Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.4680119"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.4680119</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.4680119"/> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0001-6546-4306"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0001-6546-4306</dct:identifier> <foaf:name>Quentin Geissmann</foaf:name> <org:memberOf> <foaf:Organization> <foaf:name>University of British Columbia</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Sticky Pi -- Machine Learning Data, Configuration and Models</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued> <dcat:keyword>instect traps</dcat:keyword> <dcat:keyword>behavioral ecology</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-04-12</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/4680119"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/4680119</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.4680118"/> <dct:description><p><strong>Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)</strong></p> <p>Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.</p> <p><strong>Universal Insect Detector:</strong></p> <p>`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` &ndash; A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects</li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>`config/` <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> <li>`config.yaml `&ndash; The configuration file defining the hyperparameters to train the model</li> <li>`mask_rcnn_R_101_C4_3x.yaml` &ndash; the base configuration file from which config is derived</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong>Siamese Insect Matcher</strong></p> <p>`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` &ndash; a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `&lt;device&gt;.&lt;datetime_frame_1&gt;.&lt;datetime_frame_2&gt;.svg`</li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>`config/` <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong>Insect Tuboid Classifier:</strong></p> <p>`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.</p> <ul> <li>`data/` <ul> <li>`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.</li> <li>A directory tree of the form: `&lt;series_id&gt;/&lt;tuboid_id&gt;/`. Each terminal directory contains: <ul> <li> <ul> <li>`tuboid.jpg` &ndash; a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom &ndash; might be padded with empty images</li> <li>`metadata.txt` &ndash; a csv text file with columns: <ul> <li> <ul> <li>parrent_image_id &ndash; &lt;device&gt;.&lt;UTC_datetime&gt;</li> <li>X &ndash; the X coordinates of the object centroid</li> <li>Y &ndash; the Y coordinates of the object centroid</li> </ul> </li> </ul> </li> <li>scale &ndash; The scaling factor applied between the original and image and the 224 x 224 tile (&gt;1 =&gt; image was enlarged)</li> <li>`context.jpg` &ndash; a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)</li> </ul> </li> </ul> </li> </ul> </li> <li>`output/` <ul> <li>`model_final.pth` &ndash; the model as trained for the publication</li> </ul> </li> <li>config/ <ul> <li>`config.yaml` &ndash; The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li> </ul> </li> </ul></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4680119"/> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4680119"/> <dcat:byteSize>6860304663</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4680119/files/insect-tuboid-classifier.zip"/> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4680119"/> <dcat:byteSize>1093649148</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4680119/files/siamese-insect-matcher.zip"/> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.4680119"/> <dcat:byteSize>1058469613</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/4680119/files/universal-insect-detector.zip"/> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 209 | 128 |
Downloads | 505 | 276 |
Data volume | 1.1 TB | 435.8 GB |
Unique views | 186 | 118 |
Unique downloads | 162 | 38 |