Dataset Open Access
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">instect traps</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">behavioral ecology</subfield> </datafield> <controlfield tag="005">20220324155533.0</controlfield> <controlfield tag="001">4680119</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">6860304663</subfield> <subfield code="z">md5:f125654fefb6a94c5c9b1014c812344b</subfield> <subfield code="u">https://zenodo.org/record/4680119/files/insect-tuboid-classifier.zip</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1093649148</subfield> <subfield code="z">md5:edf7b5fa94bd074e5e52284e96510c0e</subfield> <subfield code="u">https://zenodo.org/record/4680119/files/siamese-insect-matcher.zip</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1058469613</subfield> <subfield code="z">md5:2621daac4341ea3f7777c2b84e1c8568</subfield> <subfield code="u">https://zenodo.org/record/4680119/files/universal-insect-detector.zip</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-04-12</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire_data</subfield> <subfield code="o">oai:zenodo.org:4680119</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">University of British Columbia</subfield> <subfield code="0">(orcid)0000-0001-6546-4306</subfield> <subfield code="a">Quentin Geissmann</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Sticky Pi -- Machine Learning Data, Configuration and Models</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p><strong>Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)</strong></p> <p>Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.</p> <p><strong>Universal Insect Detector:</strong></p> <p>`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` &ndash; A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects</li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>`config/` <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> <li>`config.yaml `&ndash; The configuration file defining the hyperparameters to train the model</li> <li>`mask_rcnn_R_101_C4_3x.yaml` &ndash; the base configuration file from which config is derived</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong>Siamese Insect Matcher</strong></p> <p>`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` &ndash; a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `&lt;device&gt;.&lt;datetime_frame_1&gt;.&lt;datetime_frame_2&gt;.svg`</li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>`config/` <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong>Insect Tuboid Classifier:</strong></p> <p>`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` <ul> <li>`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.</li> <li>A directory tree of the form: `&lt;series_id&gt;/&lt;tuboid_id&gt;/`. Each terminal directory contains: <ul> <li> <ul> <li>`tuboid.jpg` &ndash; a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom &ndash; might be padded with empty images</li> <li>`metadata.txt` &ndash; a csv text file with columns: <ul> <li> <ul> <li>parrent_image_id &ndash; &lt;device&gt;.&lt;UTC_datetime&gt;</li> <li>X &ndash; the X coordinates of the object centroid</li> <li>Y &ndash; the Y coordinates of the object centroid</li> </ul> </li> </ul> </li> <li>scale &ndash; The scaling factor applied between the original and image and the 224 x 224 tile (&gt;1 =&gt; image was enlarged)</li> <li>`context.jpg` &ndash; a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)</li> </ul> </li> </ul> </li> </ul> </li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>config/ <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> </ul> </li> </ul></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.4680118</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.4680119</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 210 | 128 |
Downloads | 505 | 276 |
Data volume | 1.1 TB | 435.8 GB |
Unique views | 187 | 118 |
Unique downloads | 162 | 38 |