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Abstract. The assumption of perfect knowledge of rate parameters in
continuous-time Markov chains (CTMCs) is undermined when confronted
with reality, where they may be uncertain due to lack of information
or because of measurement noise. In this paper we consider uncertain
CTMCs, where rates are assumed to vary non-deterministically with
time from bounded continuous intervals. This leads to a semantics which
associates each state with the reachable set of its probability under all
possible choices of the uncertain rates. We develop a notion of lumpability
which identifies a partition of states where each block preserves the
reachable set of the sum of its probabilities, essentially lifting the well-
known CTMC ordinary lumpability to the uncertain setting. We proceed
with this analogy with two further contributions: a logical characterization
of uncertain CTMC lumping in terms of continuous stochastic logic; and
a polynomial time and space algorithm for the minimization of uncertain
CTMCs by partition refinement, using the CTMC lumping algorithm
as an inner step. As a case study, we show that the minimizations in a
substantial number of CTMC models reported in the literature are robust
with respect to uncertainties around their original, fixed, rate values.

1 Introduction

Motivation. Continuous-time Markov chains (CTMCs) are a fundamental tool
for describing a wide range of natural and engineered systems and serve as the
underlying semantics for several formalisms such as stochastic Petri Nets [16],
stochastic process algebra (e.g., [33, 34]), and chemical reaction networks [26].
A CTMC is typically characterized by a number of parameters such as arrival
and service rates in a queuing network [51], transmission and infection rates of
epidemic processes [48], and the kinetic rates of a chemical reaction. In essentially
all practical situations, however, knowing the values of all parameters precisely
is unlikely. This may be due to measurement noise when parameters are to be
estimated from observations, as well as to our inability to accurately observe
events at certain spatio-temporal scales — a well-known problem notably arising



in computational systems biology [14]. In addition, sometimes the modeler wishes
to be deliberately imprecise about the value of certain parameters in order to
explicitly account for the disagreement between the real system and its model.

These motivations have stimulated a vigorous line of research into quantitative
modeling frameworks where uncertainty is a first-class citizen, with the basic idea
to replace known constants with sets of values which can be nondeterministically
assigned to parameters. A prominent instance is Jonnson and Larsen’s interval
specification systems [35] (equivalent to interval-valued finite Markov chains [39]),
where the probability of making a transition between two states of a discrete-time
Markov chain is assumed to be taken from a continuous interval of possible values,
later generalized to polynomial constraints [10].
Contributions. In this paper we consider uncertain CTMCs (UCTMCs). They
allow time-varying nondeterministic uncertainty in the values of the rate pa-
rameters within given bounded intervals. This is essentially the continuous-time
analogue of the model of nondeterminism in [24, 47], and can be seen as an over-
approximation for a time-invariant interpretation of uncertainty which underlies
a family of CTMCs, one for each possible choice of rate parameter values [35].

Here we study minimization of UCTMCs, motivated by the appeal to work
with models of smaller size that still preserve quantities of interest for analysis
and verification purposes. We proceed by means of analogies with the well-known
CTMCs counterpart of ordinary lumpability [38, 6] (reviewed in Section 2):

– CTMC ordinary lumpability identifies a partition of the state space which
induces a lumped chain where each macro-state represents a partition block;
the probability of being in each macro-state at all time points is equal to
the sum of the probabilities of the states of the original CTMC belonging
to that block [6]. The semantics of UCTMCs associates each state with the
reachable set of the probabilities of that state under all possible values of the
uncertain transition rates at any time point. Mutatis mutandis, our notion
of lumpability is such that the lumped UCTMC preserves reachable sets of
sums of the states in each block. In fact, UCTMC lumpability turns out to
be a conservative extension of CTMC lumpability.

– We study the logical characterization of UCTMC lumpability. Similarly to the
characterization of continuous stochastic logic (CSL) [1] by F-bisimulation [1],
a notion closely related to ordinary lumpability, we prove that UCTMC
lumpability preserves a conservative extension of CSL to UCTMCs, where a
CSL formula is satisfied by a UCTMC if it is true for all possible rate values.

– CTMCs enjoy an efficient minimization algorithm based on partition refine-
ment which computes the coarsest ordinarily lumpable partition that refines
a given initial partition of states [20, 52]. Here we develop an analogous
algorithm for UCTMCs where the CTMC lumping algorithm is used as an
inner step: the coarsest UCTMC lumpable partition is the coarsest one that
refines both of the two time-homogeneous CTMCs derived by choosing the
lower and upper bounds for all uncertainty intervals, respectively. Thus, the
minimization algorithm takes O(rslogs) steps in the worst case, where r is
the number of transitions and s is the number of states of the UCTMC.



As an application, we consider the problem of analyzing the “robustness” of
CTMC lumping, i.e., to what extent the minimization depends on the specific
choice of rate parameters of a model. Using a prototype implementation, we
study how adding uncertainty intervals around the constant values of the rates
of a CTMC model preserves the original CTMC lumping.

Further related work. A UCTMC can be seen as a continuous-time Markov
decision process (MDP). Indeed, we formally show in Section 3.3 that the UCTMC
can be alternatively given as a time-inhomogeneous continuous-time MDP with
an uncountable action space, which represents the values within the uncertainty
intervals, see [47] and [27, Section 2.2]. This model of uncertainty is different
from the state of the art concerned with MDPs where the action space is finite
and/or policies are time-independent (alternatively, untimed or time-invariant),
see for instance [44, 7, 29, 9]. Another related model is that of parametric Markov
chains and parametric MDPs [40, 30, 17], where certain transition probabilities
have symbolic parameters. A parametric model underlies an (infinite) family of
Markov models, one for each possible evaluation of the parameters. However,
each member of this family is time-invariant because the instantiation of the
parameters is assumed fixed throughout the time course evolution of the process.

Most notions of lumpability and bisimulation for these models of uncertainty
impose constraints that must hold for all actions (in the case of MDPs [44,
30, 49]) or, analogously, for all parameter evaluations (for parametric Markov
chains [30]). Instead, our notion of lumping can aggregate states even when real-
izations of the uncertain transition rates make the resulting time-inhomogeneous
Markov chain not lumpable. In order to clarify this difference, let us consider

1

2 3

q2,1 q3,1

the simple graph structure in the right inset. If
q2,1 and q3,1 are constant values, then the graph
represents a continuous-time Markov chain. In this
case, states 2 and 3 can be aggregated by ordinary
lumpability if q2,1 = q3,1. In the case of a paramet-
ric Markov chain, q2,1 and q3,1 can be expressions
over parameters; yet, parametric Markov chain lumping requires these two expres-
sions to be equal for all possible assignments of the parameters [30]—hence, each
member of the family of Markov chains will be ordinarily lumpable. A similar
remark applies to lumpability of parametric MDPs. Indeed, if qi,j(a) denotes
the transition rate from state i into state j in the case of any action a, the
lumpability condition requires that q2,1(a) = q3,1(a). Instead, a UCTMC has
bounded intervals as transitions. Applied to this simple example, our proposed
notion of lumpability will require that the intervals of both transitions be equal;
however, according to the semantic interpretation of a UCTMC, this model
underlies behavior in the form of (time-varying) CTMCs which have different
transition rates when the uncertainty is resolved.

The closest notion to UCTMC lumping is the alternating probabilistic bisim-
ulation considered in [31] for discrete-time interval MDPs. Similarly to us, al-
ternating probabilistic bisimulation: (i) does not require that realizations of the
uncertain transition probabilities make the discrete-time Markov chain lumpable;



(ii) can be computed in polynomial time; (iii) preserves quantitative and logi-
cal properties; however, in [31] it is not proved that the bisimulation is indeed
necessary for the preservation of such properties. We relate UCTMC lump-
ing to alternating probabilistic bisimulation by defining an approximation for
the continuous-time MDP interpretation of the UCTMC that discretizes both
time and the action space using an MDP with a probabilistic scheduler. On
this discretized model, we show that a UCTMC lumping does correspond to a
probabilistic alternating bisimulation, see Section 3.4.
Paper organization. Section 2 provides the background, while Section 3 intro-
duces UCTMCs and discusses techniques for their analysis. Section 4, instead,
introduces UCTMC lumpability, its quantitative and logical characterization, and
an algorithm for the computation of the coarsest UCTMC lumpability. Section 5
continues with an evaluation of UCTMC lumpability on a set of benchmarks
from the literature, while Section 6 concludes the paper.

2 Preliminaries

In this section we fix the notation and briefly recall the definitions of CTMCs
and lumpability that will be used throughout the paper.
Notation. We use ∂t to denote derivative with respect to time t, while xT is the
transpose of a vector x. Pointwise equivalence of functions is denoted by ≡, while
:= signifies a definition. Given two partitions H1 and H2 of a set V, we say that
H1 is a refinement of H2 if for any H1 ∈ H1 there exists a (unique) H2 ∈ H2

such that H1 ⊆ H2. We shall not distinguish among an equivalence relation and
the partition induced by it.

We first introduce time-inhomogeneous (alternatively, time-varying) CTMCs.
To facilitate later results, throughout this paper we assume that transition rates
vary with time according to uniformly piecewise analytic functions, i.e., functions
which are analytic and bounded on all intervals [kh; (k + 1)h), where k ≥ 0 is an
integer and h > 0 is a given fixed time step.

Definition 1 (CTMC). A time-varying CTMC is a tuple (V, Q) where V is a
set of states V = {1, . . . , n}, while Q = (qi,j)i,j is a time-varying transition rate
matrix such that qi,j : R≥0 → R≥0 is a uniformly piecewise analytic transition
rate function from i into j. ut

The following result relates the (transient) probability distributions of (V, Q)
to the Kolmogorov equations for time-varying transition rates [27, Section 2.2].

Theorem 1. Given a CTMC (V, Q) and an initial probability distribution π[0],
the probability distributions π(t) exist and satisfy, for all t ∈ R≥0, the Kolmogorov
equation

∂tπ(t)T = π(t)TQ(t), where π(0) = π[0]. (1)

Thanks to Theorem 1, ordinary lumpability for time-varying CTMCs is a
straightforward generalization of ordinary lumpability for time-homogeneous
CTMCs (e.g., [6]). The next well-known result provides a quantitative characteri-
zation of ordinary lumpability.



Theorem 2 (Ordinary Lumpability). Given a CTMC (V, Q), a partition H
of the set of states V is an ordinary lumping if∑

j∈H′
qi1,j ≡

∑
j∈H′

qi2,j , for all H,H ′ ∈ H and i1, i2 ∈ H.

The lumped CTMC (V̂, Q̂) is given by

– States V̂ := {iH | H ∈ H}, where iH ∈ H is an arbitrary representative of H.

– Transition rate matrix Q̂ = (q̂iH ,iH′ )H,H′ , where

q̂iH ,iH′ :=
∑
j∈H′

qiH ,j for all H,H ′ ∈ H.

If the initial probability distribution of (V̂, Q̂) is defined by π̂[0]iH =
∑
i∈H π[0]i

for all H ∈ H and the transient probability distributions of (V̂, Q̂) are denoted by
π̂, the following holds.

– If H is an ordinary lumping, then π̂iH ≡
∑
i∈H πi for all H ∈ H and π[0].

– If H is such that π̂iH ≡
∑
i∈H πi for all H ∈ H and π[0], then H is an

ordinary lumping.

3 Uncertain Continuous-time Markov Chains

UCTMCs allow transition rates to vary non-deterministically with time within
bounded continuous intervals. After the formal introduction of the model (Sec-
tion 3.1), we provide the semantics of UCTMCs both in terms of reachable sets
of their probability distributions using the Kolmogorov equations (Section 3.2)
and by means of an encoding into a time-inhomogeneous continuous-time MDP
(Section 3.3). The time and action-space discrete approximation of the latter
semantics is presented in Section 3.4.

3.1 Model Definition

Definition 2 (Uncertain CTMC). An uncertain CTMC (V,m,M) is a set of
states V = {1, . . . , n} and non-negative matrices m = (mi,j)i,j and M = (Mi,j)i,j ,
with m ≤ M , describing the lower and upper bounds of the transition rates,
respectively. ut

According to the above definition, a UCTMC (V,m,M) induces two extremal
(time-homogeneous) CTMCs (V,m) and (V,M) by fixing all lower and upper
bounds, respectively, for each transition rate.

Example. Throughout of this paper, we will use the UCTMC depicted in
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Fig. 1. Running example.

Figure 1 as a running example. To fa-
vor intuition, it can be interpreted as
a symmetric model of two components
(e.g., two virtual machines) with a bi-
nary state (e.g., down/0 and up/1).
Assuming independent events, each
UCTMC state tracks a possible con-
figuration of the two machines. Each
transition is labeled with the interval
within which the rates can vary; we
use distinct symbols α, β, γ to indicate
different activities of an hypothetical
system under study, such as start-up,
shut-down or machine migration, re-
spectively. When all parameters are precisely known, i.e., α = α, β = β, and
γ = γ, there is the ordinary lumping consisting of blocks {11}, {01, 10}, and {00}.
In this paper we will develop the theory to capture such symmetry for UCTMCs.
For this, here we also observe that the aforementioned ordinary lumping carries
over to the two extremal time-homogeneous CTMCs. Indeed, it turns out that
these are the only two CTMCs needed to consider for UCTMC lumpability,
although the UCTMC admits time-varying behaviors that do not satisfy the con-
ditions of CTMC ordinary lumpability stated in Theorem 2 and also mentioned
in Section 1.

3.2 Reachable-set Semantics

Analogously to the probability distribution of a CTMC obeying the Kolmogorov
equations, the semantics of a UCTMC is given by the set of reachable probability
distributions under all possible time-varying values of the transition rate matrix.

Definition 3 (UCTMC reachable-set semantics). The semantics of a given
UCTMC U = (V,m,M) is provided by the reachable sets

RU
(
H, τ, π[0]

)
=
{∑
i∈H

πi(τ) | ∂tπ(t)T = π(t)TQ(t)

such that π(0) = π[0] and Q is admissible
}
,

where τ ≥ 0 and H ⊆ V, while Q = (qi,j)i,j is admissible if, for all t ≥ 0 and
i 6= j, qi,j(t) ∈ [mi,j ;Mi,j ] and qi,j is uniformly piecewise analytic function of
time. ut

Remark 1. The common notion of reachable sets is recovered by restricting H
to singleton blocks only, i.e., {{i} | i ∈ V}. We allow for general blocks because
our ultimate goal is to relate sums of reachable probability distributions of a
UCTMC to the reachable probability distributions of a lumped UCTMC.



The reachable-set semantics gives a concrete operational view of the model.
Indeed, reachable sets can be analyzed in two ways. The first is by computing
the transient probabilities by sampling time-varying transition rate matrices Q(t)
satisfying mi,j ≤ qi,j(t) ≤Mi,j and solving the ODE in Eq. 1. The second way is
to compute reachable intervals by formal under- and over-approximation, using
well-established techniques for uncertain dynamical systems, of which Eq. 1 are
an instance, such as those implemented in C2E2, Flow* or SpaceEx, see [2, 15, 23]
and references therein. We remark, however, that these are methods applicable to
nonlinear dynamical systems in general, of which UCTMCs are a specific instance.
It is also possible to approximate UCTMCs by carefully chosen discrete-time
MDPs (DTMDP), as discussed further below. In both cases, the presence of
time-varying uncertainty may result in computationally challenging problems,
thus further motivating the development of efficient reduction techniques.

3.3 CTMDP Semantics

As introduced in Section 1, a UCTMC can also be seen as an instance of a
time-inhomogeneous continuous-time MDP (CTMDP). To see this, we consider a
CTMDP with the scheduler model as in [27, Section 2.2], which can be intuitively
described as follows. For a sufficiently small time step h > 0, a CTMDP that is
in state i ∈ V at some time kh ≥ 0, where k ≥ 0 is an integer, may choose an
action ai from A(i), the set of available actions in state i. With this, the CTMDP
remains in state i on [kh; kh+ h), while at time kh+ h the state is:

– j 6= i, with probability qi,j(kh, ai)h+ o(h), where o(h) refers to the standard
small-o notation, while qi,j(kh, ai) denotes the transition rate from state i
into state j at time kh under action ai;

– i, with probability 1 + qi,i(kh, ai)h+ o(h).

Note that qi,j(kh, ai)h+ o(h) and 1 + qi,i(kh, ai)h+ o(h) can be interpreted
as transition probabilities of the embedded DTMC under action ai at step k.
Indeed, in the special case when the transition rates are time-invariant, the
time-homogeneous CTMDP admit a characterization in terms of sojourn times
and an embedded discrete time Markov chain, according to which the choice of
action ai ∈ A(i) upon entering state i ∈ V gives a sojourn time in state i that is
exponentially distributed with rate −qi,i(ai), and the probability to move into a
state j 6= i equal to −qi,j(ai)/qi,i(ai) (see Theorem 2.8.2 in [45]).

Under this model, the discussion in [27, Section 2.2] yields the following
relationship between a UCTMC and a CTMDP, where, essentially the uncountable
many actions of the latter encode the uncertainty intervals of the former.

Theorem 3. For a given UCTMC (V,m,M), consider the CTMDP (V,A,M)
where an action taken at time t in state i, denoted by ai(t), is a row vector such
that each component ai,j(t) determines the transition rate from i into j at time t.
More formally

– The set of actions in state i ∈ V be given by A(i) =
∏
j 6=i[mi,j ;Mi,j ];



– The transition rate from state i to state j at time t under action ai ∈ A(i) is
denoted by qi,j(t, ai) and is given by ai,j ∈ [mi,j ;Mi,j ], where ai,j is the j-th
entry of ai;

– The policies form the set M and are given by uniformly piecewise analytic
functions a : [0;∞)→

∏
i∈V A(i).

For such a CTMDP, the maximization (respectively, minimization) of the proba-
bility of reaching a state in block H at the time τ corresponds to the computation
of the maximal (respectively, minimal) value of the reachable set from Definition 3.

3.4 Discrete-time Approximation of the CTMDP Semantics

In this appendix we present a discrete-time approximation of the CTMDP
semantics which is of interest for a two-fold purpose. First, we show that the
resulting DTMDP can be analyzed to obtain approximations of the maximal
and minimal reachable probabilities for each state using dynamic programming.
Second, in the proof of Theorem 9, this approximate DTMDP is used to relate the
notion UCTMC lumping with the alternating probabilistic bisimulation of [31].

Instrumental to the DTMDP approximation is an alternative CTMDP en-
coding which uses finite action spaces, at the expense of probabilistic (instead
of deterministic) policies. Before giving this encoding, we convey the main un-
derlying idea on an illustrative example. Let us assume that we are given a
CTMDP that can move from state i only into state j and that the corresponding
time-dependent deterministic transition rate function is qi,j(t, a(t)) = ai,j(t),
where mi,j = 1, Mi,j = 2 and ai,j(t) = 2− e−t. With this, we first replace the
continuous interval [1; 2] with the discrete action set {mi,j ,Mi,j}, where the
symbols mi,j and Mi,j represent the boundary values mi,j = 1 and Mi,j = 2,
respectively. Then, the idea is to choose suitable probability functions µmi,j

(t)
and µMi,j

(t) such that the average transition rate from state i into state j at time
t, given by 1µmi,j (t) + 2µMi,j (t), is identical to ai,j(t). It can be easily verified
that µmi,j (t) = e−t and µMi,j (t) = 1− e−t induce ai,j .

Following [27, Section 2.2], the foregoing example can ge generalized as follows.

Proposition 1. For a given UCTMC (V,m,M), consider the CTMDP (V,A′,M′)
where an action in state i at time t is taken randomly, is denoted by ai(t), and
is a row vector such that each row entry ai,j(t) ∈ {mi,j ; Mi,j} determines the
transition rate from i into j at time t accordingly. Formally, we have the following.

– The set of actions in state i ∈ V is given by A′(i) =
∏
j 6=i{mi,j ,Mi,j}.

– The transition rate of from i into j at time t under action ai ∈ A′(i) is
qi,j(t, ai) = v(ai,j), where v(ai,j) = mi,j if ai,j = mi,j and v(ai,j) = Mi,j

when ai,j = Mi,j .
– The set of policies,M′, constitutes non-negative uniformly piecewise analytic

functions µ satisfying
∑
ai∈A′(i) µai(t) = 1 for all i ∈ V and t ≥ 0. In

particular, with D(X) denoting the set of probability measures on a set X,
it holds that M′ is a proper subset of [0;∞)→

∏
i∈V D(A′(i)).



Then, the policy sets M and M′, where M refers to the policy set given in
Theorem 3, induce the same set of time-inhomogeneous CTMCs.

For a policy µ ∈ M′, the Kolmogorov equations ∂tπ(t)T = π(t)TQ(t, µ(t))
describing the transient probabilities of the time-inhomogeneous CTMC can be
solved numerically by invoking the Euler method [25], a classic approach for the
numeric solution of systems of differential equations. Specifically, by discretizing
time into the set {0, h, 2h, . . .}, the probability distribution at time kh, denoted
by π(kh), is approximated by π[k], where

π[k + 1]T := π[k]T
(
I + hQ(kh, µ(kh))

)
,

π[0] := π(0) and I is the identity matrix. Additionally to the known fact that
the approximation error is O(h), we make the key observation that the Euler
method defines a time-inhomogeneous DTMC. Indeed, similarly to the discussion
in Section 3.3, I + hQ(kh, µ(kh)) describes the transition probability matrix of
the embedded time-inhomogeneous DTMC.

Together with Theorem 3 and Proposition 1, the next result allows us to
formally relate UCTMCs to time-inhomogeneous DTMDPs.

Theorem 4. Given UCTMC (V,m,M), set

Λ = max
i∈V

(∑
j 6=i

Mi,j +
∑
j 6=i

Mj,i

)
and fix h ≤ 1/Λ. Then, I + hQ(kh, µ(kh)) is a stochastic matrix for all µ ∈M′
and k ≥ 0. With this, consider the DTMDP (V,A′,M′h) given as:

– The states are V, while the actions in state i ∈ V are given by A′(i) =∏
j 6=i{mi,j ;Mi,j}.

– The transition probability from state i into state j at step k ≥ 0 for ai ∈ A′(i)
is

pi,j(k, ai) =

{
hv(ai,j) , j 6= i

1− h
∑
j 6=i v(ai,j) , j = i

– The set of policies is M′h = {ν | ν : N0 →
∏
i∈V D

(
A′(i)

)
}. In particular, for

a given policy ν, the transition probability from state i into state j at step
k ≥ 0 is given by pi,j(k, ν(k)) =

∑
ai∈A′(i) νai(k)pi,j(k, ai).

Then, for any time τ > 0 and policy a ∈M such that the modulus of the derivative
of each ai,j is bounded by λ ≥ 0 almost everywhere, there exits a policy ν ∈M′h
such that

max
i∈V
|πi[k]− πi(τ)| ≤ h

[
3Λ

2
+
λ

Λ
max
i∈V

deg(i)

] (
eΛτ − 1

)
= O(h),

where deg(i) = |{j 6= i | mi,j < Mi,j}|+ |{j 6= i | mj,i < Mj,i}| are the incoming
and outgoing non-deterministic transitions of i, while k ≥ 0 minimizes |kh− τ |.



Theorem 4 ensures that any τ ≥ 0 and any admissible transition rate matrix of
the UCTMC can be matched by an approximate DTMDP such that the transition
probabilities of both, the so-induced DTMC and the so-induced CTMC, are
matching up to an ε at τ ≥ 0.

We state our first major result which relates reachability- and MDP-semantics.

Theorem 5. For τ > 0, a UCTMC U = (V,m,M) and H ⊆ V, let k be such
that τ = kh. Then, the maximal (minimal) probability for reaching a block H
at τ coincides, by Theorem 3, with the maximum (minimum) of RU (H, τ, π[0])
from Definition 3 and can be computed in

O
(
k
(∑
i∈V

degall
o (i)

)(∑
i∈V

2dego(i)
))
,

where degall
o (i) = |{j 6= i | 0 < Mi,j}| is the number of outgoing transitions

from state i, while dego(i) = |{j 6= i | mi,j < Mi,j}| is the number of outgoing
non-deterministic transitions from state i.

The complexity bound from Theorem 5 is polynomial in the number of
states and exponential in maxi dego(i), i.e., the maximal number of outgoing
non-deterministic transitions of the approximate DTMDP.

4 UCTMC Lumpability

In Section 4.1 we prove that UCTMC lumpability characterizes the preservation
of sums of reachable probability distributions. The logical characterization of
UCTMC lumpability with respect to continuous stochastic logic is presented in
Section 4.2. The UCTMC lumping algorithm is discussed in Section 4.3.

4.1 UCTMC Lumpability

Definition 4 (UCTMC Lumpability). A partition H of V is a UCTMC
lumping of UCTMC (V,m,M) if it is an ordinary lumping of both CTMCs (V,m)
and (V,M). ut

For instance,H =
{
{11}, {01, 10}, {11}

}
is a UCTMC lumping of the UCTMC

from Figure 1. The lumped UCTMC is obtained in a similar way as for ordinary
lumpability.

Definition 5 (Lumped UCTMC). Assume that H is a UCTMC lumping of
(V,m,M) and fix, for each H ∈ H, some representative iH ∈ H. The lumped
UCTMC has states V̂ := {iH | H ∈ H} and bounds m̂iH ,iH′ :=

∑
j∈H′ miH ,j and

M̂iH ,iH′ :=
∑
j∈H′MiH ,j. ut

Example. In the case of the UCTMC from Figure 1, the UCTMC lumping
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Fig. 2. Lumped UCTMC.

H =
{
{11}, {01, 10}, {11}

}
induces the lumped

UCTMC in Figure 2. Each state is labeled with a
representative of the corresponding partition block.
It is interesting to note that the transitions between
states 01 and 10 in the original UCTMC correspond
to self-loops in the lumped UCTMC. However, since
self-loops induce self canceling terms at the level of
forward Kolmogorov equations, they do not have an
impact on system’s dynamics and can be ignored.

Sums of reachable probability distributions of
a UCTMC coincide with the reachable probability
distributions of the corresponding lumped UCTMC.

Theorem 6 (Preservation of Reachability). Assume that H is a UCTMC
lumping of U = (V,m,M). Then, for any time τ ≥ 0, block H ∈ H and initial
probability distribution π[0], it holds that

RU (H, τ, π[0]
)

= RÛ ({iH}, τ, π̂[0]),

where Û refers to the lumped UCTMC induced by H and π̂[0]iH =
∑
i∈H π[0]i for

all H ∈ H.

Example. In the case of the running example, Theorem 6 ensures, for instance,
that RU ({10, 01}, t, π[0]) = RÛ ({10}, t, π̂[0]) for all t ≥ 0 and π[0].

We next present a modification of Theorem 6 that allows one to over-
approximate sums of reachable probability distributions when H is not a UCTMC.
It resembles [37] which provides over-approximations of uniformized CTMCs.

Theorem 7 (Over-Approximation). For a given UCTMC U = (V,m,M)
and partition H of V, assume that

– m′ ≤ m such that H is an ordinary lumping of the CTMC (V,m′);
– M ≤M ′ such that H is an ordinary lumping of the CTMC (V,M ′).

Then, H is a UCTMC lumping of U ′ = (V,m′,M ′) and for any initial probability
distribution π[0], the lumped UCTMC Û ′ induced by U ′ and H satisfies

RU (H, τ, π[0]) ⊆ RÛ ′({iH}, τ, π̂
′[0]
)

for all τ ≥ 0 and H ∈ H, provided that π̂′[0]iH =
∑
i∈H π[0]i for all H ∈ H.

Our next result is the converse of Theorem 6. Together with Theorem 6, it
provides a quantitative characterization of UCTMC lumpability.

Theorem 8 (Quantitative Characterization). Let U = (V,m,M) be some
UCTMC and Û = (V̂, m̂, M̂) a UCTMC with V̂ = {iH | H ∈ H} where H is
a partition of V and for any time τ ≥ 0, block H ∈ H and initial probability
distribution π[0], it holds that

RU
(
H, τ, π[0]

)
= RÛ

(
{iH}, τ, π̂[0]

)



whenever π̂[0]iH =
∑
i∈H π[0]i for all H ∈ H. Then, H is a UCTMC lumping

and Û the underlying lumped UCTMC.

Remark 2. By Theorem 8, the subset relation of Theorem 7 becomes an identity
only if H is a UCTMC lumping of (V,m,M) and m = m′, M = M ′. In particular,
over-approximations due to Theorem 7 are proper in general.

We end this section by relating UCTMC lumpability to other notions. First,
we observe that UCTMC lumpability is a conservative generalization of ordinary
lumpability.

Lemma 1 (Generalization). Assume that H is a UCTMC lumping of a
UCTMC (V,m,M) which is deterministic, i.e., m = M . Then, H is an or-
dinary lumping.

Second, we prove that any UCTMC admits a DTMDP approximation that dis-
cretizes time and action spaces and for which the notions of UCTMC lumpability
and alternating probabilistic bisimulation (cf. [31]) coincide.

Theorem 9. Fix a UCTMC (V,m,M), an equivalence relation R ⊆ V × V and
let H = V/R. Then H is a UCTMC lumpability of (V,m,M) if and only if R is
an alternating probabilistic bisimulation of the DTMDP from Theorem 4.

As mentioned earlier, alternating probabilistic bisimulation only preserves
logical and quantitative properties [31] on the domain of DTMDPs, while UCTMC
lumping characterizes these on the domain of UCTMCs.

4.2 Logical Characterization

We extend CSL to UCTMCs by defining a formula to be true when it is satisfied
by all admissible Q = (qi,j)(i,j). This allows one to study safety properties in
presence of uncertainty, aligning with [44], which considers CSL for CTMDPs
with finite action spaces.

Definition 6 (CSL for UCTMCs). Given a UCTMC (V,m,M), the CSL
syntax is

φ ::= a | φ ∧ φ | ¬φ | P∀./p
(
X[t0;t1]φ

)
| P∀./p

(
φU[t0;t1]φ

)
For an arbitrary small but fixed time step h > 0, let t denote the smallest grid
point in {0, h, 2h, . . .} that minimizes the distance to t ≥ 0, i.e., t = h · bt/hc,
where b·c is the floor function. For a given labeling function L : V → 2V and initial
probability distribution π[0], the satisfiability operator is defined by induction:

– i, t |= a iff a ∈ L(i);
– i, t |= φ1 ∧ φ2 iff i, t |= φ1 and i, t0 |= φ2;
– i, t |= ¬φ iff not i, t |= φ;

– i, t |= P∀./p
(
X[t0;t1]φ1

)
iff i, t |= P./p

(
X[t0;t1]φ

)
for all admissible q;



– i, t |= P∀./p
(
φ1U

[t0;t1]φ2

)
iff i, t |= P./p

(
φ1U

[t0;t1]φ2

)
for all admissible q. ut

Similarly to [44], existential quantification is given by P∃./p(Φ) := ¬P∀¬./p
(
Φ
)
,

where ¬ ./ is defined in the obvious manner (e.g., ¬ ≤ is >). Likewise, ∨, → are
defined using ∧, ¬.

Theorem 10 (Preservation of CSL). Let H be a UCTMC lumping of UCTMC
U and let Û be the underlying lumped UCTMC. Further, assume that L(i) = L(j)
for all H ∈ H and i, j ∈ H. With this, define Â := A and L̂(iH) := L(iH) for
all H ∈ H. Then

i, t |=U φ⇐⇒ iH , t |=Û φ

for any t ≥ 0, h > 0, block H ∈ H, state i ∈ H, X-operator free CSL formula φ
and initial probability distribution π[0].

The next result is a converse of Theorem 10 and establishes a logical charac-
terization of UCTMC lumpability.

Theorem 11 (Logical Characterization). Fix a UCTMC (V,m,M), a par-
tition H of V and let L, Â and L̂ be as in Theorem 10. Assume further that there
exists a UCTMC (V̂, m̂, M̂) such that V̂ = {iH | H ∈ H} and

i, t |=V,m,M φ⇐⇒ iH , t |=V̂,m̂,M̂ φ

for any t ≥ 0, h > 0, H ∈ H, i ∈ H and X-operator free CSL formula φ. Then,
H is a UCTMC lumping and (V̂, m̂, M̂) the underlying lumped UCTMC.

4.3 UCTMC Lumping Algorithm

We next present an algorithm for the efficient computation of the coarsest
UCTMC lumping that refines a given partition H. Its steps are as follows.

A1 With H being the current partition, compute the coarsest ordinary lumping
H′ of the CTMC (V,m) that refines H;

A2 Compute the coarsest ordinary lumping H′′ of the CTMC (V,M) that refines
H′;

A3 If H′′ = H, return H′′; Otherwise, set H := H′′ and go to A1.

Obviously, if A1 does not refine H and A2 does not refine H′, then H is a UCTMC
lumping of (V,m,M). The algorithm terminates because V is finite. Moreover, it
can be shown that the algorithm indeed computes the coarsest UCTMC partition
because each refinement produces a partition which, itself, is still refined by the
coarsest UCTMC lumping.

The next result summarizes the above discussion. The complexity statement
follows thanks to the fact that A1 and A2 can be processed via efficient CTMC
lumping algorithms such as [20, 52].

Theorem 12. Given a UCTMC (V,m,M), let H be a partition of V. Then, the
following can be shown.



Algorithm 1 Partition refinement algorithm for the computation of the coarsest
UCTMC lumping H from the proof of Theorem 12.

Require: Uncertain CTMC (V,m,M) and initial partition H
1: while true do
2: H′ ←− coarsest ordinary lumping of CTMC (V,m) that refines H
3: H′′ ←− coarsest ordinary lumping of CTMC (V,M) that refines H′

4: if H′′ = H then
5: return H′′

6: else
7: H ←− H′′

8: end if
9: end while

1) Algorithm 1 computes the coarsest UCTMC lumping refining H.
2) The time and space complexity required for one while loop iteration does not

exceed O(r log(s)), where r := |{(i, j) | mi,j > 0 or Mi,j > 0}| and s := |V|.
The number of while loop iterations, instead, is at most s.

We conclude this section with two remarks regarding the lumping algorithm.
First, we note that it simplifies to the CTMC lumping algorithm if applied to a
deterministic UCTMC (V,m,M), i.e., a UCTMC that satisfies m = M . Second,
using the correspondence between UCTMC lumpability and probabilistic alter-
nating bisimulation from Theorem 9, it would be possible to apply the algorithm
for the largest alternating probabilistic bisimulation [31] of the approximate
DTMDP from Theorem 9. However, in contrast to the UCTMC algorithm, such
an approach would incur an exponential dependence on the maximal number of
outgoing non-deterministic transitions of the approximate DTMDP.

5 Evaluation

Here we assess UCTMC lumpability in terms of both its computational tractability
and reduction power with respect to ordinary lumpability. To this end, we consider
uncertain variants of CTMCs of increasing size generated from benchmark models
in PRISM [40].
Tool-support and replicability. In our experiments we used a prototype
implementation of our algorithm based on the tool ERODE [12]. ERODE supports
CTMC minimization as a special case of lumping algorithms for nonlinear ordinary
differential equations [13].Given that CTMC ordinary lumpability is the most
important inner step of our algorithm, other tools implementing CTMC lumping
could have been used, such as MRMC [36], STORM [18], and CoPaR [22, 19].
All runtimes reported refer to the execution of ERODE on a common desktop
machine with 8 GB RAM. All the material to replicate the experiments is available
at https://www.erode.eu/examples.html.
Set-up. For this evaluation we used CTMCs in the MRMC format [36], generated
from PRISM models. We considered CTMCs which describe: a dependable



Original model (CTMC) CTMC Lumpability UCTMC Lumpability

N r s |H0| Red.(s) |H| Red.(s) |H|

WORKSTATION CLUSTER

128 2 908 192 597 012 4 2.21E+1 298 893 2.64E+1 identical

192 6 524 960 1 337 876 4 6.78E+1 669 517 8.04E+1 identical

256 11 583 520 2 373 652 4 1.55E+2 1 187 597 1.85E+2 identical

320 18 083 872 3 704 340 4 2.81E+2 1 853 133 3.58E+2 identical

384 26 026 016 5 329 940 4 out of memory out of memory

WIRELESS GROUP COMMUNICATION PROTOCOL

16 686 153 103 173 2 2.26E+0 4 846 2.97E+0 identical

24 3 183 849 453 125 2 1.34E+1 20 476 1.61E+1 identical

32 10 954 382 1 329 669 2 4.49E+1 58 906 5.50E+1 identical

40 22 871 849 3 101 445 2 1.35E+2 135 752 1.61E+2 identical

48 46 574 793 6 235 397 2 out of memory out of memory

CELL CYCLE CONTROL IN EUKARYOTES

2 18 342 4 666 3 1.76E–1 3 514 1.97E–1 4 000

3 305 502 57 667 3 8.21E–1 40 667 9.81E–1 48 147

4 2 742 012 431 101 3 6.45E+0 282 956 7.80E+0 339 368

5 16 778 785 2 326 666 3 4.58E+1 1 424 935 9.15E+1 1 712 322

6 78 768 799 9 960 861 3 out of memory out of memory

Table 1. Quantitative comparison of CTMC and UCTMC lumpability. Entries identical
denote cases with identical CTMC and UCTMC lumpable partitions.

cluster of workstations [32]; a protocol for wireless group communication [43, 3];
a model of the cell cycle control in eukaryotes [41, 46]. in [31, 28], we considered
uncertain relaxations of such CTMCs by adding uncertainty to the transition rates.

A B

C D

5.0
[4.8; 5.2]

2.0
[1.8; 2.2]

3.0
[2.8; 3.2]

In particular, in each model we replaced every
transition rate value with an interval of fixed
length (arbitrarily fixed equal to 20% of the
smallest transition rate in the model) centered
at the original rate value itself. This relaxation
is exemplified in the right inset, where the
grayed-out transition rates are those of some
given CTMC. This example demonstrates that an ordinary lumping of the
original CTMC is not necessarily a UCTMC lumping of the so-constructed
UCTMC, whereas the converse follows from Lemma 1. Indeed, we note that
{{A,B}, {C,D}} is an ordinary lumping of the original CTMC, while it is not a
UCTMC lumping because 4.8 6= 1.8 + 2.8 and 5.2 6= 2.2 + 3.2.

Results. The results are provided in Table 1. We report the number of transitions
and states of the obtained CTMCs in the second and third column, respectively,



CTMC lumpability UCTMC lumpability

m [38, 11, 6] Dynamics m Thm. 6, 8∑
i∈H πi(t) = π̂iH (t) R

(∑
i∈H πi, t, π[0]

)
= R

(
π̂iH , t, π̂[0]

)
m [1] Logics m Thm. 10, 11

i, t |=V φ⇐⇒ iH , t |=V̂ φ i, t |=V,m,M φ⇐⇒ iH , t |=V̂,m̂,M̂ φ

O(r log(s)) [20, 52] Complexity O(sr log(s)) Thm. 12

Table 2. Summary of results. UCTMC lumpability generalizes the well-known dy-
namical, logical and algorithmic properties of ordinary lumpability for CTMCs (in
statements concerning complexity, s refers to the numbers of states, while r denotes
the number of transitions).

as a function of the scaling parameter N . The initial input partition of states,
denoted by H0, was induced by the original model specification by creating blocks
of states characterized by the same atomic propositions. The comparison of the
runtimes of the minimization algorithms provides an indication of the increased
overhead for the reduction (which is proportional to the number of states in the
worst case). In all our tests, UCTMC lumpability had, up to a factor of two, the
same runtime as the CTMC version. This is because in all models at most two
iterations of our algorithm were necessary.

The effectiveness of UCTMC lumping can be evaluated by comparing the size
of the coarsest UCTMC lumpings with their corresponding CTMC counterparts.
Notably, CTMC and UCTMC lumpability coincide on the first two families of
models, while in the third family UCTMC lumpability leads to finer (at most
18% more blocks) partitions than the CTMC counterpart.

6 Conclusion

Uncertain continuous-time Markov chains (UCTMCs) generalize continuous-time
Markov chains (CTMCs) by allowing transition rates to non-deterministically
take values within given bounded intervals. UCTMC lumpability enjoys a poly-
nomial time and space algorithm for the computation of the largest UCTMC
lumping. Similarly to CTMC lumping that characterizes the preservation of sums
of probability distributions, UCTMC lumping characterizes the preservations of
reachable sets of sums of probability distributions. We have provided a logical
characterization of UCTMC lumpability to uncertain time-varying parameters.
Overall, the results in this paper can be put in analogy with the corresponding
CTMC counterparts, as summarized in Table 2. The applicability of UCTMC
lumpability has been established by presenting substantial reductions in bench-
mark models. The discretization of a UCTMC as a DTMDP has offered the
means to relating UCTMC lumpability to bisimulations for DTMDPs. Future
work will consider model-checking algorithms for UCTMCs.
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Proofs

Proof (Theorem 2). It is possible to prove the statement directly by adjusting the
arguments from the discrete-time case [6]. Alternatively, thanks to the discussion
in Section 3.4, we know that the solution of a given time-inhomogeneous CTMC
can be approximated arbitrarily well by a time-inhomogeneous DTMC. Letting
the time step from Section 3.4 approaching zero, i.e., h → 0, we observe that
the convergence of the Euler method ensures that the claim holds true if and
only if the lumpability condition holds true for time-inhomogeneous DTMCs.
This however is obvious since the proof for the time-homogeneous discrete-time
case [6] carries over in a straightforward manner to the time-inhomogeneous
discrete-time case.

Proof (Theorem 3). Follows from [27, Section 2.2] and the discussion preceding
Theorem 3.

Proof (Proposition 1). Given some i ∈ V, we first note that A(i) describes
a hypercube. Noting that A′(i) uniquely identifies the edges of A(i) via the
function v, it thus suffices to show that any zi ∈ A(i) can be expressed as a



convex combination of the edges of A(i). To see this, assume that we are given
some zi ∈ A(i) and consider the system of linear equations∑

ai∈A′(i),
ai,j=Mi,j

ν(ai) =
zi,j −mi,j

Mi,j −mi,j
,

∑
ai∈A′(i),
ai,j=mi,j

ν(ai) = 1− zi,j −mi,j

Mi,j −mi,j
, j 6= i.

Noting that

zi,j = Mi,j
zi,j −mi,j

Mi,j −mi,j
+mi,j

(
1− zi,j −mi,j

Mi,j −mi,j

)
,

we observe that a solution of the linear system of equations yields the claim. This,
in turn, can be identified as

ν(ai) =
∏
j∈JM

zi,j −mi,j

Mi,j −mi,j
·
∏
j∈Jm

(
1− zi,j −mi,j

Mi,j −mi,j

)
,

where j ∈ JM whenever ai,j = Mi,j and j ∈ Jm if ai,j = mi,j . (Following
standard notation, the product over an empty set is defined to be one).

Proof (Theorem 4). We first note that maxi∈V |πi[k]− πi(τ)| = ‖π[k]− π(τ)‖∞,
where ‖·‖∞ denotes the maximum norm. Second, we recall that the Lipschitz
constant with respect to the maximum norm of a linear ODE system ẋT = xTB
is given by the matrix maximum norm ‖BT ‖∞ = maxi∈V

∑
j∈V |bj,i|. With this,

the error estimation follows from ‖π(t)‖∞ ≤ 1 and by evaluating the constants
L,K and Z in the error term provided in [25, Eq. 1.14]. More specifically, it
holds that L ≤ Λ, Z ≤ Λ and K = λ ·maxi∈V deg(i). Additionally to that, we
note that [25, Eq. 1.13] carries over to the multi-dimensional case. Indeed, while
different coordinates i may require to use different values θi ∈ [0; 1] in [25, Eq.
1.13], thanks to the fact that we use the maximum norm, it suffices to consider
the coordinate with the largest error dn,i (adopting the notation of [25, Eq. 1.13],
dn ∈ RV is the vector of errors at time n, while dn,i is the i-th coordinate of the
error).

Proof (Theorem 5). By invoking Bellman’s optimality principle, it can be shown
that the DTMDP admits a deterministic time-inhomogeneous optimal policy [50].
With this, the minimal and maximal reachability probabilities of the DTMDP
can be computed by dynamic programming with well-known complexity bounds,
see [8, Section 3] and references therein.

Proof (Lemma 1). Trivial.

Proof (Theorem 9). By definition, H is a UCTMC lumpability if and only if
for any H ∈ H and i1, i2 ∈ H, it holds that

∑
j∈H′ mi1,j =

∑
j∈H′ mi2,j and∑

j∈H′Mi1,j =
∑
j∈H′Mi2,j for all H ′ ∈ H. This holds true if and only if for any

action ai1 ∈ A(i1) there exists an action ai2 ∈ A(i2) (and vice versa) such that,
for all H ′ ∈ H, it holds that

∑
j∈H′ qi1,j(t, ai1) =

∑
j∈H′ qi2,j(t, ai2). Thanks to



the proof of Proposition 1, this holds true if and only if for any distribution
µi1 ∈ D(A′(i1)) there exists a distribution µi2 ∈ D(A′(i2)) (and vice versa) such
that, for all H ′ ∈ H, one has∑

j∈H′

∑
a∈A′(i1)

µi1(a) · qi1,j(t, a) =
∑
j∈H′

∑
a∈A′(i2)

µi2(a) · qi2,j(t, a)

Taking into account the definition of the DTMDP in Theorem 4, the foregoing
statement holds true if and only if for any distribution νi1 ∈ D(A′(i1)) there
exists a distribution νi2 ∈ D(A′(i2)) (and vice versa) such that, for all H ′ ∈ H,
it holds that∑

j∈H′

∑
a∈A′(i1)

νi1(a) · pi1,j(k, a) =
∑
j∈H′

∑
a∈A′(i2)

νi2(a) · pi2,j(k, a)

Observing that the existence of νi1 and νi2 ensures that R is an alternating
probabilistic bisimulation of the DTMDP yields the claim (indeed, i1, i2, νi1 and
νi2 are playing the role of s, t, ρs and ρt in [31, Definition 3], respectively).

Proof (Theorem 6). Let H be the UCTMC lumping in question. Let G be a
partition of {(i, j) ∈ V2 | i 6= j} such that (ik, jk), (il, jl) ∈ G for some G ∈ G if
and only if there exist H,H ′ ∈ H such that ik, il ∈ H and jk, jl ∈ H ′.

– GH→H′ ∈ G is the unique block of edges originating in H and ending in H ′.
– GH→H′ ∈ G is called invariant if H = H ′; the set of invariant blocks is

denoted by Gi.

For arbitrary G ∈ G and (ik, jk) ∈ G, let f ik,jki denote the change in πi due to

qik,jk . More formally, if f(π) := πTQ for all π ∈ RV , then f ik,jki := ∂qik,jk fi. It is
not hard to see that

f ik,jki =

{
−πik , i = ik

πik , i = jk

For an arbitrary H ∈ H, we note that

∂t
(∑
i∈H

πi(t)
)

=
∑
i∈H

∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)f ik,jki (π(t))

=
∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)
∑
i∈H

f ik,jki (π(t))

=
∑
G∈G

qG,H(t)
∑

(il,jl)∈G

∑
i∈H

f il,jli (π(t)),

provided that qG,H satisfies

qG,H(t)
∑

(il,jl)∈G

∑
i∈H

f il,jli (π(t)) =
∑

(ik,jk)∈G

qik,jk(t)
∑
i∈H

f ik,jki (π(t))



When
∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t)) 6= 0, it must obviously hold true that

qG,H(t) =
∑

(ik,jk)∈G

qik,jk(t)
( ∑

i∈H f
ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t))

)
(2)

If the denominator is zero, instead, the value qG,H(t) can be chosen arbitrarily.
We next show that, setting qG,H := qG, where G = GH1→H2 for some H1, H2 ∈ H,
does the job:

qG(t) =


any value in [m̂iH1

,iH2
; M̂iH1

,iH2
] , G ∈ Gi or

∑
(il,jl)∈G

πil(t) = 0

∑
(ik,jk)∈G

qik,jk(t)
( πik(t)∑

(il,jl)∈G πil(t)

)
, otherwise

Key to this is to prove that the value of the fraction term in (2) is, whenever
defined, invariant with respect to H ∈ H. To see this, fix an arbitrary G ∈ G,
(ik, jk) ∈ G and H,H ′ ∈ H such that H 6= H ′. We consider the following case
distinction.

– ik ∈ H ∧ jk ∈ H ′: By the choice of G, it holds that il ∈ H ∧ jl ∈ H ′ for all
(il, jl) ∈ G. Hence∑

i∈H f
ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t))

=
−πik(t)

−
∑

(il,jl)∈G πil(t)

and ∑
i∈H′ f

ik,jk
i (π(t))∑

(il,jl)∈G
∑
i∈H′ f

il,jl
i (π(t))

=
πik(t)∑

(il,jl)∈G πil(t)
,

meaning that both fraction terms are either identical or undefined. In the
latter case, neither H nor H ′ constrains the value of qG.

– ik ∈ H ∧ jk ∈ H: By the choice of G, it holds that il ∈ H ∧ jl ∈ H for all
(il, jl) ∈ G. Hence∑

(il,jl)∈G

∑
i∈H

f il,jli (π(t)) =
∑

(il,jl)∈G

(πil(t)− πil(t)) = 0

for all t ≥ 0, meaning that H does not constrain the value of qG (note that
in this case G is invariant).

– ik /∈ H ∧ jk /∈ H: Let H1, H2 ∈ H be such that ik ∈ H1 and jk ∈ H2. By
the choice of G, it holds that il ∈ H1 ∧ jl ∈ H2 for all (il, jl) ∈ G. Hence∑

(il,jl)∈G
∑
i∈H f

il,jl
i (π(t)) = 0 for all t ≥ 0, meaning that H does not

constrain the value of qG.



For an arbitrary H ∈ H, the above discussion implies that

∂t
(∑
i∈H

πi(t)
)

=
∑
i∈H

∑
G∈G

∑
(ik,jk)∈G

qik,jk(t)f ik,jki (π(t))

=
∑
i∈H

∑
G∈G

qG(t)
∑

(ik,jk)∈G

f ik,jki (π(t))

=
∑
H′ 6=H

qGH→H′ (t)
∑
i∈H

∑
(il,jl)∈GH→H′

f il,jli (π(t))

+
∑
H′ 6=H

qGH′→H (t)
∑
i∈H

∑
(il,jl)∈GH′→H

f il,jli (π(t))

= −
∑
H′ 6=H

qGH→H′ (t)
∑
i∈H
|H ′|πi(t) +

∑
H′ 6=H

qGH′→H (t)
∑
i∈H

∑
j∈H′

πj(t)

= −
∑
H′ 6=H

qGH→H′ (t)|H
′|
(∑
i∈H

πi(t)
)

+
∑
H′ 6=H

qGH′→H (t)|H|
( ∑
j∈H′

πj(t)
)

(3)

We next show that q̂iH ,iH′ (t) := qGH→H′ (t)|H
′| ∈ [m̂iH ,iH′ ; M̂iH ,iH′ ] for all t ≥ 0

and H,H ′ ∈ H with H 6= H ′. To this end, we note that

qGH→H′ (t)|H
′| =

∑
(ik,jk)∈GH→H′

qik,jk(t)
|H ′|

∑
i∈H f

ik,jk
i (π(t))∑

i∈H
∑
il,jl∈GH→H′

f il,jli (π(t))

=
∑

(ik,jk)∈GH→H′

qik,jk(t)
−|H ′|πik(t)

−
∑
i∈H |H ′|πi(t)

=
∑

(ik,jk)∈GH→H′

qik,jk(t)
πik(t)∑
i∈H πi(t)

=
∑
ik∈H

πik(t)∑
i∈H πi(t)

∑
jk∈H′

qik,jk(t)

Since H is a UCTMC lumping, for all ik, i
′
k ∈ H it holds that∑

jk∈H′
mik,jk =

∑
jk∈H′

mi′k,jk
and

∑
jk∈H′

Mik,jk =
∑
jk∈H′

Mi′k,jk

With this, for all t ≥ 0 it holds that q̂iH ,iH′ (t) ∈ [m̂iH ,iH′ ; M̂iH ,iH′ ] which, together
with (3), implies that

RU (H, t, π[0]) ⊆ RÛ ({iH}, t, π̂[0]), for all H ∈ H and t ≥ 0.

To show the converse subset relation, let us assume that we are given transition
rate functions (q̂iH ,iH′ )H,H′ . For H,H ′ ∈ H with H 6= H ′ and (ik, jk) ∈ GH→H′ ,



we set

qik,jk(t) := mik,jk +
Mik,jk −mik,jk∑

jl∈H′(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)
Since H is a UCTMC lumping, it holds that∑

jl∈H′
(Mik,jl −mik,jl) = M̂iH ,iH′ − m̂iH ,iH′ =

∑
jk∈H′

(Mik,jk −mik,jk).

Hence,
∑
jk∈H′ qik,jk(t) = q̂iH ,iH′ (t) and qik,jk(t) ∈ [mik,jk ;Mik,jk ] for all t ≥ 0.

By choosing the so-constructed (qi,j)i,j and repeating the argumentation from
the first part of the proof, we observe that

∑
i∈H πi(t) = π̂iH (t) for all H ∈ H

and t ≥ 0. This allows us to infer the converse subset relation

RU (H, t, π[0]) ⊇ RÛ ({iH}, t, π̂[0]),

where H ∈ H and t ≥ 0.

Proof (Theorem 7). Obviously, it holds true that

RU (H, τ, π[0]) ⊆ RU ′(H, τ, π[0])

for all τ ≥ 0. With this, Theorem 6 yields the claim.

Proof (Theorem 8). Pick any H,H ′ ∈ H and i, i′ ∈ H. If π[0] = 1[i], the Dirac
measure at i, then

∑
j∈H′ πj(t) = (

∑
j∈H′ qi,j(0))t+ o(t) for small t ≥ 0. Hence,

together with RU (H ′, t,1[i]) = [αi(t);βi(t)]
6, we observe that

– αi(t) = (
∑
j∈H′ mi,j)t+ o(t) for small t ≥ 0.

– βi(t) = (
∑
j∈H′Mi,j)t+ o(t) for small t ≥ 0.

Likewise, if π[0] = 1[i′], we obtain that

– αi′(t) = (
∑
j∈H′ mi′,j)t+ o(t) for small t ≥ 0.

– βi′(t) = (
∑
j∈H′Mi′,j)t+ o(t) for small t ≥ 0.

Since
∑
ν∈H 1[i]ν =

∑
ν∈H 1[i′]ν , the assumption ensures that

RU (H ′, t,1[i]) = RU (H ′, t,1[i′])

for all t ≥ 0. This, in turn, implies that αi ≡ αi′ and βi ≡ βi′ . With this, the
above discussion implies that H is a UCTMC lumping.

6 The fact that the reachable set is a closed interval [α(t);β(t)] is a consequence of
the intermediate value theorem and the theorem of Filippov, see proof of Theorem 2
in [21] and [42, Section 4.5], respectively.



Proof (Theorem 11). Let 1[i] denote the Dirac measure at i ∈ V . Since ∂tπ(t)T =
π(t)TQ(t) is linear, it holds that

RU (H ′, t, π[0]) =
∑
i∈V

π[0]i · RU (H ′, t,1[i]),

where α ·A = {αa | a ∈ A} for A ⊆ R and α ∈ R. Thanks to Theorem 8, it thus
suffices to prove that

RU (H ′, t,1[i]) = RÛ ({iH′}, t,1[iH ]),

for any H,H ′ ∈ H and i ∈ H. To this end, set L(ati) = {i} for any i ∈ V . Then,
if t = hk for some k ≥ 0, it holds that

– i, 0 |=U P∃≤p
(
ttU[t;t]atj

)
iff there is a p′ ∈ RU ({j}, t,1[i]) with p′ ≤ p.

– i, 0 |=U P∃≥p
(
ttU[t;t]atj

)
iff there is a p′ ∈ RU ({j}, t,1[i]) with p′ ≥ p.

Note that atj and πj can be replaced with atH′ =
∧
j∈H′ atj and

∑
j∈S πj ,

respectively. Since similar statements hold true for the lumped UCTMC and h
can be chosen arbitrarily small in the CSL semantics, the assumption yields the
claim.

Proof (Theorem 12). Since the trivial partition {{i} | i ∈ V} is an ordinary
lumping of both, (V,m) and (V,M), we observe that the set of UCTMC lumpable
partitions refining some partition H of V is not empty. Moreover, assume that H′
and H′′ refine H and are ordinary lumpable partitions of both (V,m) and (V,M).
Then, with the asterisk denoting the transitive closure of relations and with
equivalence relations∼′ and∼′′ given byH′ = V/∼′ andH′′ = V/∼′′, respectively,
it holds that V/(∼′ ∪ ∼′′)∗ refines H and is an ordinary lumpable partition of
both (V,m) and (V,M). This foregoing discussion allows us to conclude that
there exists a coarsest UCTMC lumping refining H. The complexity estimation
of CTMC lumping algorithms like [20, 52] implies the complexity estimation of
Algorithm 1. As for the correctness, let Hω denote the coarsest UCTMC lumping
refining some given partition H. Then, for any partition H′ of V, the following
observations hold true:

– If H′ refines Hω, then Hω refines the coarsest ordinary lumping of (V,m)
that refines H′.

– If H′ refines Hω, then Hω refines the coarsest ordinary lumping of (V,M)
that refines H′.

Since V is finite, the sequence of partitions computed in course of Algorithm 1
will eventually reach a fixed point for which no refinement is possible. Noting that
such a fixed point must be necessarily a UCTMC lumping, the above observations
yield the correctness of the algorithm.



Proof of Theorem 10

We prove Theorem 10 by exploiting the fact that the validity of an until formula
can be expressed in terms of a reachability probability [1, 4, 5]. We begin by
introducing a version of the auxiliary CTMC from [5] that is tailored to our
needs.

Definition 7 (Auxiliary UCTMC). Assume that H is a UCTMC lumping of
the UCTMC (V,m,M). Moreover, let U , T ⊆ V be such that both U and T can be
written as unions of blocks from H. With this, (Ṽ, m̃, M̃) is given by Ṽ = V ∪ V̄,
where V̄ = {̄i | i ∈ V}, and

– m̃i,j := mi,j and M̃i,j := Mi,j if i /∈ U ∪ T and j /∈ T ;

– m̃i,j̄ := mi,j and M̃i,j̄ := Mi,j if i /∈ U ∪ T and j ∈ T ;

– all other entries of m̃ and M̃ are zero.

As observed next, a UCTMC lumping of (V,m,M) induces a UCTMC lumping
of (Ṽ, m̃, M̃).

Lemma 2. Assume that H is a UCTMC lumping of the UCTMC (V,m,M).
Moreover, let U , T ⊆ V be such that both U and T can be written as unions of
blocks from H. Then, H̃ = H ∪ H̄ is a UCTMC lumping.

Proof. Follows by noting that the auxiliary UCTMC arises by redirecting the
lower and upper bounds blockwise.

The model checking of until formulae is ultimately related to the probability
that a time-varying target set can be reached by avoiding a time-varying set of
unsafe states [4, 5]. The next definition formalizes this in our context.

Definition 8. Assume that H is a UCTMC lumping of (V,m,M). Further, let
U , T : [0;∞)→ Powerset(V) be such that

– U , T have, on any bounded time interval at most finitely many discontinuity
points with respect to the discrete topology;

– both U(t) and T (t) can be written, for any t ≥ 0, as unions of blocks from H.

Then, Preach(Q, t, T, T ,U)[i] is the probability of the set of paths underlying a
given Q = (qi,j)i,j reaching a (target) state in T (τ) at time τ ∈ [t; t+ T ] without
passing through a (unsafe) state in U(τ ′) for any τ ′ ∈ [t; τ ], when starting in
state i ∈ V at time t.

The following result is key for the proof of Theorem 10.

Proposition 2. Assume that H is a UCTMC lumping of (V,m,M). Let H
induce (Ṽ, m̃, M̃) and U , T : [0;∞)→ Powerset(V) be such that

– U , T have, on any bounded time interval at most finitely many discontinuity
points with respect to the discrete topology;

– U(τ) and T (τ) can be written, for any τ ≥ 0, as unions of blocks from H.



Set Û(τ) := {iH | H ∈ H ∧H ⊆ U(τ)} and T̂ (τ) := {iH | H ∈ H ∧H ⊆ T (τ)}.
Then, for given T > 0, t ≥ 0, H ∈ H and i ∈ H:

– for admissible (qi,j)(i,j), we construct admissible (q̂iH ,iH′ )(iH ,iH′ )
;

– instead, for admissible (q̂iH ,iH′ )(iH ,iH′ )
, we construct admissible (qi,j)(i,j),

such that Preach(Q, t, T,U , T )[i] = Preach(Q̂, t, T, Û , T̂ )[iH ].

Proof. Let t = T0 < T1 < . . . < Tκ+1 = t + T be the time points in [t; t + T ]
at which discontinuities of U or T may arise. Following [5], we set W (s) =
V \ (U(s) ∪ T (s)) and let ζW (Tν) be the n × n matrix equal to 1 only on the
diagonal elements corresponding to states ι belonging to both W (T−ν ) and W (T+

ν )
(i.e., states that are safe and not a target both before and after Tν), and equal
to 0 elsewhere. Furthermore, let ζT (Tν) be the n× n matrix equal to 1 in the
diagonal elements corresponding to states ι belonging to W (T−ν ) ∩ T (T+

ν ) and
zero elsewhere. Finally, let ζ(Tν) be the 2n× 2n matrix defined by

ζ(Tν) :=

(
ζW (Tν) ζT (Tν)

0 In×n

)
Let us assume that we are given an admissible Q. Thanks to the fact that Q is
piecewise analytic with finitely many discontinuity points on any bounded time
interval, the discussion in [5] ensures that

Preach(Q, t, T,U , T )[i] =
∑
j̄∈V̄

Υ (t, t+ T )i,j̄ + 1{i ∈ T (t)},

where 1 denotes the characteristic function, while

Υ (t, t+ T ) = Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · . . . · ζ(Tκ)Π̃(Tκ, t+ T )

is such that Π̃(t1, t2) is the 2n×2n matrix where eTι Π̃(t1, t2)eι′ is the probability
that the auxiliary CTMC is in state ι′ ∈ Ṽ at time t2, provided that it was
initialized with state ι ∈ Ṽ at time t1. The auxiliary CTMC in turn is given by
Definition 7 and

– Uν := U(Tν−1+Tν
2 ) and Tν := T (Tν−1+Tν

2 );

– π̃[Tν ]T := π̃[Tν−1]T · Π̃|V×V(Tν−1, Tν) with π̃[T0] := eTi ;

– Q̃ on [Tν−1;Tν ] is induced by Uν , Tν , π̃[Tν−1] and Q.

Since Π̃(Tν−1, Tν−1) = I2n×2n, matrix Π̃(Tν−1, Tν) can be obtained by solving
the forward Kolmogorov equation ∂τ Π̃(Tν−1, τ) = Π̃(Tν−1, τ) · Q̃(τ) on the
interval τ ∈ [Tν−1;Tν ]. In particular, eTι · Π̃(Tν−1, Tν) is given by π̃(Tν) when
π̃(Tν−1) = eι and ∂τ π̃(τ)T = π̃T (τ) · Q̃(τ) for all τ ∈ [Tν−1;Tν ]. The composite
term Π̃(Tν−1, Tν)ζ(Tν) writes as (for the benefit of presentation, we suppress
the explicit time dependence in the following equation):

Π̃ · ζ =

(
Π̃|V×V Π̃|V×V̄

0 In×n

)
·
(
ζW ζT
0 In×n

)
=

(
Π̃|V×V · ζW Π̃|V×V · ζT + Π̃|V×V̄

0 In×n

)



Note that, for all H ∈ H and ι, ι′ ∈ H, it holds that eTι ζW eι = eTι′ζW eι′ and
eTι ζT eι = eTι′ζT eι′ because Uν and Tν are unions of blocks from H. Hence, ζW
and ζT are cutoff functions that are operating blockwise.

The above discussion and Lemma 2 ensure that a given probability distribution
π̃[Tν−1] induces a piecewise analytic Q̃ on [Tν−1;Tν ] such that∑

ι∈X
π̃ι(τ) = ˆ̃πιX (τ) for all X ∈ H ∪ H̄ and τ ∈ [Tν−1;Tν ],

where ˆ̃π is the transient probability of the lumped auxiliary CTMC. Hence, for
all H ′ ∈ H, it holds that

π̃[Tν−1]T · Π̃|V×V(Tν−1, Tν) ·
( ∑
ι∈H′

eι
)

= ˆ̃π[Tν−1]T · ˆ̃Π|V̂×V̂(Tν−1, Tν) · eiH′

π̃[Tν−1]T · Π̃|V×V̄(Tν−1, Tν) ·
( ∑
ι∈H̄′

eι
)

= ˆ̃π[Tν−1]T · ˆ̃Π|V̂× ˆ̄V(Tν−1, Tν) · ei
H̄′
,

where ˆ̃Π is the matrix of transient probabilities of the lumped CTMC. The above
discussion ensures that

eTi Υ (t, t+ T ) = eTi Π̃(t, T1)ζ(T1)Π̃(T1, T2)ζ(T2) · . . . · ζ(Tκ)Π̃(Tκ, t+ T )

= eTiH
ˆ̃Π(t, T1)ζ̂(T1) ˆ̃Π(T1, T2)ζ̂(T2) · . . . · ζ̂(Tκ) ˆ̃Π(Tκ, t+ T )

for all H ∈ H and i ∈ H, where ζ̂ is defined in the obvious manner. This implies

the statement if we can find an admissible Q̂ such that ˆ̃Q =
˜̂
Q. We next study ˆ̃Q

via the following case distinction:

– If H ∩ (Uν ∪ Tν) = ∅ ∧H ′ ∩ Tν = ∅: Then, the proof of Theorem 6 yields

ˆ̃qiH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

– If H ∩ (Uν ∪ Tν) = ∅ ∧H ′ ⊆ Tν : Then, the proof of Theorem 6 yields

ˆ̃qiH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

– Otherwise, ˆ̃qι,µ ≡ 0.

The above case distinction suggests to pick

q̂iH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

for all H,H ′ ∈ H with H 6= H ′. With this, we proceed by the following case
distinction.



– If iH /∈ Ûν ∪ T̂ν ∧ iH′ /∈ T̂ν : Then ˜̂qiH ,iH′ ≡ q̂iH ,iH′ ≡ ˆ̃qiH ,iH′ .

– If iH /∈ Ûν ∪ T̂ν ∧ iH′ ∈ T̂ν : Then ˜̂qiH ,iH′ ≡ q̂iH ,iH′ ≡
ˆ̃qiH ,iH′ .

– Otherwise, ˜̂qι,µ ≡ 0 ≡ ˆ̃qι,µ.

This completes the proof in the case where we are given an admissible Q and
have to find an admissible Q̂ such that

Preach(Q, t, T,U , T )[i] = Preach(Q̂, t, T, Û , T̂ )[iH ] (4)

For the converse, let us now assume that we are given some admissible Q̂ and
have to find an admissible Q such that (4) holds true. To this end, we construct
Q from Q̂ as in the proof of Theorem 6, that is, we set

qik,jk(t) := mik,jk +
Mik,jk −mik,jk∑

jl∈H′(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)
To see that this Q does the job, we construct following the foregoing discussion
Q̃ from Q and Q̂′ from Q̃, respectively. This yields

q̂′iH ,iH′ (t) =
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

qik,jk(t)

=
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

∑
jk∈H′

[
mik,jk

+
Mik,jk −mik,jk∑

jl∈H′(Mik,jl −mik,jl)

(
q̂iH ,iH′ (t)− m̂iH ,iH′

)]
=
∑
ik∈H

π̃ik(t)∑
i∈H π̃i(t)

(
m̂iH ,iH′ + q̂iH ,iH′ (t)− m̂iH ,iH′

)
= q̂iH ,iH′ (t)

Since q̂′ ≡ q̂, the discussion preceding (4) ensures that our choice of Q yields (4).

Armed with Proposition 2, we are in a position to prove Theorem 10.

Proof (Theorem 10). The proof proceeds by structural induction over φ.

– φ = a: Follows from the fact that L̂(iH) = L(i) for all H ∈ H and i ∈ H.
– φ = φ1 ∧ φ2: Follows by induction hypothesis.
– φ = ¬φ1: Follows by induction hypothesis.
– φ = P∀./p

(
φ1U

[t0;t1]φ2

)
: Let us define

U(t) := {j ∈ V | j, t |= ¬φ1} and T (t) := {j ∈ V | j, t |= φ2}

By induction hypothesis, it holds that both U(τ) and T (τ) can be written,
for any τ ≥ 0, as unions of blocks from H. The definition of the semantics,
instead, ensures that U and T have finitely many discontinuity points on any
bounded time interval. Together with Û(t) := {iH | H ∈ H ∧H ⊆ U(t)} and
T̂ (t) := {iH | H ∈ H ∧H ⊆ T (t)}, the discussion in [5] implies that for any
admissible . . .



• . . . q we have: i, t |=U P./p
(
φ1U

[t0;t1]φ2

)
iff Preach(Q, t, t1−t0,U , T )[i]./p;

• . . . q̂ we have: iH , t |=Û P./p
(
φ1U

[t0;t1]φ2

)
iff Preach(Q̂, t, t1−t0, Û , T̂ )[iH ]./

p.
With this, Proposition 2 yields the claim.


