in their differential expression, respectively, and conse-

quently lead to differential accumulation of quinate and

chlorogenic acid between wild and cultivated lettuce.

(a)

(d)

(b)

(c)

Figure 5. Validation of LG8449721 (LsGols2) as a candidate gene responsible for the contents of galactinol and raffinose.

(a) Manhattan plot (upper) shows an mQTL region for galactinol and raffinose contents on chromosome 8. Gene distributed in this region are displayed, and the

candidate gene (LG8449721) is shown in red. The lower panel is LD heatmap showing the pairwise r2 among all polymorphic sites identified by RNA-seq in this

region.

(b) Relative intensity of galactinol, raffinose and methionine in wild type (WT) and over-expression (OE) individuals of five lines. Value represent mean � SE

(*P-value < 0.05; t-test).

(c) Biosynthetic pathway of galactinol and raffinose. UGE, GolS and RFS indicate UDP-glucose epimerase, galactinol synthase and raffinose synthase, respec-

tively.

(d) Boxplot shows the difference of galactinol and raffinose contents among different haplotypes, respectively (H1: AATGCATCT; H2: ATCGCATCT; H3:

TATACGCGA; H4: TATATGCGA; H5: TATGCATCT). Asterisks display the significant level of t-test (***P-value < 0.001).
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DISCUSSION

The domestication of plants is arguably one of the most

important evolutionary transitions of species (Diamond,

2002; Ross-Ibarra et al., 2007). Previous research showed

that the origin of lettuce domestication is estimated to be

around 10 800 years B.P. in the Middle East and the Fertile

Crescent consistent with the early domestications of many

plants and animals which took place during the late

(a)

(c)

(e)

(g)

(f)

(h)

(d)

(b)

Figure 6. Identification of LG8763094 (LsHQT) as a candidate affected quinate and chlorogenic acid contents.

(a) Quinate and chlorogenic acid pathway. 4CL, 4-coumaroyl-CoA ligase; CHS, chalcone synthase; HCT, hydroxycinnamoyl-CoA shikimate hydroxycinnamoyl

transferase; HQT, hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase; C’3H, coumarate 3-hydroxylase; Blue solid arrows indicate one-step reaction

and coral dashed arrows represent reactions more than one step.

(b) Gene structure and variation of LG8763094 in Lactuca. Two major InDels in the upstream of LG8763094 are marked by red arrows. The numbers of variants

and accessions are indicated below the braces.

(c) Expression profiles of LG8763094 in 224 lettuce accessions. The radius of circle showed the expression levels of LG8763094 in each accession and the expres-

sion levels are represented by FPKM (fragments per kilobase per million reads). Different colors indicate different types of lettuce.

(d) Neighbor-join phylogenetic tree of upstream sequences of LG8763094 which achieved by re-sequencing of 39 accessions. The clade of cultivars is com-

pressed and the numbers in bracket indicate the number of accessions. The bar below indicates the number of base substitutions per site.

(e) Manhattan plot for linear regression of quinate, chlorogenic acid and LG8763094 gene expression levels against the polymorphisms identified in the

upstream of LG8763094. The points in different colors indicate the metabolites and LG8763094 expressions levels. The lower part displays the LD heatmap in

this region.

(f) Boxplot showing the different levels of quinate, chlorogenic acid and LG8763094 gene expression levels between the two genotypes at 12 bp Indel.

(g) Linear regression results of LG8763094 gene expression and quinate levels against latitude. Gene expression levels and metabolites contents were scaled

using scale function in R.

(h) Quinate contents and geographic distribution of the origin of L. serriola accessions. Each point in the map indicate a L. serriola accession and the color from

light blue to dark blue represent the low level to high level of quinate contents in each accession.
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Pleistocene to early Holocene transition (12 000–8200 B.P.)

(Fuller, 2007; Zhang et al., 2017). This thus indicates that

lettuce was likely a common food of humans at a very

early stage. The availability of a high quality reference gen-

ome of lettuce along with the RNA-seq study of 240 lettuce

accessions published in 2017 provide us a great opportu-

nity to explore the mystery of the lettuce domestication

process and to dissect the genetic bases of domesticated

traits (Reyes-Chin-Wo et al., 2017; Zhang et al., 2017).

A large number of morphological traits in lettuce changed

dramatically during domestication and subsequent cultivar

differentiation, including flowering time, leaf shapes, less

spine and non-shattering involucre (Devries and Van-

raamsdonk, 1994; Hartman et al., 2013). In addition to these

traits, domestication may also reshape the compositions of

small molecules which contribute to added values of veg-

etables such as colors, fitness, nutrition value and flavors

as indicated by the present study. Through investigating

77 primary metabolites in 189 accessions including all

major horticultural types and wild lettuce we here showed

how domestication influenced primary metabolism in let-

tuce. We showed that the metabolites in L. serriola were

different from those in cultivated lettuce (Figure 1; Fig-

ure 4). These results are consistent with demographic

inferences and also support the hypothesis that lettuce has

undergone a single domestication from L. serriola (Zhang

et al., 2017). However, we could not distinguish butter-

head, crisphead, romaine and looseleaf lettuce varieties

based on their primary metabolite contents. It is consistent

with a previous conclusion that primary metabolite con-

tents in wheat changed dramatically during the initial

domestication process but did not vary much in further

improvement phase (Beleggia et al., 2016). We also per-

formed Qst-Fst comparisons to identify the metabolites

which significantly changed during the domestication pro-

cess. Compared with other methods, Qst-Fst comparisons

can distinguish natural selection from genetic drift (Leino-

nen et al., 2013). We, therefore, used this method and iden-

tified 23 metabolites displaying dramatic changes among

different cultivated lettuce types and L. serriola. However,

changes in these metabolites may also be the conse-

quences of other traits associated with domestication, such

as the heading leaves in crisphead.

GWAS is a powerful tool to dissect the genetic basis of

complex traits including metabolic traits (Strauch et al.,

2015; Wen et al., 2015, 2018). Our previous RNA-seq study

identified several loci responsible for anthocyanin accumu-

lation in leaves (Zhang et al., 2017). In this study, we identi-

fied 154 loci associated with metabolites but most of them

contribute minor effects only (mean R2 = 5.57%), which is

similar to previous results on primary metabolites of other

species (Rowe et al., 2008; Chan et al., 2010; Wen et al.,

2018). Since RNA-seq covers only the expressed regions of

a genome, it is challenging to identify the causative

variants and some QTL may be missed. On the other hand,

there were usually ten or more genes in the candidate

region due to high LD level in self-pollinated species like

lettuce. By integrating gene expression information, we

could identify the most likely candidate genes through the

correlations between metabolite and gene expression

levels. For instance, we discovered 15 genes located in

mQTL regions whose expression levels were significantly

correlated with metabolites levels (adjusted P-value < 0.05;

Table S3). Interestingly, among these 15 genes, a WRKY

gene’s expression (LG1100395) was significantly positively

correlated with galactinol contents. It is reported that a

WRKY transcription factor affected galactinol levels by

binding to the promoter of galactinol synthase in Boea

hygrometrica (Wang et al., 2009b). We also found several

W-boxes (YTGACY) in the promoter regions of LsGols1

and LsGols2. Further study can test whether LG1100395 or

other WRKY genes bind to the promoter of galactinol syn-

thase in lettuce and influence galactinol concentrations in

lettuce.

When a gene was selected during the domestication pro-

cess, the nucleotide diversities of the flanking regions of

this gene will be reduced, a process known as selective

sweep. Selective sweeps are considered as a useful indica-

tion to determine target genes under natural selection or

domestication (Hohenlohe et al., 2010). We found that the

level of quinate varied significantly between L. serriola and

cultivated lettuce in Qst-Fst comparisons and Tukey’s test

(Figure 2; Table 1; P-value < 0.05). However, selective

sweeps tend to cover large regions of the genome and a

large number of selective sweeps were identified in our pre-

vious study (Zhang et al., 2017). This makes the identifica-

tion of the target genes challenging. Fortunately, as most of

the genes in the pathway of primary metabolism were eluci-

dated in other plant species, we can combine a priori knowl-

edge with gene expression information to select candidate

genes within selected regions. Using such an approach, we

identified LG8763094 (encoding hydroxycinnamoyl-CoA

quinate hydroxycinnamoyl transferase) and LG5482522 (en-

coding coumarate 3-hydroxylase) as candidate genes that

affect quinate and chlorogenic acid levels in lettuce. Several

potential causative variants in these genes were detected

using linear regression models (Figure 6; Figure S5). How-

ever, none of the variants identified by linear regression

showed significant association when we applied mixed lin-

ear models. That is probably caused by the fixation of the

two genes in cultivated lettuce. It is apparent that human

selection resulted in reduced quinate and chlorogenic acid

levels in cultivated lettuce. Undesirable flavors such as bit-

terness and astringency of those compounds and reduction

of their levels has been documented to be paralleled on the

differentiation or domestication of apple and eggplant (Clif-

ford, 1999; Meyer et al., 2015). The contents of chlorogenic

acid of cider varieties are richer than culinary apple, and
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chlorogenic acid levels are reduced in cultivar eggplants

(Clifford, 1999; Meyer et al., 2015). Interestingly, the flavor-

based domestication was not consistent with the notions

that breeding tends to increase functional health compo-

nents in vegetables (Talavera-Bianchi et al., 2010). Quinate

and chlorogenic acid can benefit human in various ways

given that they possess antioxidant, antiviral and anti-

inflammatory activities (dos Santos et al., 2006; Wang et al.,

2009a; Hwang et al., 2014). Furthermore, chlorogenic acid

also plays an important role in plant growth and develop-

ment. Inhibition of chlorogenic acid synthase will lead to

precocious cell death and alteration of leaf cell morphology

in tobacco (Tamagnone et al., 1998). In-depth understand-

ing of the bioactivity of these compounds as well as their

underlying genetic basis will aid in generating fortified culti-

vars through biotech-based breeding or metabolic engi-

neering.

We also noticed that quinate and LG8763094 expression

levels exhibited great variance within L. serriola (Figure 2).

Further analyses revealed quinate and LG8763094 expres-

sion levels were significantly correlated with the latitude

(P-value = 0.006, n = 16; P-value = 0.0006, n = 21; Fig-

ure 6g,h). Similarly, sunscreens of Arabidopsis, rice and

naked barley vary with latitude and altitude (Tohge et al.,

2016; Peng et al., 2017). Whether quinate in lettuce can

influence the ability of plant to adapt local environment or

it is only a byproduct of the selection of LG8763094 require

to be studied further. HQT/HCT enzymes in lettuce are

encoded by a gene family which contains at least four

members. The HQT enzymes are distinct from the HCT

enzymes and LG8763094 is the ortholog of artichoke

CcHQT3 according to phylogenetic analysis (Figure S3).

However, none of the other three HCT/HQT genes showed

differential expression between L. serriola and cultivated

lettuce, which indicates that LG8763094 may play a role in

lettuce domestication process. Significantly, CcHQT3

expression levels were notably higher in stem tissues than

in leaves and bracts (Moglia et al., 2016). It will be interest-

ing to investigate whether LG8763094 show different func-

tions in stems.

In conclusion, this study systematically investigates the

variation in primary metabolism in a diverse lettuce popu-

lation including the five major horticultural types and wild

relatives. We identified metabolites and their associated

genes marking lettuce domestication and differentiation.

These results coupled with the dissected genetic basis of

these complex metabolic traits provide valuable resources

for lettuce quality improvement as well as insights into

how these cultivars have evolved and differentiated. Since

both quinate and chlorogenic acid are largely beneficial to

the plant itself and to human health, it may be important

to elevate their contents in lettuce although it will be

important to ensure that this is within the limit set by the

fact that they should not confer pungent taste.

EXPERIMENTAL PROCEDURES

Plant materials

A total of 189 Lactuca accessions from a previously reported
association panel were selected in this study. Lactuca accessions
were sown in December, 2016 and grown in the plastichouse on
the campus of Huazhong Agricultural University, Wuhan, China.
145 of 189 accessions had two well-growing plants, and we har-
vested three fully expanded leaves at the same developmental
stages from each individual plant of 3-month-old as two biologi-
cal replicates. The remaining 44 accessions had one plant show-
ing similar growth state as the other 145 ones for metabolite
profiling.

Metabolite profiling and outlier filtration

Leaf samples were harvested and immediately frozen in liquid
nitrogen and stored at −80°C until further analysis. Metabolite
contents were determined according to (Roessner et al., 2001;
Lisec et al., 2006). Briefly, the extracted residue was derivatized at
37°C for 120 min (in 40 μl of 20 mg ml−1 methoxyamine
hydrochloride in pyridine), followed by a 30-min treatment at 37°C
with 70 μl of N-methyl-N-(trimethylsilyl)trifluoroacetamide. The
GC-MS system used was a gas chromatograph coupled to a time-
of-flight mass spectrometer (Leco Pegasus HT TOF-MS; Leco). The
samples were injected with a Gerstel MultiPurpose autosampler
system. Helium was used as the carrier gas at a constant flow rate
of 2 ml sec−1 and GC was performed on a 30-m DB-35 column.
The injection temperature was 230°C and the transfer line and ion
source were set to 250°C. The initial temperature of the oven
(85°C) increased at a rate of 15°C/min up to a final temperature of
360°C. After a solvent delay of 180 sec, mass spectra were
recorded at 20 scans per s with an m/z of 70–600. Chromatograms
and mass spectra were evaluated by CHROMA TOF 4.5 (Leco) and
TAGFINDER 4.261. To ensure the suitability of the method for
quantifying lettuce metabolites we additional performed a recom-
bination experiment where we ran a mixture of lettuce and Ara-
bidopsis alongside samples of each plant independently and
assessed their quantitative similarity. Data is presented for each
compound measured in Table S5.

In order to obtain the high-quality data, we define outliers based
on the interquartile range (IQR) which was calculated as follows:

IQR¼Q3�Q1 (1)

where Q3 and Q1 refer to the 75th and 25th percentile, respectively.
Therefore, if the metabolite contents are below Q1 – 1.5 × IQR or
above Q3 + 1.5 × IQR, it will be deemed as an outlier. According to
the definition above, we first removed the outliers for the data with-
out replication. For the data with replication, only those following
the criteria below were retained: (i) the ratio of two replications
was below 5; (ii) the ratio of two replications was larger than 5 but
one of the data was an outlier. For cases like those defined in crite-
ria 2, we removed the outlier and used another value to represent
this sample. Finally, we took the mean contents of metabolites for
the further analysis.

Statistical analysis of metabolic variation

Missing values of the metabolites were imputed using the R pack-
age missForest (Stekhoven and Buhlmann, 2012), following the
default parameters. Principal components analysis was conducted
with the prcomp function in R and the first two components were
plotted using the R package ggplot2 (Ito and Murphy, 2013). PLS-
DA and permutation testing was performed using the R package
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mixOmics (Rohart et al., 2017) and ropls (Thévenot et al., 2015).
Lactuca group was calculated using the average Euclidean dis-
tance crosswise samples in that group, and the Inter-group dis-
tance of a Lactuca group was calculated with two steps. First, we
calculated the average samples for each group and then the inter-
distances were defined as the average Euclidean distances
between one lettuce type and the rest (Li et al., 2015).

Heritability for each metabolic trait was calculated following the
equation: H2 = Vg/(Vg + Ve) which used one-way analysis of vari-
ance (ANOVA) by setting the accessions as a random effect. Where
Vg and Ve are variance of genetic and environmental effects,
respectively (Chen et al., 2014).

Analysis of directional selection of metabolites across

Lactuca population

Nested ANOVA and Tukey’s test were conducted using the R pack-
age lme4 (Bates et al., 2015) and multcomp (Hothorn et al., 2008)
was performed to test the differences of metabolites contents
among different types of lettuce. The R code was downloaded and
modified from the website http://www.biostathandbook.com/
(McDonald, 2014).

For detecting the selection signature at metabolites level, we
performed Qst − Fst analysis. Qst was an analog of Fst for the
phenotypic traits, defined as follow (Whitlock and Guillaume,
2009):

Qst¼ σ2b
σ2b þ2σ2w
� � (2)

where σ2b was between population variation, and σ2w was within
population variation.

To test the significance of the observed Qst, we conducted the
method of Whitlock and Guillaume (2009). Instead of the com-
parison of observed Qst with mean Fst, this approach generating
a neutral Qst distribution which can be derived using the
observed Fst, and then comparing observed Qst with this distri-
bution to conclude whether the observed Qst was greater or
lower than the expected under neutrality. Specifically, we fol-
lowed these steps:
1 In order to get neutral Fst without bias, only neutral SNPs
(4DAT, four-fold synonymous transversion) without missing value
were used for this analysis (Zhang et al., 2017). Furthermore, we
removed 4DAT SNPs in the selection region identified by previ-
ously study (Zhang et al., 2017). As a result, 9009 SNPs were
remained and Fst distribution was calculated according to Weir
and Cockerham (Whitlock and Guillaume, 2009).
2 Distribution of σ2w was obtained through multiplying observed
σ2w with a random number draw from a χ2 distribution with a
degree of freedom of 5 (number of population − 1), then divided
by 5 (Whitlock and Guillaume, 2009).
3 Distribution of σ2b was given by (Whitlock and Guillaume, 2009):

σ2b ¼
2Fstσ2w
1�Fst

(3)

where σ2w was calculated following the step 2) as shown above.
4 Expected neutral Qst was calculated using σ2w and σ2b , following
the equation (2).

For each metabolite, we repeated above 4 steps for 1000 times
to generate the neutral distribution of Qst − Fst. The resulting
P-value was determined by the percentage of the neutral Qst − Fst
distribution which exhibited more extreme values than the
observed Qst − Fst value.

Metabolic network construction

First, we calculated the pair-wise Pearson’s correlation coefficient
(PCC) using the metabolite profile for each type of Lactuca. The
significance of PCC was determined by 1000 permutations and
Hochberg-Benjamini adjustment (Hochberg and Benjamini, 1990).
Consequently, the threshold of PCC was set to −0.45 and 0.60 for
butterhead, −0.63 and 0.73 for crisphead, −0.67 and 0.66 for
looseleaf, −0.51 and 0.56 for romaine, −0.56 and 0.63 for Stem,
−0.60 and 0.66 for Lactuca serriola, respectively (FDR-adjusted
P-value < 0.05). Network was displayed using an in-house R script.

Dispersion indices between every two networks were computed
following Choi and Kendziorski (2009). The First step of permuta-
tion test of dispersion indices was randomly permuting the sam-
ples between the two types of lettuce. We then calculated the
dispersion indices of these two rearrangement groups. By repeat-
ing these two procedures for 1000 times, we generated the distri-
bution of dispersion indices and the P-value was determined by
comparing the random distribution and observed dispersion
indices.

Differential co-expression modules were discovered using R
package DiffCoEx (Tesson et al., 2010). In order to extend this
method to 5 types of lettuce, we replaced the matrix of adjacency
differences to the following equation (Tesson et al., 2010):

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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(4)

where c
kj j
ij indicates the correlation matrix of each types of lettuce,

and (Tesson et al., 2010)

c
0j j
ij ¼ 1

n
∑
k

sign c
kj j
ij
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kj j
ij
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� 	

(5)

We set the soft threshold β in equation (4) to (5), and we per-
formed Dynamic tree cut by setting the minimum cluster size and
cut tree height to 4 and 0.996, respectively. The heatmap in Fig-
ure 4 was plotted using an in-house R script, and the significance
of correlation was obtained by the 1000 times permutation test.

Genome-wide association studies

EMMAX (Kang et al., 2010) software was used for genome-wide
association studies. We performed BN matrix in EMMAX to cal-
culate the population structure and kinship matrix. To determine
the threshold of P-value, we first used GEC (Li et al., 2012) soft-
ware to calculate the effective numbers of independent markers,
and then the significant P-value was 1/effective numbers of
markers = 6.02 × 10−5. In order to identify the candidate region
for mGWAS, we first detected the significant SNPs for each
metabolite, and then merged significant SNPs based on their
physical distance and pair-wise LD. SNPs with Physical distance
≤4.7 Mb or r2 ≥ 0.1 were grouped together. Finally, candidate
region with at least two significant SNPs were remained for fur-
ther analysis.

Selection of candidate genes in GWAS

Candidate genes were selected according to the function annota-
tion and the correlation between metabolites and genes in candi-
date region. For gene annotation, we used nucleotide sequence of
candidate genes to BLASTX (Altschul et al., 1990) against Ara-
bidopsis protein database to find genes functional related with the
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target metabolites. Correlation between metabolites and genes
were calculated using R cor function, and the significance of corre-
lation was assigned based on the 1000 permutations, with a false
discovery rate of 0.05. LD and haplotype analysis was performed
through R package genetics (Warnes et al., 2019) and haplo.stats
(Sinnwell and Schaid, 2018), respectively. Based on the identified
haplotypes, boxplot and t-test of metabolite contents were con-
ducted using R package.

Vector construction and tobacco transformation

The full-length cDNA of candidate genes was amplified from S40
(a stem lettuce), and then transformed into pri101 vector using
Trelief™ SoSoo Cloning Kit after Sanger sequencing to ensure the
correct sequence. Confirmed clones were transferred into
Agrobacterium GV3101 by heat shock and used to infect tobacco
leaf disk. After co-culture and selection, confirmed positive T0

individuals were moved into glasshouse to generate the T1 gener-
ation. T1 individuals were planted and the transgene positive
(over-expression individuals; OE) and negative individuals (wild
types; WT) were identified. Leaf samples were harvested from
one-month old seedling and metabolic profiling was performed to
compare OE and WT individuals. Primers used in these experi-
ments are listed in Table S6.

Identification of mQTL and metabolite related genes

affected by domestication and improvement

We first downloaded the metabolite related genes in Arabidopsis
from the PMN database, and used orthoMCL (Li et al., 2003)
(−I 1.5 in mcl) to identify the homologs of these genes in lettuce.
Genes meeting the following four conditions were selected as
candidate genes. Firstly, candidate genes must be related with a
metabolite with significant Qst − Fst (P-value < 0.05). Secondly,
selected genes had to be located in a selective sweep identified in
previous study. Thirdly, expression levels of candidate genes
ought to harbor the significant Qst − Fst (P-value < 0.05). Qst − Fst
of gene expression levels were calculated using the same method
as for metabolites described in the previous section. Finally,
expression levels of these genes should also significantly corre-
late with the metabolite contents (Pearson correlation, P-value <
0.05). For the selected candidate genes, re-sequencing was con-
ducted in the 2 Kb region upstream of the gene and the phyloge-
netic tree was constructed using MEGA7 (Kumar et al., 2016).
Furthermore, a linear regression was done using the polymor-
phisms found by re-sequencing in order to identify the functional
genetic variations. For the detection of functional variations, we
developed the specific markers to screen the lettuce population
to perform the candidate association analysis. Accessions in
another panel used for validating genes under selection and pri-
mers are listed in Table S7 and S8, respectively.
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Figure S1. Detection of metabolite differential co-expression mod-
ules in different types of lettuce. Three differential co-expression
modules of metabolites were identified by DiffCoex. Modules
show in different colors.

Figure S2. Chromosomal distribution of mQTL identified in this
study. X axis shows the physical distance of nine chromosomes in
lettuce. Y axis indicates independent metabolites, one on each
line, and the classification of metabolites is showed by distinct
colors. QTL regions are displayed in the dark blue box and are
identified by the criterion described in the method. Detailed infor-
mation of QTLs is shown in Table S4. Heatmap below indicates
the density of mQTL distribution across the chromosome obtained
through a sliding window algorithm (window size = 4.6 Mb; win-
dow step = 2.3 Mb). m1, alanine; m2, asparagine; m3, aspartate;
m4, cysteine; m5, GABA, m6, glutamine, m7 histidine, m8,
homoserine; m9, lysine; m10, methionine; m11, ornithine; m12,
phenylalanine; m13, proline; m14, pyroglutamate; m15, serine;
m16, threonine; m17, tryptophan; m18, tyrosine; m19, valine;
m20, 4-hydroxy-proline; m21, citrate; m22, dehydroascorbate
dimer; m23, fumarate; m24, galactonate; m25, glutarate; m26, gly-
colate; m27, isocitrate; m28, maleate; m29, malate-2-methyl; m30,
nicotinate; m31, pipecolate; m32, pyruvate; m33, chlorogenic acid
(cis); m34, quinate; m35, succinate; m36, threonate; m37, erythri-
tol; m38, glycerol; m39, manitol/manose; m40, ribitol/or similar;
m41, adenine; m42, fucose; m43, galactinol; m44, inositol-1-
phosphate; m45, maltose; m46, raffinose; m47, xylose; m48,
unknown 2; m49, unknown 3; m50, unknown 5; m51, unknown 9.

Figure S3. Phylogentic analysis of HCT/HQT gene family. Protein
sequence of HQT and HCT genes from several species were used
to construct Neighbor-joining tree. Red circle show the LG8763094
(LsHQT) gene identified in this study. The numbers next to the
branch show the bootstrap test (100 replicates) of the percentage
of replicate trees. The bar below indicates the number of amino
acid substitutions per site.

Figure S4. Neighbor-join phylogenetic tree based on sequences of
LG8763094 and LG5482522 in cultivar and wild accessions. Red
and black IDs indicate L. sativa and L. serriola accessions, respec-
tively. (a) Phylogenetic tree of LG8763094. (b) Phylogentic tree of
LG5482522. The number of L. sativa and L. serriola accessions in
the phylogenetic tree are shown in the brackets. The bars below
the trees represent base substation numbers per site.
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Figure S5. Validation of LG5482522 as a candidate gene affected
quinate and chlorogenic acid contents. (a) Gene structure and
variants identified at LG5482522 locus. (b) Phylogenetic analysis
of the upstream sequences of LG5482522. The neighbor-join tree
is constructed using the re-sequencing data of 43 accessions. The
cultivar clade is compressed and the numbers of cultivars show in
the bracket. The bar indicates the number of base substitutions
per site. (c) Expression profiles of LG5482522. Radius represents
FPKM of LG5482522 and colors indicate the different types of let-
tuce. (d) Manhattan for QTL and LD block of polymorphisms iden-
tified by re-sequencing in the upstream of LG5482522. The
colored points display –log10 of P-value obtained by linear regres-
sion of quinate, chlorogenic acid and gene expression levels
against variants. The proposed functional variants are labeled and
marked by red arrows.

Table S1. Metabolites and their relative contents measured in this
study. aA, B and D follow the dash line of sample IDs indicate dif-
ferent biological replicates.

Table S2. Summary of positive and negative metabolic correla-
tions for each type of lettuce.

Table S3. Integrated information of candidate genes in each mQTL
identified by genome wide association study. Dashed lines indi-
cate no information found and NAs in correlation and correlation
P-value columns indicate the gene was not expressed.

Table S4. Summary of candidate genes potentially involved in let-
tuce domestication and/or cultivar differentiation process. aThe
number 1 in C to G columns indicate the genes are located in the
selection sweep regions for corresponding types of lettuce. bLet-
ters indicate the statistical significance of Tukey’s test. c*P-value
<0.05; **P-value <0.01. NA indicates the genes are not expressed
in RNA-seq data.

Table S5. Summary of GC-MS reporting metabolites data and
recombination experiment results for evaluating the method of
lettuce metabolites profiling.

Table S6. Primers used for re-sequencing and vector construction
of LG8749721.

Table S7. Samples for validating selective sweeps.

Table S8. Primers used for re-sequencing the promoter and full
length of LG8763094 and LG5482522.
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