Dataset Open Access

Image classification in Galaxy with MNIST handwritten digits dataset

Kaivan Kamali


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4697906</identifier>
  <creators>
    <creator>
      <creatorName>Kaivan Kamali</creatorName>
      <affiliation>Penn State University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Image classification in Galaxy with MNIST handwritten digits dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Galaxy</subject>
    <subject>MNIST</subject>
    <subject>Classification</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-04-16</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4697906</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4697905</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Credit:&amp;nbsp;Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. &amp;quot;Gradient-based learning applied to document recognition.&amp;quot;&amp;nbsp;Proceedings of the IEEE, 86(11):2278-2324, November 1998&lt;br&gt;
&lt;br&gt;
This is a subset of MNIST handwritten digits dataset (http://yann.lecun.com/exdb/mnist/). Training data of composed of 12,000 images of digits 0 to 9. Test data is composed of 6,000 images of digits 0 to 9 (Original dataset has 60,000 training and 10,000 testing images. We are using a subset for a Galaxy tutorial, so the training is not too computationally intensive). Images are grayscale and 28 by 28 pixels. Each pixel has a value between 0 and 255 (0 for color black, 255 for color white, and all other values for different shades of gray).&amp;nbsp; &amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">Credit: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998
http://yann.lecun.com/exdb/mnist/</description>
  </descriptions>
</resource>
160
267
views
downloads
All versions This version
Views 160160
Downloads 267267
Data volume 9.5 GB9.5 GB
Unique views 145145
Unique downloads 9292

Share

Cite as