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Abstract

The classic Mallows model is a widely-used tool to realize distributions on per-
mutations. Motivated by common practical situations, in this paper, we generalize
Mallows to model distributions on top-k lists by using a suitable distance measure
between top-k lists. Unlike many earlier works, our model is both analytically
tractable and computationally efficient. We demonstrate this by studying two
basic problems in this model, namely, sampling and reconstruction, from both
algorithmic and experimental points of view.

1 Introduction

Ordering objects according to a set of criteria and presenting a prefix of the ordering to a user
has become an accepted form of processed knowledge and is ubiquitous in practical settings. A
search engine’s result page typically contains the top ten results for a query. Newspapers and media
outlets often list the top few movies in a year and the top few restaurants in a neighborhood. Social
networking sites list the top followers or friends of a user. The popularity of top lists has resulted in
the proliferation of dedicated portals such as listverse.com and www.thetoptens.com/lists.

Presenting a top list instead of a total ordering (permutation) also has many advantages in practice.
First, the universe of objects might be too large to order and present, e.g., even for a niche subject
like number theory, Google returns 9.7M Web pages. Secondly, the cognitive load on the user can
become immense if the entire ordering is shown to her, especially when the most interesting piece
of information is in a short prefix—in most cases, the user is indifferent to the 100th most popular
restaurant in a city. Thirdly, it may be impossible or meaningless to total order the objects beyond a
certain prefix length. Sociologists would be hard-pressed to pinpoint the 10000th most livable city.

Permutations and generative models for permutations have been studied for many decades, backed
by a rich and elegant mathematical theory. In particular, the well-studied Mallows model offers
the conceptual equivalent of the Gaussian distribution in the space of permutations: given a center
permutation and a spread parameter, this generative model induces a distribution on all permutations,
where the probability of a given permutation is a function of the (Kendall) distance to the center,
scaled by the spread parameter. The problems of generating a random sample from a Mallows
distribution [10], learning the center given a set of samples from the model [4, 5], and learning in
a Mallows mixture setting [1, 6], have all been extensively studied in the literature. The ease of
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analyzing the repeated insertion model (RIM) [10], the canonical way of generating a sample from
Mallows distribution, forms a bedrock of such algorithms and their analysis.

The story, however, is far less mature for the study of top-k lists. While top-k lists have long been
considered in the data mining, information retrieval, and machine learning communities, most of
the work (with the exception of a handful of papers), has been mostly experimental [13, 17, 25, 23,
8, 12, 22]. In particular, there is no crisp extension of the Mallows model to the top list case with
provable guarantees on the complexity of either sampling or for the reconstruction of the parameters.
Any such model has to satisfy the following reasonable desiderata: the model should be conceptually
simple, be a true generalization of Mallows, and the algorithms based on the model should have
running times (and sample complexity for learning) that are polynomial only in the size of the top
list rather than the entire universe. A reasonable and well-studied alternative, pioneered by [13] and
developed since then [17, 22] (see related work for a longer discussion), is to posit the existence
of a Mallows distribution over permutations of all the elements and yet regard only a prefix as the
observable list. This, however, runs into the following issues: (i) generating a single sample from
such distributions takes time polynomial in universe size, essentially because of using the RIM, (ii)
semantically, even positing the existence of a full ranking and trying to learn it is potentially working
with overspecified models, and hence, (iii) given a sample of top-k lists that is of size polynomial in
k, most of the pairwise relations that are learned are potentially statistically spurious (i.e., some pairs
of items might be rarely observed). To alleviate these issues and to satisfy our desiderata, we first
need a category of models that can replace Mallows models in the study of prefix lists.

Our contributions. A natural pathway towards such a model would be to consider extensions of
the Kendall distance to top lists. This is the route we take in this paper. We consider parametrized
generalizations of Kendall distance to top-k lists [11, 7? ], which have nice mathematical properties,
and use them to define a Mallows-like model for top-k lists over universe of size n: given a top-k
center list and a spread parameter, our model induces a distribution on all top-k lists.

While our top-k Mallows model is easy to state, it poses several computational challenges, especially
if we desire efficiency. We first consider the problem of generating a sample from this model. This
problem, solved by RIM in all previous works, turns out to be non-trivial. We show two efficient
algorithms: an exact sampling algorithm that runs in time O(k24k + k2 log n) and a Markov chain-
based approximate sampling algorithm that runs in time O(k5 log k). We then consider two learning
problems, namely, reconstructing the center for a given top-k Mallows model and learning a mixture
of top-k Mallows models. For both these problems, we propose simple algorithms that have efficient
sample complexities and provable guarantees. We also conduct experiments on both synthetic and
real-world datasets to demonstrate the efficiency and usability of our algorithms in practice.

Our work (see Section 2 for formal definitions) differs from all previous works [13, 17, 22] on
modeling top-k lists in four aspects. Firstly, ours only posits the existence of a top-k list and is based
on a true generalization of Kendall distance to top-k lists. Secondly, by using the p-parametrized
Kendall distance, we control the probability of elements not in the center appearing in the generated
top-k list by changing the value of p, which is more general than specific distances [22].1 Thirdly, in
our model the probability of a pair of elements outside the center appearing in a generated top-k list
is independent of their relative order, whereas in previous works these probabilities are affected if
this pair is inverted. As we discussed earlier, interpreting the ordering among elements outside the
center is not meaningful in many applications; in this sense, our model is more natural and useful
since it is able to control and minimize the influence of elements outside the center. Finally, our work
focuses on the algorithmic questions with provable performance guarantees for both sampling and
reconstruction, while previous works focused more on the statistical aspects of the model.

A criticism of our model could be that it treats all the tail elements equally. While this may look
simplistic, assuming there is an implicit full ranking is unrealistic and more so for large domains. In
this regard, our model offers a spectrum of flexibility. Firstly, note that k is parameter and hence one
can decide how far to dig into the tail for large domains. Secondly, in terms of fitting to observed data,
our model has size O(k log n), rather than the Ω(n log n) needed for the full permutation assumption,
and hence, as mentioned before, is less prone to learning spurious orderings among most pairs of
elements. Thirdly, our model admits natural generalizations in two ways. (i) One can define a general

1In fact, different p values capture different scenarios. For example, if the top-k list is the most livable cities,
a bigger p might be desirable, whereas if the top-k list presents movies of a certain genre, smaller p might be
appropriate.
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top-k model where the bottom n − k elements are grouped into a small number of classes, each
containing elements that are equally likely to appear in the top k. (ii) One can define a model where
the center is a full permutation and a suitable Kendall-style distance function between a permutation
and a top-k list is chosen (e.g., an appropriate generalization of K(p) [11] or a Hausdorff variant [7]).
A number of our results can be extended to both these generalizations (e.g., the exact/approximate
sampling methods for (i)), or at least helps identify the right algorithmic tools (e.g., random walks
and dynamic programming) to focus on for these extensions, while an RIM-based analysis cannot.

Related work. The papers closest to this work are [13, 17, 22]. Fligner and Verducci [13] define a
distribution on partial rankings by taking a marginal over all possible extensions of the top-k ranking.
This idea is extended by Lebanon and Mao [17] to partial rankings, and also by giving a kernel
density-based estimator for the underlying hidden permutation. While such an approach has the
nice property of a closed-form expression for the sampling probability for top-k lists (and some
generalizations of that), it is not based on any distance function between top-k lists, instead positing
the existence of an underlying full permutation. Meila and Bao [22] propose a top-k list generative
model derived from [13] by considering the central permutation to be infinitely long. Their model is
based on a specific set distance between a top-k list and an permutation and assumes the existence of
a full (infinitely long) permutation.

A RIM-like generative process and a reconstruction algorithm for a generalization of Mallows model
using the ‘average precision’ distance which places more importance on the displacement of the top
elements was proposed in [8] . Although the focus of their work is on full permutations, [19] outline
a strategy to sample from any distribution over rankings as long as it is easy to sample from the
corresponding conditional insertion probabilities; they show that this is the case for restricted classes
of preference rankings that are generalizations of Mallows. Recently, [12] proposed a rank-dependent
coarsening model for generating partial rankings and showed consistency of certain estimations. A
number of other heuristics for estimating a consensus ranking by aggregation of partial rankings can
be found in [7, 20].

Comparing top-k lists has found several recent applications in comparing different measures of
user importance in social networks [16, 26], diversifying recommendations [27], and various other
information aggregation tasks [15, 14, 9].

2 Preliminaries

Let [n] = {1, . . . , n} be a universe of n elements. A top-k list over [n] is a partial order of the
form i1 > · · · > ik > {ik+1, . . . , in} where i`’s are elements of [n]. In other words, a top-k list
has k elements that are strictly ordered and ranked above the remaining n − k elements that are
incomparable to each other. Let Tk,n be the set of all top-k lists over [n]; clearly Tn,n = Sn, the
symmetric group on n elements.

Throughout the paper, let k ≤ n; we will think of k as O(log n) or as a constant. We will use τ and
subscripted versions to denote a generic top-k list. Given τ ∈ Tk,n and an element i ∈ [n], we use
i ∈ τ to denote that i is one of the top k elements in τ . For a position i ∈ [k], we let τ(i) to denote
the element at position i in τ . For i, j ∈ [n], we use i >τ j to denote that i is ranked above j in τ , i.e.,
i ∈ τ and either j 6∈ τ or j ∈ τ but ranked below i. We use i ‖τ j to denote that i /∈ τ and j /∈ τ , i.e.,
i and j are incomparable, and use i⊥τ j to denote that i and j are comparable, i.e, either i <τ j or
i >τ j. Let τ̄ = [n] \ τ = {i ∈ [n] and i /∈ τ}, the elements ranked below τ . For a subset S ⊆ [n],
let S ∩ τ = {i ∈ τ and i ∈ S}.
We will consider the following distance measure [7, 11] that is a generalization of the well-known
Kendall distance between permutations and while not a metric, has nice mathematical properties [11].
Let p ≥ 0 be a parameter. The p-parametrized Kendall distance between τ1, τ2 ∈ Tk,n is given by

K(p)(τ1, τ2) =
∑

i,j∈τ1∪τ2 and i<j

K̄
(p)
i,j (τ1, τ2),

where,

K̄
(p)
i,j (τ1, τ2) =

{
1 (i <τ1 j and i >τ2 j) or vice versa
p (i ⊥τ1 j and i ‖τ2 j) or vice versa
0 otherwise.

We next define the Mallows model for top-k lists. Given a center top-k list τ∗ and a decay parameter
β > 0, the top-k Mallows model induces a distribution on Tk,n such that
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Pr[τ ∈ Tk,n] ∝ exp
(
−β ·K(p)(τ∗, τ)

)
.

By relabeling, we can assume without loss of generality that τ∗ is the “identity”, i.e, τ∗ = Ik
∆
= 1 >

· · · > k > {k + 1, . . . , n}. We denote K(p)(Ik, τ) by K(p)(τ). We refer to the above distribution as
M(p)

β,τ∗,k,n, abbreviating asMβ,τ∗ if p, k, n are clear from the context and asMβ if τ∗ = Ik. Let

Z
(p)
β,k,n =

∑
τ∈Tk,n

exp
(
−β ·K(p)(τ)

)
,

be the normalizing constant. All the missing proofs are in the supplementary material.

3 Efficient sampling

We first study the problem of efficiently sampling from the top-k Mallows model. Our goal is to
obtain algorithms that are time- and space-efficient in terms of both n and k, ideally, O(n · poly(k)).

Recall that it is possible to efficiently sample the Mallows model on full permutations (k = n) using
RIM [10]. A naive way of constructing a top-k list would be to sample a full permutation according
to RIM and discard the bottom n − k elements; however, this process is incorrect, for instance, it
does not account for the parameter p. A more direct approach would be to modify RIM to work
in the top-k case. To recap, in RIM, new elements are inserted one-by-one to construct a sample
permutation, where at the ith step the element i is inserted into the partial permutation σ1 . . . σi−1

at position j ≤ i with probability pij ; it turns out that these insertion probabilities can be explicitly
computed for a given parameter β making the method computationally efficient. Unfortunately it
is unclear how to adapt RIM to the top-k setting for two reasons: (i) the insertion probabilities do
not seem explicitly computable and (ii) the distance between two top-k lists can decrease after the
insertion of an element (note this is not true for full permutations).

In the following we present two algorithms for sampling. The first is an exact sampling algorithm
based on dynamic programming with time and space exponential in k. The second is an approximate
sampling algorithm based on Markov chains with a running time that is poly(k).

3.1 Exact sampling with a dynamic program

First note that the sampling problem is easily solvable in time O(nkk log k). Indeed, we can
enumerate all the top-k lists (there are at most nk of them) and for each list τ , in time O(k log k),
compute K(p)(τ). This completely describes the distribution on Tk,n and it is easy to sample exactly
from this distribution in time O(nk + k log n).

We now present a more efficient exact sampling algorithm with running time exponential in k but
logarithmic in n. The main intuition behind the algorithm is that two top-k lists that differ only
by elements in {k + 1, . . . , n} have the same probability of being sampled. In particular we can
decompose the Kendall distance between a top-k list τ and the identity Ik by considering separately
the number of inversions in the first k elements, the number of inversions between the first k and the
last n− k elements, and the number of elements in k that are incomparable. All the top-k lists for
which these three quantities are the same are equiprobable.

We now formally present this approach. Let ` ∈ {1, . . . , k} and let P,Q ⊆ [k] such that |P | = ` =

|Q|. Let m ∈ {0, 1, . . . ,
(
k
2

)
}. Define Tk,n(P,Q,m) ⊆ Tk,n to be the following set. A top-k list

τ ∈ Tk,n(P,Q,m) iff (i) [k] ∩ τ = P ; (ii) the elements of P occur only in positions given by Q; and
(iii) the contribution to K(p) by the elements in P is m, i.e.,∑

i,j∈[k]∩τ and i<j

K̄
(p)
i,j (τ) = m.

First we show that each of the partitions consists of equiprobable top-k lists.

Lemma 1. For any two top-k lists τ, τ ′ ∈ Tk,n(P,Q,m), it holds that K(p)(τ) = K(p)(τ ′).

Using this, we present our first sampling algorithm.

Theorem 2. There is an algorithm that generates a top-k list according toM(p)
β,k,n in time O(k24k +

k2 log n).
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3.2 Approximate sampling with a Markov chain

In this section, we present methods based on Markov chains to approximately sample fromM(p)
β,k,n.

Let C be a Markov chain on a state space Ω. We use C(i, j) to denote the transition probability from
state i ∈ Ω to j ∈ Ω. In our case, the chains will be defined on Ω = Tk,n and will be ergodic,
guaranteeing convergence to a unique stationary distribution. Recall that there are different measures
to analyze the speed of a Markov chain’s convergence to stationarity. Here we analyze the relaxation
time, which is defined as trel = 1/(1−λ2) where λ2 is the second largest eigenvalue of the transition
probability matrix of the chain. It is usually more convenient to analyze the relaxation time of a
Markov chain when the stationary distribution is hugely biased. See [18] for formal definitions and
background on Markov chains.

Our goal here is to construct Markov chains whose relaxation time is small. We construct a chain
and show a relaxation time bound of O(k5 log k) for it.

Let τ∗ ∈ Tk,n be the center. We define the Markov chain C on Tk,n converging to Mβ,τ∗ . We
say two elements xi and xj to be τ∗-adjacent if there is no xk such that xi >τ∗ xk >τ∗ xj or
xj >τ∗ xk >τ∗ xi.

Definition 1 (Chain C). Let τ ∈ Tk,n. Choose 1 ≤ i ≤ k − 1 u.a.r. and equiprobably do one of:

(i) Transposition step: Equiprobably do one of:

T0: If τ(i) ∈ τ∗, then find minimum j > i such that τ(j) ∈ τ∗ and put them in the order of τ∗

w.p. eβ/(1 + eβ) and the opposite order w.p. 1/(1 + eβ).
T1: If τ(i) /∈ τ∗, then find minimum j > i such that τ(j) /∈ τ∗ and put them in the order of τ∗

w.p. 1/2 and the opposite order w.p. 1/2.
T2: If (τ(i) ∈ τ∗ and τ(i + 1) /∈ τ∗) or (τ(i) /∈ τ∗ and τ(i + 1) ∈ τ∗), then put them in the

order of τ∗ w.p. eβ/(1 + eβ) and the opposite order w.p. 1/(1 + eβ).

(ii) Substitution step: W.p. 1/2 stay at the current state, and w.p. 1/2 equiprobably do one of:

S0: A homogeneous substitution, i.e.,
S00: If τ(i) ∈ τ∗, then let xi be the τ∗-adjacent element such that xi >τ∗ τ(i) and if xi /∈ τ ,

then replace τ(i) by xi w.p. eβ/(1 + eβ). If τ(i) ∈ τ∗, then let xj be the τ∗-adjacent
element such that xj <τ∗ τ(i) and if xj /∈ τ , then replace τ(i) by xj w.p. 1/(1 + eβ).

S01: If τ(i) /∈ τ∗, pick c u.a.r. from τ̄ and if c /∈ τ∗, replace τ(i) by c w.p. 1/2.
S1: A non-homogeneous substitution, i.e., choose c u.a.r. from τ̄ and compare it with τ(k)

and if one of them is in τ∗ and the other one is not, keep the τ∗ element inside w.p.
eβ(1+p·i)/(1 + eβ(1+p·i)) and the element outside τ∗ w.p. 1/(1 + eβ(1+p·i)); here, i =
|τ [1, k − 1] ∩ τ̄∗|.

If the premise is not satisfied in any of the above, then do nothing.

We first show that the stationary distribution Π of C is the desired top-k Mallows distribution.

Lemma 3. Π =Mβ,τ∗ .

We next bound the relaxation time of C. To do this, we employ a useful technique from Markov
chains known as decomposition. In this technique, we partition the Markov chain C into smaller
Markov chains C(1), . . . , C(k) and connect the C(i)’s by another Markov chain C̄. It follows that
trel(C) ≤ trel(C̄) · maxi trel(C(i)); see [21]. Here, we partition the state space into k + 1 parts.
Indeed, for 0 ≤ i ≤ k, let T (i)

k,n = {τ ∈ Tk,n | |τ ∩ τ∗| = i}. We define the restriction of C to each

partition T (i)
k,n as follows: the chain C(i) performs exactly like C in Definition 1 except it never takes

the S1 option. Let C̄ denote the chain that connects these partitions; we will present its transition
probabilities and bound trel(C̄) later.

To present the analysis, we also need two additional concepts. The first concept concerns biased and
unbiased adjacent transposition chains. Given an n× n non-negative matrix P (·, ·) with entries in
[0, 1], an n-adjacent transposition Markov chain is defined on Sn as follows: at state τ ∈ Sn, pick
i u.a.r. and place τ(i) and τ(i + 1) in the natural order w.p. P (τ(i), τ(i + 1)) and in the opposite
order w.p. 1− P (τ(i), τ(i+ 1)). We call the chain unbiased if the entries of P are 1/2 and biased
otherwise. If there is a constant p > 1/2 such that ∀j > i, P (i, j) = p, then the relaxation time of a
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biased adjacent transposition chain is n2 [2]. For the unbiased chain the relaxation time is bounded
by n3 log n [24]. (Notice that the mixing time of the biased chain is independent of p. This is quite
common when analyzing the mixing time of random walks, e.g., a biased random walk on a line.) 2

The second concept concerns exclusion processes. Given integers k, n such that k < n and a
p ∈ [0, 1], an (n, k, p)-exclusion process is a Markov chain defined on the subset of n-bit strings
of Hamming weight k that makes the following transpositions: at a state x choose i ∈ [n] u.a.r.; if
x(i) = x(i+ 1), then the chain stays at state x, otherwise the new state has (x(i), x(i+ 1) = (1, 0))
w.p. p and (0, 1) w.p. 1− p. The relaxation time of this exclusion process is n2 [2].

Lemma 4. For each i ∈ [k], trel(C(i)) = O(k3 log k).

We now proceed to define C̄. This will be a chain defined on the partitions, i.e., its sample space will
be {T (i)

k,n} and the transition will be defined by the S1 step in Definition 1. Let qi = Pr
τ∈T (i)

k,n

[τ(k) /∈

τ∗]. Note that qi is decreasing with respect to i: q1 = 1 − 1/Z and qk−1 = e(k−2)β/Z, where
Z = e(k−1)β−1

eβ−1
≤ 2e(k−2)β .

From state T (i)
k,n, the chain moves to T (i+1)

k,n w.p. ri = qie
β(1+p(k−i))/(1 + eβ(1+p(k−i))), moves to

T
(i−1)
k,n w.p. `i = (1 − qi)/(1 + eβ(1+p(k−i))), and does nothing w.p. 1 − ri − `i. Note that since
qi ≥ 1/2, we always have ri > 1/2. Furthermore we always have ri/`i+1 > 1.

Lemma 5. trel(C̄) ≤ k2/4.

Finally, we are ready to bound the relaxation time of C. Using Lemma 4, Lemma 5, and employing
the decomposition technique, we obtain the following:

Theorem 6. trel(C) = O(k5 log k).

We remark here that using the above result, we can also bound the total variation mixing time, which
is another measure for mixing. The total variation mixing time, denoted by ttv, is defined as the
minimum time after which the L1 distance of the current state of C and Π falls below a constant,
say, 1/4. From Theorem 6, and the fact that trel ≤ ttv ≤ trel log(minx 1/Π(x)) we conclude that
ttv ≤ βk7 log k. In the supplementary material we show ttv = Ω(k3). Our experimental results
suggest that the L1 distance falls bellow a constant in almost k3 number of steps.

4 Reconstruction

In this section we focus on two basic learning questions in the spirit of [1, 5, 6, 8]. How many samples
from the top-k Mallows model do we need to observe to reconstruct the center top-k list? And, given
samples from a mixture of several top-k lists, how to learn the individual components of the mixture.

4.1 Learning the center

In this section we give a simple algorithm for provably reconstructing the central top-k list, given
enough samples fromMβ . The main idea is to track the ordering among pairs of elements generated
byMβ and use this information to reconstruct the center. For the remaining of this section, whenever
τ ∈ Tk,n is a random variable, we assume it is generated accordingMβ,τ∗,k,n. For simplicity, we
assume that the center τ∗ = Ik, the identity top-k list.

First we bound the probability of an inversion a top-k Mallows model.

Lemma 7. For any two elements i < j, i ∈ [k], it holds that Prτ [i <τ j] ≥ exp(β) · Prτ [j <τ i].

We next bound the probability that the top-k Mallows model contains a given element.3

2In fact, ours is a random walk on a partial order: σ ≤ τ iff when going from σ to τ the number of transposi-
tions from placing a bigger number ahead of a smaller number is greater than the number of transpositions from
placing a smaller number ahead of a bigger number. Similar to what happens for a walk on a total order where a
particle moves to left w.p. q and to right w.p. 1− q, the mixing time is maximized when q = 1/2.

3For simplicity we provide only a bound that involves only involving only β, n and k, although we note a
tighter bound could be obtained involving by p as well.
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Lemma 8. For any i ∈ [k], it holds that Prτ [i ∈ τ ] = Ω(exp(β)/(n− k)).

Using these two bounds, we finally obtain the center reconstruction algorithm.

Theorem 9. There exists a polynomial time algorithm that uses Θ
(
e−β+1
eβ−1

(n− k) log n
)

samples

fromMβ and can identify the central top-k list with probability 1− o(n−3).

4.2 Learning mixtures

In this section we consider the problem of learning a uniform mixture of several top-k Mallows
models. Let τ∗1 , . . . , τ

∗
t be the centers and let β be the common decay parameter. For simplicity of

exposition we assume in this section that β ≤ 1, i.e., we assume to be in the case where samples can
end up being far from the center. Note that this assumption is not crucial and similar bounds can be
derived for β > 1. In the uniform mixture model, first an i ∈ [t] is chosen u.a.r. and a top-k list is
generated according toMβ,τ∗

i
. The goal of the reconstruction problem is, given enough samples

generated according to the mixture, learn their centers.

The main idea behind the algorithm is to first cluster the given samples into t clusters and then apply
the center reconstruction to each cluster. To be able to do the first step without any error, we need a
simplifying assumption that every pair of centers is sufficiently far apart.

First, we observe that samples from a top-k Mallows model will mostly end up close to its center.
For simplicity of exposition, we introduce a slight abuse of notation: if τ is a top-k list, we will
sometimes use τ as if it were the set of its top-k elements. Thus τ ∩ τ ′ will denote the set of elements
that are within the first k of both τ and τ ′, and τ \ τ ′ will denote the elements that are both within the
first k of τ but not within the first k of τ ′.

Lemma 10. If β ≤ 1, then we have Prτ∼Mβ,τ∗

[
|τ ∩ τ∗| ≤ k −

√
β−13k lnn

]
< n−2k.

Given this, provided that the centers in the mixture are sufficiently far from each other 4, we can cluster
sampled top-k lists, using single-linkage clustering in such a way that two samples are clustered
together if and only they were produced by the same center.

Lemma 11. Suppose that β ≤ 1 and, for each {i, j} ∈
(

[t]
2

)
, it holds |τ∗i \ τ∗j | > 4

√
β−13k lnn

and suppose eachMβ,τ∗
i

contributes at most o(n2k) samples. Then, we can cluster sampled top-k
lists in polynomial time so that, w.p. 1− o(1), two samples end up in the same cluster if and only if
they were generated by the same center.

Using the clustering, the algorithm for mixtures is easy.

Theorem 12. Suppose that β ≤ 1, that t = o
(
β·nk−1

logn

)
and that, for each {i, j} ∈

(
[t]
2

)
, it holds

|τ∗i \ τ∗j | > 4
√
β−13k lnn. Then, there is an algorithm that uses

O

(
t · e

−β + 1

eβ − 1
(n− k) log(nt)

)
≤ O

(
β−1 · nt · ln(nt)

)
,

samples to identify the t central top-k lists with probability 1− o(n−3).
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Figure 1: Empirical performance of the Markov chain based approximate sampling. The two plots correspond
to n = 10 (samples=10K) and n = 25 (samples=1M), both having p = 0.5.

4An oft-made assumption in provable learning of mixtures.
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Figure 2: The first three plots detail the results for n = 10 and k = 5, p = 0.5, and β ∈ {0.2, 0.5, 1.0}.
The last plot, instead, has n = 100 and k = 10, and p = β = 0.5. In each of the plots, the y-axis has range
[0, 1] and represents the probability that the algorithms return the correct center; the ranges of the x-axis, which
represents the number of samples, vary across the plots.

5 Experiments

We describe two sets of experiments. We first show that our Markov chain based algorithm can
efficiently sample top-k lists. We then use this sampler to create synthetic datasets from known
centers and show the applicability of our reconstruction results. While our reconstruction algorithm
from Theorem 9 assumes that there are enough samples, we generalize it based on the Condorcet
criterion and a tie-breaking rule. We show that our proposed algorithm outperforms reasonable
baselines on synthetic datasets. We apply this proposed algorithm on a real dataset of top-k movie
lists to create an aggregate list and present anecdotal evidence.

Approximate sampling. First we test the convergence of the Markov chain sampling algorithm
(Section 3.2). We start a number of walks from a given center and conduct walks for a fixed number
of steps. We calculate the empirical distribution of the endpoints and then compute the L1 difference
of this empirical distribution from the true distribution (calculated via the dynamic program in
Section 3.1). This L1 difference is then plotted against the number of steps used by the random
walk. In Figure 1 we plot the results for n = 10, k = 5 and n = 25, k = 5. Each plot contains two
lines, one for each value of β in (0.5, 1.0), p being set to 0.5 all through. For n = 10, the empirical
distribution is computed using 10K different walk samples and 1M for n = 25. Note that the state
space increases as O(nk) and hence a larger value of n needs substantially more samples in order to
achieve similar L1 distances. Also, since a smaller value of β results in a more uniform distribution
over the state space, the L1 difference of the random walk sampler for β = 0.5 is higher than the one
for β = 1.0. In each of the cases, we see the L1 difference stabilizing after roughly 200 steps, any
fluctuation after that is due to variance. In each case, it stabilizes to a non-zero value, as the number
of samples in each case only a constant fraction of the support, and this does not let the L1 difference
between the empirical distribution and the true one to go to zero.

Center reconstruction. Next we study the problem of center reconstruction for top-k lists.

(i) We propose to extend our algorithm from Theorem 9 to the case when are not enough samples
by using the Condorcet criterion [3] as follows. Given the set of input top-k lists, for the generic
pair of elements {i, j}, we say that i (resp., j) beats j (i) in a head-to-head contest if the number of
top-k lists where i > j (j > i) is larger than the number of top-k lists where j > i (i > j); if the two
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numbers are same, then we say that the contest is tied. The value of i is defined to be the number
of j 6= i such that i beats j in a head-to-head contest. Our proposed algorithm orders the elements
according to their value; if the first k + 1 elements have no value-ties, then the algorithm returns the
first k elements in the ordering. It is easy to show that, if the condition of Theorem 9 is satisfied, then
with high probability there will be no value-ties and the returned top-k list will be center. We also
implemented a tie-breaking rule5 if the number of samples is not large enough.

(ii) The Borda count algorithm (named after the Borda method [3]), given a top-k list, assigns a score
of k to the topmost element of the list, a score k − 1 to the second element of the list, down to a
score of 1 to the kth element of the list, and 0 to every other element. The elements are sorted in a
decreasing order according to the sum of its scores across the input top-k lists. If there are no ties in
the first k + 1 elements, the algorithm returns the first k elements and declares failure if otherwise.

(iii) As another baseline, we consider the following positional algorithm. The algorithm assigns to
each element its most frequent position in the input top-k lists. The ideal position for the generic
element i is its most frequent position in the range {1, . . . , k}; if there are ties, the algorithm fails. If,
for each ` ∈ [k], there exists exactly one element whose ideal position is `, then the returned top-k
list will be the perfect matching between the positions and the elements.

We ran the algorithms on synthetic datasets, as well as on a real world dataset. The synthetic datasets
were all generated by the top-k Mallows model, having a single center.

Synthetic datasets. We first produced a number of synthetic top-k lists by sampling fromM(p)
β,Ik,k,n

,
for a number of choices of n, k, β, p, by running the Markov chain (Section 3.2) for 1000 steps.
Figure 2 shows the probability of returning the center (averaged over various runs) of the algorithms
on these inputs. The Condorcet algorithm clearly outperforms the other two.

Criterion dataset. This dataset contains the top-10 movies lists of a number of directors, actors and
artists, as collected by the Criterion web site. We acquired 176 movie lists from www.criterion.
com/explore/top10 and truncated each list to the first 10 movies. The central top-10 list returned
by the Condorcet algorithm ran on the aforementioned 176 top-10 lists is, starting from its top element:
Gilliam’s “Brazil”, Fellini’s “8 ½”, Reed’s “The Third Man”, Maysles, Maysles & Zwerin’s “Gimme
Shelter”, Kurosawa’s “Shichinin no Samurai”, Laughton’s “The Night of the Hunter”, Bresson’s
“Au hasard Balthazar”, Fassbinder’s “Angst essen Seele auf”, Pontecorvo’s “La battaglia di Algeri”,
Carné’s “Les Enfants du Paradis”. Most of the movies in this list are considered to be masterpieces
of the 7th Art.

6 Conclusions

In this work we proposed a top-k Mallows model that generalizes the classic Mallows model to top-k
lists. While our model is apparently challenging from an analysis point of view, we show that it is
still possible to design efficient and provably good algorithms for sampling and reconstruction. Our
work opens several promising research directions, including improving the running times, sample
complexity bounds, and extending the model to other measures on top-k lists [7].
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