Conference paper Open Access

Towards Unsupervised Knowledge Extraction

Dorothea Tsatsou; Konstantinos Karageorgos; Anastasios Dimou; Javier Carbo; Jose M. Molina; Petros Daras


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4686855</identifier>
  <creators>
    <creator>
      <creatorName>Dorothea Tsatsou</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0554-9679</nameIdentifier>
      <affiliation>Centre for Research and Technology Hellas (CERTH), University Carlos III of Madrid</affiliation>
    </creator>
    <creator>
      <creatorName>Konstantinos Karageorgos</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5426-447X</nameIdentifier>
      <affiliation>Centre for Research and Technology Hellas (CERTH)</affiliation>
    </creator>
    <creator>
      <creatorName>Anastasios Dimou</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2763-4217</nameIdentifier>
      <affiliation>Centre for Research and Technology Hellas (CERTH)</affiliation>
    </creator>
    <creator>
      <creatorName>Javier Carbo</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7794-3398</nameIdentifier>
      <affiliation>University Carlos III of Madrid</affiliation>
    </creator>
    <creator>
      <creatorName>Jose M. Molina</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7484-7357</nameIdentifier>
      <affiliation>University Carlos III of Madrid</affiliation>
    </creator>
    <creator>
      <creatorName>Petros Daras</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3814-6710</nameIdentifier>
      <affiliation>Centre for Research and Technology Hellas (CERTH)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Towards Unsupervised Knowledge Extraction</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>knowledge extraction</subject>
    <subject>unsupervised learning</subject>
    <subject>spectral analysis</subject>
    <subject>knowledge representation</subject>
    <subject>symbolic AI</subject>
    <subject>sub-symbolic AI</subject>
    <subject>neural-symbolic integration</subject>
    <subject>neurosymbolic integration</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-04-09</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="urn">urn:nbn:de:0074-2846-4</alternateIdentifier>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4686855</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4686854</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/787061</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence (AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among prominent entities within data. Validation of the approach is performed in two datasets that connect language and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted knowledge for subsequent use through reasoning engines is also offered.&lt;/p&gt;</description>
    <description descriptionType="Other">CEUR-WS.org/Vol-2846</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/787061/">787061</awardNumber>
      <awardTitle>Advanced tools for fighting oNline Illegal TrAfficking</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
11
7
views
downloads
All versions This version
Views 1111
Downloads 77
Data volume 7.0 MB7.0 MB
Unique views 1010
Unique downloads 77

Share

Cite as