Dataset Open Access
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/2de26f9c-875f-4ebe-86f1-bcd66475c977/insect-tuboid-classifier.zip" }, "checksum": "md5:f125654fefb6a94c5c9b1014c812344b", "bucket": "2de26f9c-875f-4ebe-86f1-bcd66475c977", "key": "insect-tuboid-classifier.zip", "type": "zip", "size": 6860304663 }, { "links": { "self": "https://zenodo.org/api/files/2de26f9c-875f-4ebe-86f1-bcd66475c977/siamese-insect-matcher.zip" }, "checksum": "md5:edf7b5fa94bd074e5e52284e96510c0e", "bucket": "2de26f9c-875f-4ebe-86f1-bcd66475c977", "key": "siamese-insect-matcher.zip", "type": "zip", "size": 1093649148 }, { "links": { "self": "https://zenodo.org/api/files/2de26f9c-875f-4ebe-86f1-bcd66475c977/universal-insect-detector.zip" }, "checksum": "md5:2621daac4341ea3f7777c2b84e1c8568", "bucket": "2de26f9c-875f-4ebe-86f1-bcd66475c977", "key": "universal-insect-detector.zip", "type": "zip", "size": 1058469613 } ], "owners": [ 32777 ], "doi": "10.5281/zenodo.4680119", "stats": { "version_unique_downloads": 162.0, "unique_views": 118.0, "views": 128.0, "version_views": 208.0, "unique_downloads": 38.0, "version_unique_views": 185.0, "volume": 435849455333.0, "version_downloads": 505.0, "downloads": 276.0, "version_volume": 1133649261944.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.4680119", "conceptdoi": "https://doi.org/10.5281/zenodo.4680118", "bucket": "https://zenodo.org/api/files/2de26f9c-875f-4ebe-86f1-bcd66475c977", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4680118.svg", "html": "https://zenodo.org/record/4680119", "latest_html": "https://zenodo.org/record/6382496", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4680119.svg", "latest": "https://zenodo.org/api/records/6382496" }, "conceptdoi": "10.5281/zenodo.4680118", "created": "2021-08-09T20:14:42.883746+00:00", "updated": "2022-03-24T15:55:33.803717+00:00", "conceptrecid": "4680118", "revision": 3, "id": 4680119, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.4680119", "description": "<p><strong>Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)</strong></p>\n\n<p>Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.</p>\n\n<p><strong>Universal Insect Detector:</strong></p>\n\n<p>`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/` – A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>`config/`\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t\t<li>`config.yaml `– The configuration file defining the hyperparameters to train the model</li>\n\t\t<li>`mask_rcnn_R_101_C4_3x.yaml` – the base configuration file from which config is derived</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p> </p>\n\n<p><strong>Siamese Insect Matcher</strong></p>\n\n<p>`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/` – a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `<device>.<datetime_frame_1>.<datetime_frame_2>.svg`</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>`config/`\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p> </p>\n\n<p><strong>Insect Tuboid Classifier:</strong></p>\n\n<p>`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/`\n\t<ul>\n\t\t<li>`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.</li>\n\t\t<li>A directory tree of the form: `<series_id>/<tuboid_id>/`. Each terminal directory contains:\n\t\t<ul>\n\t\t\t<li>\n\t\t\t<ul>\n\t\t\t\t<li>`tuboid.jpg` – a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom – might be padded with empty images</li>\n\t\t\t\t<li>`metadata.txt` – a csv text file with columns:\n\t\t\t\t<ul>\n\t\t\t\t\t<li>\n\t\t\t\t\t<ul>\n\t\t\t\t\t\t<li>parrent_image_id – <device>.<UTC_datetime></li>\n\t\t\t\t\t\t<li>X – the X coordinates of the object centroid</li>\n\t\t\t\t\t\t<li>Y – the Y coordinates of the object centroid</li>\n\t\t\t\t\t</ul>\n\t\t\t\t\t</li>\n\t\t\t\t</ul>\n\t\t\t\t</li>\n\t\t\t\t<li>scale – The scaling factor applied between the original and image and the 224 x 224 tile (>1 => image was enlarged)</li>\n\t\t\t\t<li>`context.jpg` – a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)</li>\n\t\t\t</ul>\n\t\t\t</li>\n\t\t</ul>\n\t\t</li>\n\t</ul>\n\t</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>config/\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t</ul>\n\t</li>\n</ul>", "language": "eng", "title": "Sticky Pi -- Machine Learning Data, Configuration and Models", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 2, "index": 0, "parent": { "pid_type": "recid", "pid_value": "4680118" }, "is_last": false, "last_child": { "pid_type": "recid", "pid_value": "6382496" } } ] }, "keywords": [ "instect traps", "behavioral ecology" ], "publication_date": "2021-04-12", "creators": [ { "orcid": "0000-0001-6546-4306", "affiliation": "University of British Columbia", "name": "Quentin Geissmann" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.4680118", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 208 | 128 |
Downloads | 505 | 276 |
Data volume | 1.1 TB | 435.8 GB |
Unique views | 185 | 118 |
Unique downloads | 162 | 38 |