Journal article Open Access

SUMCASTEC_210112_High Frequency Dielectrophorosis Cytometer for Continuous Flow Biological Cells Refinement

Thomas Provent; Audrey Mauvy; Rémi Manczak; Sofiane Saada; Claire Dalmay; Barbara Bessette; Fabrice Lalloué; Arnaud Pothier


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/4699626</identifier>
  <creators>
    <creator>
      <creatorName>Thomas Provent</creatorName>
      <affiliation>XLIM, University of Limoges, UMR CNRS 7252</affiliation>
    </creator>
    <creator>
      <creatorName>Audrey Mauvy</creatorName>
      <affiliation>CAPTuR, University of Limoges, EA3842</affiliation>
    </creator>
    <creator>
      <creatorName>Rémi Manczak</creatorName>
      <affiliation>XLIM, University of Limoges, UMR CNRS 7252</affiliation>
    </creator>
    <creator>
      <creatorName>Sofiane Saada</creatorName>
      <affiliation>CAPTuR, University of Limoges, EA3842</affiliation>
    </creator>
    <creator>
      <creatorName>Claire Dalmay</creatorName>
      <affiliation>XLIM, University of Limoges, UMR CNRS 7252</affiliation>
    </creator>
    <creator>
      <creatorName>Barbara Bessette</creatorName>
      <affiliation>CAPTuR, University of Limoges, EA3842</affiliation>
    </creator>
    <creator>
      <creatorName>Fabrice Lalloué</creatorName>
      <affiliation>CAPTuR, University of Limoges, EA3842</affiliation>
    </creator>
    <creator>
      <creatorName>Arnaud Pothier</creatorName>
      <affiliation>XLIM, University of Limoges, UMR CNRS 7252</affiliation>
    </creator>
  </creators>
  <titles>
    <title>SUMCASTEC_210112_High Frequency Dielectrophorosis Cytometer for Continuous Flow Biological Cells Refinement</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-12</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4699626</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.23919/EuMC48046.2021.9338228</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sumcastec_participants</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper presents a microfluidic radiofrequency device operating at a few hundred MHz, which is able to sort biological cells. It uses a non-invasive and label-free technic based on intracellular dielectric specificities of biological cells. The sorting principle relies on a dynamic dielectrophoresis (DEP) deviation resulting from the interaction between a high frequency electric signal and the cell cytoplasm content. Driven in a microfluidic channel by a continuous flow, cells are individually deflected from their primary trajectories after having entered a non-uniform electric field generated by a microelectrode system. Designed with different slopes, these electrodes allow a selective guiding of cells to different outlets depending on the dielectrophoresis deviation efficiency. To allow a successful cell sorting, the intensity of deviation forces acting on cells is modulated according to the particle speed, the dielectrophoresis signal frequency and the electrode slope angles related to the Clausius-Mossotti factor of each cell. As proof of concept, experiments with cells from glioblastoma line were carried out, using different DEP signal frequencies to highlight system ability to sort cells from heterogeneous basal population into less disparate sub-populations&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/737164/">737164</awardNumber>
      <awardTitle>Semiconductor-based Ultrawideband Micromanipulation of CAncer STEm Cells</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
23
18
views
downloads
Views 23
Downloads 18
Data volume 12.8 MB
Unique views 21
Unique downloads 18

Share

Cite as