Conference paper Open Access

Towards Unsupervised Knowledge Extraction

Dorothea Tsatsou; Konstantinos Karageorgos; Anastasios Dimou; Javier Carbo; Jose M. Molina; Petros Daras


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Dorothea Tsatsou</dc:creator>
  <dc:creator>Konstantinos Karageorgos</dc:creator>
  <dc:creator>Anastasios Dimou</dc:creator>
  <dc:creator>Javier Carbo</dc:creator>
  <dc:creator>Jose M. Molina</dc:creator>
  <dc:creator>Petros Daras</dc:creator>
  <dc:date>2021-04-09</dc:date>
  <dc:description>Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence (AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among prominent entities within data. Validation of the approach is performed in two datasets that connect language and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted knowledge for subsequent use through reasoning engines is also offered.</dc:description>
  <dc:description>CEUR-WS.org/Vol-2846</dc:description>
  <dc:identifier>https://zenodo.org/record/4686855</dc:identifier>
  <dc:identifier>10.5281/zenodo.4686855</dc:identifier>
  <dc:identifier>oai:zenodo.org:4686855</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/787061/</dc:relation>
  <dc:relation>info:eu-repo/semantics/altIdentifier/urn/urn:nbn:de:0074-2846-4</dc:relation>
  <dc:relation>doi:10.5281/zenodo.4686854</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/787061</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>knowledge extraction</dc:subject>
  <dc:subject>unsupervised learning</dc:subject>
  <dc:subject>spectral analysis</dc:subject>
  <dc:subject>knowledge representation</dc:subject>
  <dc:subject>symbolic AI</dc:subject>
  <dc:subject>sub-symbolic AI</dc:subject>
  <dc:subject>neural-symbolic integration</dc:subject>
  <dc:subject>neurosymbolic integration</dc:subject>
  <dc:title>Towards Unsupervised Knowledge Extraction</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
11
7
views
downloads
All versions This version
Views 1111
Downloads 77
Data volume 7.0 MB7.0 MB
Unique views 1010
Unique downloads 77

Share

Cite as