UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.
There is a newer version of this record available.

Dataset Open Access

Sticky Pi -- Machine Learning Data, Configuration and Models

Quentin Geissmann


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">instect traps</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">behavioral ecology</subfield>
  </datafield>
  <controlfield tag="005">20220324155533.0</controlfield>
  <controlfield tag="001">4680119</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6860304663</subfield>
    <subfield code="z">md5:f125654fefb6a94c5c9b1014c812344b</subfield>
    <subfield code="u">https://zenodo.org/record/4680119/files/insect-tuboid-classifier.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1093649148</subfield>
    <subfield code="z">md5:edf7b5fa94bd074e5e52284e96510c0e</subfield>
    <subfield code="u">https://zenodo.org/record/4680119/files/siamese-insect-matcher.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1058469613</subfield>
    <subfield code="z">md5:2621daac4341ea3f7777c2b84e1c8568</subfield>
    <subfield code="u">https://zenodo.org/record/4680119/files/universal-insect-detector.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:4680119</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of British Columbia</subfield>
    <subfield code="0">(orcid)0000-0001-6546-4306</subfield>
    <subfield code="a">Quentin Geissmann</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Sticky Pi -- Machine Learning Data, Configuration and Models</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Universal Insect Detector:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/` &amp;ndash; A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`config/`
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
		&lt;li&gt;`config.yaml `&amp;ndash; The configuration file defining the hyperparameters to train the model&lt;/li&gt;
		&lt;li&gt;`mask_rcnn_R_101_C4_3x.yaml` &amp;ndash; the base configuration file from which config is derived&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Siamese Insect Matcher&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/` &amp;ndash; a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `&amp;lt;device&amp;gt;.&amp;lt;datetime_frame_1&amp;gt;.&amp;lt;datetime_frame_2&amp;gt;.svg`&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`config/`
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Insect Tuboid Classifier:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/`
	&lt;ul&gt;
		&lt;li&gt;`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.&lt;/li&gt;
		&lt;li&gt;A directory tree of the form: `&amp;lt;series_id&amp;gt;/&amp;lt;tuboid_id&amp;gt;/`. Each terminal directory contains:
		&lt;ul&gt;
			&lt;li&gt;
			&lt;ul&gt;
				&lt;li&gt;`tuboid.jpg` &amp;ndash; a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom &amp;ndash; might be padded with empty images&lt;/li&gt;
				&lt;li&gt;`metadata.txt` &amp;ndash; a csv text file with columns:
				&lt;ul&gt;
					&lt;li&gt;
					&lt;ul&gt;
						&lt;li&gt;parrent_image_id &amp;ndash; &amp;lt;device&amp;gt;.&amp;lt;UTC_datetime&amp;gt;&lt;/li&gt;
						&lt;li&gt;X &amp;ndash; the X coordinates of the object centroid&lt;/li&gt;
						&lt;li&gt;Y &amp;ndash; the Y coordinates of the object centroid&lt;/li&gt;
					&lt;/ul&gt;
					&lt;/li&gt;
				&lt;/ul&gt;
				&lt;/li&gt;
				&lt;li&gt;scale &amp;ndash; The scaling factor applied between the original and image and the 224 x 224 tile (&amp;gt;1 =&amp;gt; image was enlarged)&lt;/li&gt;
				&lt;li&gt;`context.jpg` &amp;ndash; a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)&lt;/li&gt;
			&lt;/ul&gt;
			&lt;/li&gt;
		&lt;/ul&gt;
		&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;config/
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4680118</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4680119</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
210
505
views
downloads
All versions This version
Views 210128
Downloads 505276
Data volume 1.1 TB435.8 GB
Unique views 187118
Unique downloads 16238

Share

Cite as