Dataset Open Access
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.4680119", "language": "eng", "title": "Sticky Pi -- Machine Learning Data, Configuration and Models", "issued": { "date-parts": [ [ 2021, 4, 12 ] ] }, "abstract": "<p><strong>Dataset for the Machine Learning section of the Sticky Pi project (https://doc.sticky-pi.com/)</strong></p>\n\n<p>Contains the dataset for the three algorithms described in the publication: Universal Insect Detector, Siamese Insect Matcher and Insect Tuboid Classifier.</p>\n\n<p><strong>Universal Insect Detector:</strong></p>\n\n<p>`universal_insect_detector/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/` – A set of svg images that contain the embedded jpg raw image, and a set of non-intersecting polygon around the labelled insects</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>`config/`\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t\t<li>`config.yaml `– The configuration file defining the hyperparameters to train the model</li>\n\t\t<li>`mask_rcnn_R_101_C4_3x.yaml` – the base configuration file from which config is derived</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p> </p>\n\n<p><strong>Siamese Insect Matcher</strong></p>\n\n<p>`siamese_insect_matcher/` contains training/validation data, configuration files to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/` – a set of svg images that contain two embedded jpg raw images vertically stacked corresponding to two frames in a series. Each predicted insect is labelled as a polygon. Insects that are labelled as the same instance, between the two frames, are grouped (i.e. SVG group). The filename of each image is `<device>.<datetime_frame_1>.<datetime_frame_2>.svg`</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>`config/`\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p> </p>\n\n<p><strong>Insect Tuboid Classifier:</strong></p>\n\n<p>`insect_tuboid_classifier/` contains images of insect tuboid, a database file describing their taxonomy, a configuration file to train the model, and the model as trained and used for publication.</p>\n\n<ul>\n\t<li>`data/`\n\t<ul>\n\t\t<li>`database.db`: a sqlite file with a single table `ANNOTATIONS`. The table maps a unique identifier of each tuboid (tuboid_id) to a set of manually annotated taxonomic variables.</li>\n\t\t<li>A directory tree of the form: `<series_id>/<tuboid_id>/`. Each terminal directory contains:\n\t\t<ul>\n\t\t\t<li>\n\t\t\t<ul>\n\t\t\t\t<li>`tuboid.jpg` – a jpeg image made of 224 x 224 tiles representing all the shots in a tuboid, left to right, top to bottom – might be padded with empty images</li>\n\t\t\t\t<li>`metadata.txt` – a csv text file with columns:\n\t\t\t\t<ul>\n\t\t\t\t\t<li>\n\t\t\t\t\t<ul>\n\t\t\t\t\t\t<li>parrent_image_id – <device>.<UTC_datetime></li>\n\t\t\t\t\t\t<li>X – the X coordinates of the object centroid</li>\n\t\t\t\t\t\t<li>Y – the Y coordinates of the object centroid</li>\n\t\t\t\t\t</ul>\n\t\t\t\t\t</li>\n\t\t\t\t</ul>\n\t\t\t\t</li>\n\t\t\t\t<li>scale – The scaling factor applied between the original and image and the 224 x 224 tile (>1 => image was enlarged)</li>\n\t\t\t\t<li>`context.jpg` – a representation of the first whole image of a series, with a box around the first tuboid shot (this is for debugging/labelling purposes)</li>\n\t\t\t</ul>\n\t\t\t</li>\n\t\t</ul>\n\t\t</li>\n\t</ul>\n\t</li>\n\t<li>`output/`\n\t<ul>\n\t\t<li>`model_final.pth` – the model as trained for the publication</li>\n\t</ul>\n\t</li>\n\t<li>config/\n\t<ul>\n\t\t<li>`config.yaml` – The configuration file defining the hyperparameters to train the model as well as the taxonomic labels</li>\n\t</ul>\n\t</li>\n</ul>", "author": [ { "family": "Quentin Geissmann" } ], "type": "dataset", "id": "4680119" }
All versions | This version | |
---|---|---|
Views | 210 | 128 |
Downloads | 505 | 276 |
Data volume | 1.1 TB | 435.8 GB |
Unique views | 187 | 118 |
Unique downloads | 162 | 38 |