Conference paper Open Access

Transformer-based Methods for Recognizing Ultra Fine-grained Entities (RUFES)

Boroş, Emanuela; Doucet, Antoine


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20210413122721.0</controlfield>
  <controlfield tag="001">4681008</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">In Proceedings of the Thirteenth Text Analysis Conference (TAC 2020)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of La Rochelle, L3i, F-17000, La Rochelle, France</subfield>
    <subfield code="a">Doucet, Antoine</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">231692</subfield>
    <subfield code="z">md5:ede9e09fe52510129fe3d4dcd8112cb0</subfield>
    <subfield code="u">https://zenodo.org/record/4681008/files/TAC_KBP_20_February_Transformer_based_Methods_for_Recognizing_Ultra_Fine_grained_Entities.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-embeddia</subfield>
    <subfield code="o">oai:zenodo.org:4681008</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of La Rochelle, L3i, F-17000, La Rochelle, France</subfield>
    <subfield code="a">Boroş, Emanuela</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Transformer-based Methods for Recognizing Ultra Fine-grained Entities (RUFES)</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-embeddia</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825153</subfield>
    <subfield code="a">Cross-Lingual Embeddings for Less-Represented Languages in European News Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper summarizes the participation of the Laboratoire Informatique, Image et Interaction (L3i laboratory) of the University of La Rochelle in the Recognizing Ultra Finegrained Entities (RUFES) track1 within the Text Analysis Conference (TAC) series of evaluation workshops. Our participation relies on two neural-based models, one based on a pretrained and fine-tuned language model with a stack of Transformer layers for fine-grained entity extraction and one out-of-the-box model for within-document entity coreference. We observe that our approach has great potential in increasing the performance of fine-grained entity recognition. Thus, the future work envisioned is to enhance the ability of the models following additional experiments and a deeper analysis of the results.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4681007</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4681008</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
48
12
views
downloads
All versions This version
Views 4848
Downloads 1212
Data volume 2.8 MB2.8 MB
Unique views 4545
Unique downloads 1111

Share

Cite as