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Abstract

A procedure for the computation of eigenfrequencies for structures made of metal foam is proposed. The
heterogeneity of the foam geometry has an influence on these macroscopic properties and has to be taken into
account. This is done by fitting a model of the microstructure based on Laguerre tesscllations by means of
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What's a metal foam?

According to Wikipedia, a "metal foam is a cellular structure consisting of
a solid metal with gas-filled pores comprising a large portion of the
volume”.
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Open-cell and closed-cell foams

@ The characteristic property that identifies metal foams (or foams in
general) is porosity, i.e. the volume fraction of the 'pores’ that do
not contain the substrate against that of the metal itself.

@ The broad categorisation is based on porosity or the shape of the
microstructure.

© In open-cell foams, the cells or the pores are connected by "thin”
layers of metal. Equivalently, the volume fraction of the gas to metal
is very close to one.

@ In closed-cell foams, the cells or the pores are disconnected by
"thick” layers of metal. Equivalently, the volume fraction of the gas
to metal is infinitesimal.
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Representative and stochastic volume element

© A representative volume element is a characteristic of any periodically
recurring microstructure, be it foams (as is the case of interest of this
paper), or for that matter, solids with periodic potential (referred to
as unit cells in solid state physics or control volume element in
continuum mechanics).

@ A stochastic volume element is one that fails to repeat itself for a
long range of neighbourhood near itself in this space/bulk of the
substrate/solid.

Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa April 16, 2021 5/17



What is this paper all about?

© This paper describes a computational model that virtually performs a
numerical experiment to explore the linear elastic properties of the
metal foams from the images obtained from CT (computed
tomography) scans.

@ In literature until then, there was a lot of interest towards
microstructure models with finite element methods which included
techniques such as tessellations.

© But the issue lies in the heterogeneity of the representative volume
element in the microstructures of metal foams, one eventually resorts
to methodologies based on stochastic volume elements.

@ This paper introduces a simple yet unique adaptation of what one
knows as the "stochastic finite element method".

© My pivotal place of motivation in this paper lied in the integration of
the geometric ramification needed in FEM along with the stochastic
portrayal of the microstructure.

Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa April 16, 2021 6 /17



What is this paper all about?

@ This paper introduces a simple yet unique adaptation of what one
knows as the "stochastic finite element method" .

@ My pivotal place of motivation in this paper lied in the integration of
the geometric ramification needed in FEM along with the stochastic
portrayal of the microstructure.

Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa April 16, 2021 7 /17



S

A. Liebscher et al. / Procedia IUTAM 6 (2013) 87 - 96

Microstructune Slochastic
Gonerater FEM
T

FE Mode!
of tha

Mirrnetructurn

Digital
Image Analysie

Satistical
Description

of tha (Reamairy

Distribution of
Macroscopic
Oantitise

Computer Temegraphy|

The basic strategy of the method; the algorithm

Fig 1. Overview of the proposed computational procedure.
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Results from the CT scan

Table 1. Cell properties obtained from CT analysis

Property Mean Standard deviation
Diameter 5.09 mm 030 mm

Surface Area 80.19 mm* 958 mm’

Volume 49.64 mm® 9.12 mm’

Facets 13.00 148

Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa April 16, 2021 9 /17



Microstructure generation and determining linear
properties ....

@ As discussed before, owing to the variation in the cells, it is useful to
resort to the stochastic volume element (SVE).

Based on the data shown in Table 1, a Laguerre tessellation was fit to the foam structure. This model is
defined as follows [17]: given a set 5 of spheres, the Laguerre cell C(s(x,r),S) of a sphere s(x,7) (x: center point, r-
radius) belonging to this set is defined as

c(s(xr).5)= {y eR*|y- x”2 - =y i ris(x' ) e S} ) m

where | | denotes the Euclidean norm. The Laguerre tessellation is the set of all non-empty Laguerre cells of
spheres in . It forms a space-filling system of convex polytopes. As special case the Voronoi tessellation is
obtamed, if all spheres have equal radii. In comparison to the Voronoi tessellation, the Laguerre tessellation
allows to generate a wider range of cell patterns as cell facets are not forced to be equidistant to the cell

e generators.
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Microstructure generation and determining linear
properties

© The centres of the the Laguerre spheres are generated by the Poisson
process having known the mean or average number of cells per unit
volume.

@ The log-normal distribution of the radii of the cells perfectly fitted
those in the image.

chosen for the volume di of the spheres. Its probability density function s given by
logr—m)’
anp| - =m)
) 2 -
pr)=————— 2
Varar @
with parameters m ER and >0

Estimates for the model parameters are obtained using the procedure introduced in [23]. Denote with ;.
i=1.._8, the eight quantities of Table 1 and with &(pyps). i=1,....8, estimates of these quantities obtained from
Laguerre tessellations with parameters p and p, for the sphere volume distribution. The optimal parameters are
those, for which the relative distance

(&)

In the application, the optimal for the volume distribution were found to be
e 71,0508 a0 90,2645, V sualizations of oge of it CT & images and of the fitted model are shown in Figure 2.
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Microstructure generation and determining linear
properties ....

o Fig. 2. Visualizations of the Cu Duccel form (lefY) and the mode (right). Visualized are 500° vaxels.

@ The next step, briefly, involves the generation of the foam model
using some morphological operations. (references available in the next
slide ...)

© Mesoscopic volume elements are created and loaded by boundary
conditions yielding an upper (kinematic uniform boundary conditions,
KUBC) and a lower bound (static uniform boundary conditions,
SUBC) for the compliance tensor S (ej; = Sjjkiow)-
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Estimating statistical averages

4.1 Determination of the Distribution Function

The basis for the calculation are about 100 SVEs with a side length of 25 mm. Applying KUBC and SUBC.
histograms were obtamned for bounds of the effective compliance tensor. For each of the SVEs, the mean value of
the upper and lower bound 1s collected from which the empirical distnbution is computed

4.2 Detarmination of the Carrelation Functions

As the linear-elastic material parameters and the mass density will serve for eigenfrequency computations of
beams, they are rep: d by stocl P . The stochastic processes are assumed to be stationary due to
the homogeneity of the generated microstructure geometry. In order to find the correlation functions for the
linear-elastic material parameters, 15 beam structures (100 mm x 10 mm x 10 mm) made of foam are analyzed by
a method of moving cubes: Cubes of the same size are cut out of each of these beams at different positions along
the longitudinal axis. For each cube the material parameters are calculated so that they were determined as
functions of the position x on the longitudinal axis.

For the computation of autocorrelation data, the 15 received fields for example for the Young’s modulus E(x)
are normalized by

BRICC ®

E(
Ty

where yr and o are the mean value and the standard deviation of the Young’s modulus, respectively. Then,
for each field the autocorrelation data

&, (4)=[5, (1), (x+ A)ax ©

is calculated as a function of the distance A=x;-x; and the mean value over all 15 fields is taken at each
distance A. The results for the material parameters are shown in Figure 3.
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Estimating statistical averages

AutoCorrelationfunciion of matarial parameatars

smsas dansity :
— ir's rodubis |
mum Shear modulus
= = = Byl modulug

0.4

PP T

0.2

s

Distance [mm]

Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa April 16, 2021 14 /17



Shrohan Mohapatra, Department of Physics (Stochastic multiscale modeling of metal foa

Random field representation

5. Random field representation

The non-Gaussian random field is represented by a truncated KLE:

a(x.0)= L2 (07 (x). a3

where f] (1) are determmistic eigenfunctions that are obtained by solving a homogeneous Fredholm integral
equation of the 2nd kind:

Jels-x) £ (x)ax =25 (=) 19

for the previously determined covariance function C(x) For the representation of the covariance function
adopted here, an analytical solution of equation (14) is still posslble :f [331.£,(#) are uncorrelated random
variables with zero mean and unit variance that are ob v by adapting the empirical marginal
distribution to the previously determined one. The truncated KLE has (he advantage that the random variables
enter linearly in the expression for the random fields. Samples of & (9) are generated by a procedure described
1n [34] Tt consists of the following steps:

.

Given samples & (9 ) m=1,2 ..n for § (6) gmenai.e samples of the non-Gaussian random field (13).
Estimate the empincal marginal dlsmbuhon ﬁ.mmon F* (y,x) of the random field.

Transform each sample of the random field by 5" (x,0_) = F (F.(zz(xﬂ )x)} 7" (x,6,) matches the
target marginal distribution F.

* Generate new samples 1,‘:'1 for £ (@) from

Zra 1 . 1,
£ ==l o) Zr o) (e @
. dard: (,E‘Mtounit and reorth lize the samples by product-moment based shuffling of the

sampling.
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Simulation v/s experiment

Table 3. Comparison of bending eigenfrequencies for beams (250 mm x25 mm x 25 mm) made of Cu Duocel®

Bending mode Simmlation Experiments
First 333 Hz(2.6% COV) 322 Hz(1.5% COV)
Second 864 Hz (3.7% COV) 839 Hz (6.2% COV)
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Thank you!!
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