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Abstract: 

The creation of structural composites with combined strength, toughness, low density, and 

biocompatibility remains a long-standing challenge. On the other hand, bivalve marine shells – 

Clinocardium exhibit strength, stiffness and toughness that surpass even that of the nacre which is 

the most widely mimicked model for structural composites. The superior mechanical properties of 

Clinocardium shells originate from their cross-lamella design, comprising CaCO3 mineral platelets 

arranged in an ‘interlocked’ herringbone fashion. Reproduction of such hierarchical designs could 

offer multifunctionality, potentially combing strength and toughness at low densities and 

capability for seamless integration with biological systems. Here, we demonstrate manufacturing 

of the cross-lamella design by biomineralizing aragonite films with saw-tooth patterns and 

assembling them in a chitosan/fibroin matrix to generate a composite with interlocked mineral 

layers. The resultant composite —with a similar constitution to the biological counterpart, nearly 

doubles the strength of previous nacre-mimetic composites while improving the tensile toughness 

and simultaneously exhibiting stiffness and biocompatibility. 
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Bioinspired manufacturing —in the sense of replicating the way nature fabricates— holds great 

potential for supporting technological transformations in a variety of fields, from general 

manufacturing to medicine.1 Bioinspired materials are produced by linking the structural 

components of life with the hierarchical designs with which they have evolved .2 By doing so, 

biological molecules not only become relevant for engineering applications due to their abundance 

and/or integration with biological systems (e.g., human host or ecological cycle) but also become 

necessary for reproducing the synergies behind the extraordinary mechanical properties of 

structural biomaterials. 

One key property of structural bio-composites is their multifunctionality, which enables a single 

material to perform satisfactorily in the many multidimensional loading scenarios that an organism 

may face during its life.3 Mollusk shells, fish scales, arthropod exoskeletons, mammalian bones, 

and sponge spicules are examples of natural composites that exhibit such remarkably rich and 

isotropic combination of mechanical properties.4, 5 All these materials, despite their evolutionary 

disconnection and different compositions, are made of hard but brittle inorganic minerals and soft 

organic phases. However, the strength and toughness of these composites are orders of magnitude 

higher than those of their constituents,6 and they result from the arrangement of the hard and soft 

phases in the composite matrix.7 In the paradigmatic example of nacre seashells, the hard-mineral 

platelets are sandwiched between soft, sub-micron layers of organic macromolecules, which is one 

of the most followed models for the synthesis of high mechanical performance artificial materials.7   

Current approaches to producing biomimetic nacre using its native components focus on the 

reproduction of a “planar lamellar” model, where the mineral platelets organize parallel to each 

other across different levels.8, 9 Even this simplified model of nacre, which can be reproduced by 

freeze-casting,10, 11 slip/tape casting,12 layer-by-layer bonding,13, 14 and vacuum-assisted 

filtration,15 has demonstrated outstanding results in the reproduction of nacre’s toughness. 

However, strength of nacre-mimetic composites along the platelets remains lower than that of the 

biological counterpart.16 Although, introduction of nanoscale bridges between inorganic 

platelets17-19 laterally interlocked platelets20 and 3-D printed platelet geometries21, 22 have yielded 

improvements in mechanical properties in these composites, the micro-level design of mineral 

platelets have not been fully considered yet. In particular, the planar lamellar models assume that 

the mineral platelets of nacre arrange in a brick wall structure where the mineral “bricks” have flat 



3 
 

interfaces. By contrast, in native nacre, mineral platelets have a wavy cross-section, which causes 

transverse interlocking between adjacent platelets to increase the composite’s resistance to 

deformation and prevent localized strain.23, 24 An extreme case of this mineral-interlocking can be 

observed in the inner crossed-lamellar design of the shells of some mollusks, where mineral 

interlocking occurs at the first-order domain;25 instead of the mineral plates being “stacked” in a 

parallel manner, they are slanted toward the adjacent domain, resulting in intricate herringbone 

patterns (Figure 1a). This interlocking strategy in structural materials is shown across different 

species in different forms. For instance, the shells of cockles (Clinocardium) have periodic inner 

crossed-lamellar structures,26 while the conch shell (Strombus gigas) have a pattern, where the 

orientation of the crossed-lamellar changes (from 45°–90°) in different regions of the shell, 

resulting in one of the toughest known materials.27 Notably, this interlocking strategy in structural 

bio-composites goes beyond mollusks; it is found in other phyla, such as the mineralized micro-

ridges in the exoskeleton of sea urchins (Phormosoma placenta),28, 29 and even in other kingdoms, 

such as the teeth-like interlocked mineral shells of diatoms,30 which is a perfect example of 

convergent evolution. 

Results and discussion: 

Here, we report combined strength, stiffness and toughness in a biomimetic composite by 

reproducing the internal structure and composition of the shells of cockles by a distinctive 

approach of biomineralizing microscopically patterned aragonite platelets and assembling them 

hierarchically into an “interlocked” architecture across the composite. In the shells of cockles, the 

mineral platelets (constituting the first-order lamella) are stacked against the next domain at an 

angle of 30°–40° (Figure 1a-b). We replicated the localized biomineralization in natural systems 

using polyacrylic acid (PAA)-induced aragonite biomineralization and micro-structured chitosan 

films (Figure S1).31-33 This resulted in larger mineral platelets as the PAA−Ca2+ complex being 

adsorbed and subsequently covering the entire chitosan surface (Figure 1c). With the increasing 

packing density, the adsorbed layer eventually underwent an amorphous-to-crystalline transition, 

leading to the formation of aragonite, as confirmed by X-ray diffraction (Figure S2a). Areas of 

several square centimeters (3 × 1 cm2) of chitosan films with micrometric topography were 

mineralized by this approach (Figure 1c and Figure S3). Notably, the only factor that limited the 

size of the patterned aragonite was the size of the reusable mold used for patterning the chitosan 
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films used as template; by using polymer casting, chitosan films with nanometric features have 

been produced over large areas,34 which is the same low-cost, high-throughput technology that is 

used here, highlighting the readiness of this approach to scale up to an industrially relevant level. 

Layer by layer, using chitosan films with grating-like patterns, we built the crossed-lamellar 

structure analogous to the shells of cockles (Figure 1d). While we focused on the reproduction of 

the inner structures of the shell model, the ability to control the geometry of the aragonite platelets 

using patterned chitosan was observed to be quite general. Without aiming to explore the global 

limits of the approach but rather those relevant for this study, we found no apparent constraints to 

producing mineralized platelets with features ranging from 5-2µm and multiple geometries. 

(Figure 1d,e and Figure S2b,c). In the specific case of the saw-tooth-like patterned features, the 

aragonite conforming to the chitosan patterned films was grown to a thickness of ~5µm (Figure 

1f). Interestingly, a more detailed study of the mineral platelets revealed that the patterned 

aragonite layers had a hierarchical sub-structure, resembling the meso-crystal morphology of the 

mineral component of natural nacre23, 24 (Figure 1g). Formation of such hierarchical mineralized  

structures has been attributed to the non-classical pathways of crystallization that involve an 

amorphous-to-crystalline transformation, such as that used here.35 

The main challenge to fabricating a hierarchical composite using freestanding films of a few 

microns thick is the process of handling and stacking each layer individually. For this purpose, we 

developed a strategy to exfoliate the patterned chitosan–aragonite (CA) films from the backing of 

a supporting polymethyl methacrylate (PMMA) substrate. By optimizing the thickness of the 

PMMA and CA films, the latter spontaneously delaminated from the support due to different ial 

shrinking during dehydration (Figure S4). This approach enabled the production of structured films 

of chitosan on PMMA substrates (Figure 2a), growth of the aragonite platelets (Figure 2b), and 

separation of the resulting 7µm-thick freestanding CA fragile layers without inducing any 

mechanical stress on them (Figure 2c). 

The CA films were successively stacked with a fixed volume of silk fibroin solution, which was 

dispensed between each layer (Figure 3a)—an approach that we have successfully used in the past 

to produce chitosan–fibroin laminates (i.e., Shrilk).36 In total, nearly 300 CA films were stacked 

(Figure 3b) with fibroin bonding the films together (Figure S5). Importantly, the fabrication 

approach enabled the patterned side of adjacent CA films to face each other, thereby forming the 
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“interlocked” arrangement (Figure 3c) of CA films. Finally, the composite was pressed together 

to avoid air entrapment and relatively flatten the layers (Figure S6), and dried in ambient 

conditions, which consolidated it to ~ 1.5 mm thick composite with a 70.4±1.8% mineral content 

(Figure S7). Objects that are manufactured with chitinous polymers tend to shrink after 

manufacturing, which causes warping distortion and variation from the intended geometry (Figure 

S8) and thus limits their capability to be cast using standard molds.36 The inclusion of the mineral 

phase in the matrix reported here resulted in a sturdy composite that conformed to the intended 

geometry after drying (Figure 3d). As we demonstrated in the past,37 freestanding chitosan films 

can be dried on a macroscopic mold to retain their geometry. As expected, the mineralized  

composites show a higher stiffness (Er = 20.4 ± 5.4 GPa) than that of the non-mineralized  

counterpart (evident from the slope of the unloading part of the indentation curves of both 

composites in Figure 4a). The stiffness of the mineralized composite is albeit lower than natural 

nacre due to relatively lower mineral content of ~ 70% vol. than that of nacre’s ~ 95% vol. 

Nevertheless, the layer-by-layer bonding approach presented here enabled fabrication of nacreous 

composites diverging from typical flat shapes. Tubular shapes (Figure 3e) were produced by 

drying the mineralized layers on cylindrical molds. We believe this demonstration of 

manufacturing of a non-planar biomimetic nacre would help the general use of these composites 

in engineering applications. 

The interlocked mineral composite was observed to have simultaneously high ultimate tensile 

strength (~ 48 MPa) and nearly 4 times higher tensile toughness (area under the tensile stress-

strain) in comparison to that of the planar mineral composite, while matching the stiffness (~ 25.8 

GPa) and density (~ 1.51 ± 0.74 × 103 kg/m3) of previous biomimetic nacres (Figure 4a and 4b).10 

A summary of all the mechanical properties of the interlocked mineral and planar mineral 

composites is provided in supporting information, Table S1. The tensile strength of the interlocked 

mineral composite (43.59 ± 4.5 MPa) is ~ 85% higher that of the planar-mineral composites that 

were produced using the same methodology (23 ± 2.8 MPa) (Figure 4b) and is also close to that 

of the nacre species Anodonta woodiana reported in literature.18 The reason for the improvement 

in tensile strength of the interlocked mineral composite can be understood from finite element 

analysis of the composites (Figure 4c-e). In the interlocked-mineral composites, the mineral 

interlocking enables stress transfer through the stiffer mineral phase as opposed to stress transfer 

through the softer matrix in case of planar mineral composite. This helps increase the tensile 
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strength of the interlocked mineral composites in comparison to that of the planar counterpart.38 

This is evident from Figure 4e, showing the maximum principal stress field of composites under 

same tensile load and shows that more load can be transferred directly through the interlocked 

stiffer mineral phase than that of the planar mineral composite. In fact, in previous works on nacre-

mimetic composites, the load transfer through the soft organic layer between planar platelets is 

implicated for the eventual failure of the composite (platelet pull-out is observed when platelets’ 

aspect ratio is less than a critical value); Hence, ways to arrest the sliding of the platelets (e.g., by 

incorporating nano-scale bridges between platelets) is emerging as a proven strategy to improve 

their tensile strength.18, 21 Interestingly, our interlocked mineral composite nearly doubled the 

strength that was reported for the best nacre replicas to date (Figure 5),10 which follow a planar 

lamella model and are produced using an “assembly-and-mineralization” approach. Additionally, 

the similar mechanical strength of our planar mineral composite presented here and those produced 

previously (Figure 5), when considered independently of the technique used for its production, 

might be indicative of the full potential of the planar model, and highlights the limitations of a 

simplified laminated design and the need to move beyond it by including more complex features, 

such as mineral interlocking, to achieve full reproduction of the mechanical properties of natural 

nacre.  

The improved tensile strength of the interlocked mineral composite also showed improved bending 

strength over the planar counterpart (Figure S9a). This enhanced bending strength has been 

reported in natural systems of similar characteristics and is a result of an interface that is 

strategically designed to guide the propagation and dissipation of cracks.22 In particular, the angled 

interfaces (with an interfacial angle between 30°–40°) that were chosen here as a biological model 

have been reported to be effective in deflecting fissures.20 This effect is clearly observed in the 

optical examination of the fractured regions of crossed-lamellar specimens, where the topography 

of the layers results in extended and tortuous deflections of the cracks, resulting in dissipation of 

fracture energy in the composite before causing complete fracture (Figure S9b). This effect can 

also be observed in the absence of surface cracks in the composite (Figure 4g) during indentation, 

which is a characteristic of monolithic calcite but is absent in the biological organic–inorganic 

composites comprising the same mineral.10 The flexural work-of-fracture (determined by 

integrating the area under the flexural stress-strain curve39, 40) showed the interlocked-mineral 

composite having a 36% higher value than that of the plan-mineral composites (Table ST1).  
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The approach of linking natural molecules with a design they evolve to follow is a complex task 

when compared to the reproduction of a biological design with materials of known manufacture. 

However, this additional complexity enables the exploration of enhanced synergies between 

components as well as seamless integration with biological systems, from the human body to entire 

ecosystems. This biocompatibility was demonstrated for the composite through the culturing and 

growth of a mammalian embryonic stem cell population for a week on the surface of the 

interlocked mineral composite reported here. The use of components of known biocompatibility 

resulted in a composite that supports the growth of these cells without any sign of cytotoxicity, 

suggesting the suitability of the composite for medical uses (Figure S10a,b). Interestingly, the 

structured minerals showed significant enhancement of cell proliferation compared to that of flat 

mineral platelets (Figure S10c), which was attributed to the additional anchor points on the surface 

of the former. Additionally, the structured platelets showed an ability to drive cell growth along 

the direction of the pattern, an effect previously reported for other structured surfaces of similar 

dimensions.41, 42 

Conclusion: 

In conclusion, we have demonstrated the reproduction of a nacre mimic using native components 

(namely chitin and fibroin as the organic phase and calcium carbonate as the inorganic phase) by 

following a crossed-lamellar model. This result not only achieved the characteristic toughness of 

the planar lamellar model but also realized the multifunctionality of the native material by nearly 

duplicating the tensile strength of the composite without altering its low density and 

biocompatibility (Figure 5). This result was achieved by reorganizing the components rather than 

the composition, which demonstrated the interlocking phenomenon between the different mineral 

phases as a generalizable strategy for the development of multifunctional composites. 

  



8 
 

 

Figure 1: Cross-lamella structures of the shell of Clinocardium and its first-order lamella 

replicated by biomineralization. (a) Schematic of the shell’s cross-lamella structure comprising 

hierarchical first-order lamella. (b) SEM image of the first-order lamella showing the mineral 
platelets stacked in a herringbone fashion. (c) Biomimetic synthesis of the first -order lamella in 
the form of patterned aragonite (CaCO3) platelets on patterned chitosan film. The patterned 

aragonite platelets cover several square centimeters of the chitosan film (photograph shown in 
inset). (d) The patterned minerals show Voronoi like packing (indicated by the arrows) typically 

seen in polyacrylic acid-induced biomineralization of CaCO3. (e) Magnified view of the first-order 
lamella comprising a regular 5µm saw-tooth profile. (f) Cross-sectional image of the first-order 
lamella showing the chitosan-aragonite interface. (g) Magnified view of the aragonite mineral 

showing hierarchical column-like mineral sub-structures. 
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Figure 2: Exfoliation of the Patterned Mineral Layers. (a) Patterned chitosan films were 
imprinted on flexible PMMA sheets by using a PDMS mold. The patterned chitosan film has a 

saw-tooth cross-section as shown in the SEM image (middle) and can be imprinted with minimal 
defects (bottom). (b) The patterned chitosan films are then immersed in the PAA-based CaCO3 

precursor to perform biomineralization. This results in the formation of the patterned aragonite 
minerals on the patterned chitosan film (SEM image shown in the middle) A photograph of the as-
mineralized chitosan-aragonite (CA) films is shown in the bottom. (c) After mineralization, the 

CA-films are exfoliated from the PMMA sheet. The front- and side-view SEM images of the free-
standing CA films (shown in the middle) gradually peeled-off from the PMMA backing sheet 

without any damage to the former is shown in the bottom. 
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Figure 3: Fabrication of the Interlocked-Mineral Composite. (a) Schematic showing the 
fabrication of the composite by stacking the patterned CA films and infiltrating with silk fibroin 
(SF) solution. (b) Cross-section of the composite comprising ~ 300 CA films. The arrows indicate 

areas where the patterned cross-sections are visible. (c) Magnified view of the composite revealing 
“interlocking” between the layers. This is achieved by making the patterned side of the CA films 

face each other during the fabrication. (d) The layer-by-layer bonding approach enables fabrication 
of mineralized-composites with negligible structural shrinkage and unrestricted geometries and 
sizes. (e) Fabrication of the composite on cylindrical molds enables formation of tubular-shaped 

nacreous composites. 
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Figure 4: Mechanical property of the Interlocked-Mineral Composite. (a) Indentation on the 

mineralized (interlocked-mineral) composites shows a higher stiffness (~ 25.8 GPa) than that of 

the non-mineralized composite. (b) Stress vs. strain graph of the composites showing a higher 

tensile strength (~ 85%) and toughness (~ 35% higher) for the interlocked-mineral composite than 

that of the planar counterpart. (c) Finite Element Method (FEM) models of planar-mineral 

composite and interlocked-mineral composites. Comparison of (d) load transfer and (e) maximum 

principal stress field of planar-mineral vs. interlocked-mineral composites under same tensile load. 

In planar-mineral composite, load is transferred through the soft matrix but in interlocked-mineral 

composite, load gets transferred directly through the stiffer mineral phase because of the 

interlocking. (f) Absence of cracks around the indentation site on the interlocked -mineral 

composite. 
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Figure 5: Comparison of Mechanical Properties. Elastic modulus versus ultimate tensile 

strength of the composite specimens juxtaposed against mineralized biological materials (bone and 

mollusc shell), common implantable materials (e.g., Ti alloys), fibre reinforced composites and 

biomimetic CaCO3-based (marked in red) and other Ca-based (marked in yellow) nacreous 

composites.10, 43-48  
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Methods 

Materials  

Flexible Poly(methyl methacrylate) (PMMA) sheets of 0.14 mm thickness were obtained from 

Goodfellow Cambridge Limited, UK. Chitosan (medium molecular weight, high degree of 

deacetylation; Sigma Aldrich), Degummed silk from Bombyx Mori (Mielke’s Fiber Arts USA), 

analytical grade (NH4)2CO3, poly(acrylic acid) (Mw = 1800 g/mol), CaCl2·2H2O, NaOH and 

methanol were used as received. Polydimethylsiloxane (PDMS) templates with saw-tooth 

topographical patterns were prepared using a SYLGARD 184 silicon elastomer kit. Thorlab Inc. 

Ruled Reflective Diffraction Grating, 450/mm, 25.0 × 50.0 × 9.5 mm (GR2550-45031) was used 

as the master mold for replication of patterns into PDMS.  Ultrapure Millipore water was used in 

all the experiments. 

Fabrication of patterned chitosan surface 

Chitosan (medium molecular weight, high degree of deacetylation; Sigma Aldrich) was dissolved 

at 2 and 3% w/v in 1% v/v acetic acid. A few drops of the chitosan solution were dispensed on 

PMMA sheets and pressed with a PDMS mold comprising the topographical pattern. The soft-

imprinting was carried out until the chitosan film was dried  after which the PDMS mold was peeled 

off. Subsequently, the patterned chitosan film was submerged in NaOH 4% (w/v) for 10 min to 

neutralize the protonated amino groups and avoid further dissolution.36 Finally, the films were 

extensively washed in deionized water to remove the remaining NaOH and dried at 37°C.  

Biomineralization of the patterned chitosan films 

Patterned aragonite was grown on the patterned chitosan substrates by using a PAA-based 

mineralization precursor comprising 5mM CaCl2 solution and 10 µg/ml PAA and by implementing 

the traditional ammonia diffusion technique. The patterned chitosan films were submerged in the 

mineralization precursor held in a petri dish and the latter was covered with an Al foil with one 

perforation and then was placed inside a closed desiccator along with ~ 2 g of NH4HCO3. The 

mineralization was performed for different durations (12 h, 18 h, 24 h) to determine the uniformity 

of mineral growth on the chitosan substrate.  

Synthesis of silk fibroin 
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A 5% w/v silk fibroin aquous solution was prepared from Degummed silk from Bombyx Mori 

(Mielke’s Fiber Arts USA) by implementing the protocol described in ref. 36. 

Structural and chemical characterization 

The morphology of the aragonite laminates and the composite specimen were investigated using a 

JEOL JSM-7600F field-emission scanning electron microscope (FE-SEM) operating at an 

accelerating voltage of 5 kV. The XRD measurements of the mineralized CaCO3 crystals was 

carried out with a Bruker D8 Discover high-resolution XRD (HRXRD) with a Cu Kα1 source. The 

FTIR measurements for the chitosan (C) films, chitosan-silk films (CS), chitosan-aragonite (CA) 

laminates and finally, the chitosan-aragonite laminates coated with silk (CAS) were performed 

with a resolution of 2 cm-1 between 4000 and 500 cm-1 (Vertex 70, Bruker, Germany) and analyzed 

with Essential FTIR (Operant LLC, USA). 

Mechanical characterization 

An Instron® 5940 single-column universal testing machine (UTM) equipped with a 500 N load 

cell was used for the tensile testing of the composite specimens. Dog-bone-shaped specimens with 

size of the reduced section of ~ 1 mm width and 0.5 mm thickness were used. Minimum 10 samples 

of each composite type were tested. The tensile toughness is obtained from the area under the 

tensile stress-strain curve between zero and ultimate strain.36 

Three-point bending tests were also performed on the Instron® 5940 universal testing machine. 

Beam-shaped composite specimens (of each type) of length 15 mm, width 2 mm and thickness 2 

mm, were prepared. The bending test was conducted at a loading rate of 0.05 mm/min. Minimum 

5 samples of each composite type were tested. The flexural work-of-fracture is obtained by 

integrating the area under the flexural stress-strain curve.39, 40 The observation of crack propagation 

was performed on a composite beam-shaped specimen of the same dimensions, with a notch of 

300 µm in the middle.  

Indentation was performed using NanoTest NTX (Micro Materials Ltd., UK)) equipped with a 

with a Berkovich indenter. For increased precision, indentation was repeated five times at ten 

different sites (total 50 indents per sample). The final depth of each indent never exceeded ten 

percent of the sample thickness and was at least 4 times larger than the thickness of individual 
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mineral layer present in the composite. A loading rate of 80mN/sec was used so that the loading 

and unloading time segments fell between 20 and 50 seconds. The reduced modulus was calculated 

(by the Oliver–Pharr method)49 and an average value was determined from all the tests for each 

sample. 

Finite Element Analysis 

Numerical simulations were conducted using the commercial FE package ABAQUS/Standard to 

capture the mechanical response of the tensile specimens. The stiff and soft materials were both 

generated by plane strain elements CEP4. For the stiff material, a linear elastic model is used with 

Young’s Modulus is 100GPa, the Poisson’s ratio is 0.3. For the soft material, the Young’s modulus 

is 400 MPa and the Poisson’s ratio is 0.4. Geometric nonlinearities are considered to enable large 

deformation. In addition, finite element models used in the structure is verified by a mesh 

sensitivity test. To be consistent with the loading condition of the experiment in the simulation, 

the displacement of all nodes on the left side are constrained and lateral displacement is applied to 

the nodes on the right side of the specimen. 

Embryonic Stem Cell Culture  

Mouse embryonic stem cells (E14TG2A) purchased from ATCC, USA were used for the 

biocompatibility study. These cells were cultured on a 0.1% (v/v) gelatin (Sigma Aldrich,USA)  

treated plate and supplemented with growth media which consisted of DMEM (Nacalai Tesque, 

Japan),15%(v/v) FBS (Gibco, USA), 1% (v/v) Sodium Pyruvate (Thermo Fisher Scientific, USA), 

0.1 mM  (v/v) 2-ß Mercaptoethanol (Thermo Fisher Scientific, USA) 1% L-

Glutamax (Thermo Fisher Scientific, USA), 1%(v/v) Pencillin-Streptomycin and 1000 

U/ml Leukemia Inhibiting Factor (LIF). The cell culture was performed at 37 °C and 5% CO2. 

Media was reconstituted every alternative day. Upon 80% confluency the cells were detached off 

the petri dish (Sigma Aldrich,USA) by treating with 0.25% of trypsin-EDTA solution (Nacalai 

Tesque, Japan) and 1×105 cells were taken for the biocompatibility experiment. 

3D cell culturing and characterization 

The viability assay was carried out by using mouse embryonic stem cells (E14TG2A). These cells 

upon 80% confluence were trypsin treated to dissociate the cells from the petri dish prior to seeding 
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them on the sterilized composite specimen. The cells were then centrifuged and re-suspended in 

the supplemented media before counting the cell number with a cell counter. The calcium 

carbonate bio-composite was sterilized with 70% ethanol for 15 min followed by UV exposure for 

another 15 min before inoculating the stem cells.  1×105 cells were added onto both the patterned 

and non-patterned composites. The samples were then incubated in the presence of growth medium 

at 37°C, 5% CO2. The samples were supplied with fresh media every 24h. LIVE/DEAD 

viability/cytotoxicity assay kit (Invitrogen, Thermo Fisher Scientific) was used to check the 

viability of the cells on the composite.  The LIVE/DEAD stain was added to the samples and 

incubated for 30 min in the dark at 37°C. The fluorescent images indicated for live cells (green) 

and for dead cells (red) was collected using an inverted microscope (Axio Observer, Carl Zeiss 

GmbH, Germany). 

For SEM imaging of stem cells seeded on the composites, the cell-seeded composites were fixed 

with 4% paraformaldehyde for 10 mins, followed by washing with 1X PBS for 10 mins. The 

composites with cells were then put through a series of dehydration steps by treating with different 

percentage of ethanol concentrations. The gradient dehydration step was 50% ethanol for 5 min, 

70% ethanol for 10 min, 80% ethanol for 10 min, 90% ethanol 5 min, three times each, and finally 

100% ethanol for 5 min, three times each. The dehydrated cell seeded bio-composite was 

morphologically analyzed using SEM (JEOL JSM-7600F). 

Supplementary information is available online free of charge at 

https://pubs.acs.org/doi/10.1021/acsnanoXXX. or from the author. It includes schematic of 

biomineralization process and XRD of the mineral, factors affecting biomineralization uniformity 

and exfoliation of the uniformly mineralized films, FT-IR spectra of the composite manufactured 

by bonding the mineralized films, additional cross-section images of the composite and 

determination of its mineral fraction, photograph of the non-mineralized composite showing 

shrinkage, flexural characterization of the mineralized composite and fracture propagation, cell 

viability studies on the composite demonstrating its biocompatibility and table summarizing the 

mechanical characterization of the composite.  
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