UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.
There is a newer version of this record available.

Dataset Open Access

Sticky Pi -- Machine Learning Data, Configuration and Models

Quentin Geissmann


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4680119</identifier>
  <creators>
    <creator>
      <creatorName>Quentin Geissmann</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6546-4306</nameIdentifier>
      <affiliation>University of British Columbia</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Sticky Pi -- Machine Learning Data, Configuration and Models</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>instect traps</subject>
    <subject>behavioral ecology</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-04-12</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4680119</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4680118</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Universal Insect Detector:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/` &amp;ndash; A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`config/`
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
		&lt;li&gt;`config.yaml `&amp;ndash; The configuration file defining the hyperparameters to train the model&lt;/li&gt;
		&lt;li&gt;`mask_rcnn_R_101_C4_3x.yaml` &amp;ndash; the base configuration file from which config is derived&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Siamese Insect Matcher&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/` &amp;ndash; a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `&amp;lt;device&amp;gt;.&amp;lt;datetime_frame_1&amp;gt;.&amp;lt;datetime_frame_2&amp;gt;.svg`&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`config/`
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Insect Tuboid Classifier:&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;`data/`
	&lt;ul&gt;
		&lt;li&gt;`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.&lt;/li&gt;
		&lt;li&gt;A directory tree of the form: `&amp;lt;series_id&amp;gt;/&amp;lt;tuboid_id&amp;gt;/`. Each terminal directory contains:
		&lt;ul&gt;
			&lt;li&gt;
			&lt;ul&gt;
				&lt;li&gt;`tuboid.jpg` &amp;ndash; a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom &amp;ndash; might be padded with empty images&lt;/li&gt;
				&lt;li&gt;`metadata.txt` &amp;ndash; a csv text file with columns:
				&lt;ul&gt;
					&lt;li&gt;
					&lt;ul&gt;
						&lt;li&gt;parrent_image_id &amp;ndash; &amp;lt;device&amp;gt;.&amp;lt;UTC_datetime&amp;gt;&lt;/li&gt;
						&lt;li&gt;X &amp;ndash; the X coordinates of the object centroid&lt;/li&gt;
						&lt;li&gt;Y &amp;ndash; the Y coordinates of the object centroid&lt;/li&gt;
					&lt;/ul&gt;
					&lt;/li&gt;
				&lt;/ul&gt;
				&lt;/li&gt;
				&lt;li&gt;scale &amp;ndash; The scaling factor applied between the original and image and the 224 x 224 tile (&amp;gt;1 =&amp;gt; image was enlarged)&lt;/li&gt;
				&lt;li&gt;`context.jpg` &amp;ndash; a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)&lt;/li&gt;
			&lt;/ul&gt;
			&lt;/li&gt;
		&lt;/ul&gt;
		&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;`output/`
	&lt;ul&gt;
		&lt;li&gt;`model_final.pth` &amp;ndash; the model as trained for the publication&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;config/
	&lt;ul&gt;
		&lt;li&gt;`config.yaml` &amp;ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
&lt;/ul&gt;</description>
  </descriptions>
</resource>
210
505
views
downloads
All versions This version
Views 210128
Downloads 505276
Data volume 1.1 TB435.8 GB
Unique views 187118
Unique downloads 16238

Share

Cite as