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Abstract—In the last decade, the research on and the technol-
ogy for outdoor tracking have seen an explosion of advances. It
is expected that in the near future we will witness similar trends
for indoor scenarios where people spend more than 70% of their
lives. The rationale for this is that there is a need for reliable
and high-definition real-time tracking systems that have the
ability to operate in indoor environments, thus complementing
those based on satellite technologies such as GPS. The indoor

environments are very challenging and, as a result, a large variety
of technologies have been proposed for coping with them, but no
legacy solution has emerged yet. This paper presents a survey on
indoor wireless tracking of mobile nodes from a signal processing
perspective. It can be argued that the indoor tracking problem is
more challenging than the one on indoor localization. The reason
is simple – from a set of measurements one has to estimate not
one location but a series of correlated locations of a mobile node.
The paper illustrates the theory, the main tools and the most
promising technologies for indoor tracking. New directions of
research are also discussed.

Index Terms—Indoor tracking, simultaneous localization and
mapping, Bayesian filtering, data fusion, technologies for track-
ing.

I. INTRODUCTION

Indoor real time locating systems (RTLS) have been gain-

ing relevance due to the widespread advances of devices

and technologies and the necessity for seamless solutions in

location-based services. An important component of RTLS is

indoor tracking where objects, vehicles or people (in the sequel

referred to as mobile nodes) are tracked within a building or

any enclosed structure. Examples include tracking of products

through manufacturing lines, first-responder navigation, asset
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navigation and tracking, operation of indoor unmanned vehi-

cles, or people-movers [1]. The widely diffused Global Nav-

igation Satellite System (GNSS) offers a worldwide service

coverage thanks to a network of dedicated satellites [2]. GNSS

is recognized to be the legacy system in outdoor environments

and to a great extent one of the most accurate source of posi-

tion information when it is available. However, its operation in

indoor or obstructed environments is infeasible and, instead,

alternative systems have to be adopted. There are some ad

hoc solutions for indoor tracking and they are based on a

large variety of technologies, from the early RTLS systems

that exploit ultrasounds (e.g., the ActiveBat system), to more

recent impulse radio ultrawide-band (UWB) techniques [2]–

[4]. In parallel, in the robotics community, where tracking is

of crucial importance, systems for simultaneous localization

and mapping (SLAM) have been investigated, mainly using

laser and vision technologies [5].

A current trend in addressing indoor tracking is to use

standard, low-cost, and already deployed technologies. One

driver of this activity is the enabling of smartphone-centered

indoor positioning systems (IPSs) [6]. In general, it is expected

that the market opportunities for RTLS and IPS will be on

the order of $10 billion yearly in 2024 [6]. The technologies

used in these systems are highly heterogeneous, encompass-

ing WiFi, UWB, radio-frequency identification (RFID), Blue-

tooth, near-field communication (NFC), 3GPP/LTE, signals-

of-opportunity, and inertial measurement units (IMUs). It goes

without saying that the latest challenge in indoor tracking

(as well as localization) is not only to design specialized

sensors for these tasks but to devise and implement data

fusion methods that can exploit the already available tech-

nologies. Data fusion in indoor tracking is a key element for

further advances and presents exciting challenges especially

for signal processing practitioners and researchers. Due to the

large variety of technologies and involved standards, a full

understanding of the theoretical basics and a good mastery of

advanced statistical tools is fundamental to allow for design

of modern tracking systems. Real-time approaches that have

been proposed are mainly based on the Bayesian filtering

methodology, including variants of the Kalman filter (KF)

and the much more versatile framework provided by particle

filtering (PF) [7]. These powerful statistical tools allow for

a general way of coping with heterogeneous measurements,

noise and user mobility models.

In this survey we introduce the problem of indoor wireless

tracking of mobile nodes within a quite general framework.

We also consider the mapping problem as it is tightly related
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Fig. 1. A system with anchor and mobile nodes. Time indexes are not shown
for notation simplicity.

to tracking. We present statistical-based methods that are

available for resolving these problems. The main types of

measurements and technologies that are used for tracking of

mobile nodes are also discussed.

II. THE TRACKING ESTIMATION PROBLEM

Wireless tracking systems basically involve the presence of

a number of reference wireless nodes (anchor nodes or land-

marks) deployed at fixed locations and of one or more mobile

nodes (often referred to as agents, targets or mobile users)

(see Fig. 1). The terminology is not universal, and it often

depends on the technology behind. For instance, in cellular-

based tracking systems the term base station (BS) is used for

anchor nodes, while mobile station (MS) is reserved for a

node that moves (a MS is sometimes called user equipment).

In most applications the time-varying positions of the mobile

nodes are unknown and have to be estimated. On the other

hand, the anchor nodes are located in a priori known positions.

The locations of the anchor modes, however, may not always

be known, as in SLAM [5]. There, one aims at localizing a

set of fixed landmarks and construct a map of the surrounding

environment by navigating through a predetermined path.

A standard problem of RTLS is localization, where the

objective is to determine the location, in a coordinate reference

frame, of one or more nodes with respect to reference locations

typically marked by dedicated reference nodes. This process

requires interactions among the nodes where, first, specific

position-dependent measurements are performed between the

nodes and, second, these measurements are processed to

determine the position of the nodes with unknown locations.

A typical example of measured data is the distance between

the involved nodes. A detailed description of the types of

measurements can be found in Sec. III.

In this review, we do not address the localization problem

- there have already been published a number of papers with

good reviews (e.g., [3], [4]). Instead, we focus on indoor track-

ing which can be viewed as a sequence of position estimations.

Indoor tracking systems must not only determine the punctual

position of the mobile node at a given time, but also track and

predict its trajectory in real-time. Tracking can be achieved as a

mere sequence of independent location estimates, regardless of

the system history (i.e., without memory), but more frequently

and efficiently, it involves the estimation of velocity and

acceleration and all the past states of the mobile node. This

is accomplished by using mobility models that describe the

node’s movement.
A different concept related to tracking and often confused

with localization, is navigation. It is based on past position

estimates and it consists in controlling the course and the

current position of a mobile node with the purpose of follow-

ing a predetermined path or of getting to a target destination.

Navigation is often a component of SLAM systems, as well

as tracking procedures.

A. Problem Statement

Consider a radio positioning system composed of a set

of K nodes capable of interacting with each other through

wireless signaling (see Fig. 1). The physical configuration of

the kth node at discrete time step n (e.g., position, velocity,

acceleration, and orientation) is described by the node’s state

x
(k)
n . For example, in one setting, x

(k)
n corresponds to the

node’s position and velocity in 2D or 3D coordinates, i.e.,

x
(k)
n includes the nodes position p

(k)
n , and the node’s velocity

ṗ
(k)
n . In another setting, besides the position and velocity, x

(k)
n

may include the orientation of the mobile node θ
(k)
n .

Denote with xn the global state of the system at time

step n composed of the states of all the nodes x
(1)
n , x

(2)
n ,

. . . , x
(K)
n . We point out that if the system has anchor

nodes, their states are known and time independent. The

tracking problem can be viewed as a statistical inversion

problem where a time succession of (hidden) system states

x0:n = {x0,x1, . . . ,xn} has to be estimated based on a set

of noisy measurements y1:n = {y1,y2, . . . ,yn}. Specifically,

yn is the set of measurements available at step n and,

in general, includes the measurements between any couple

of nodes
{

y
(1,1)
n ,y

(1,2)
n , . . . ,y

(1,K)
n ,y

(2,1)
n , . . . ,y

(K,K)
n

}

, with

y
(k,m)
n denoting the measurements acquired by node m about

node k, if available. When the measurements can be taken

not only between anchor and mobile nodes, but also among

mobile nodes, then the tracking becomes cooperative. This

model applies only when each measurement can be uniquely

associated to the IDs of the nodes. There are, however, settings

where the sensors do not know the ID of the nodes that

produce the signals they sense [8]. In this paper, we do not

address tracking under these conditions.
The measurements are useful for tracking if they are re-

lated to physical quantities affected by the geometric and

inertial configuration of the nodes. By taking advantage of the

radio propagation characteristics, the nodes extract position-

dependent features from exchanged signals (inter-node mea-

surements). A mobile node can also carry out self-tracking

by using its own measurements (self-measurements) using

on-board sensors such as IMUs. For example y
(k,m)
n could

represent the distance measurement between the kth and mth

nodes, measured by node m, whereas y
(k,k)
n is the set of

self-measurements of node k. More details on the possibly

available measurements are given in Sec. III.
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In this review we focus on the Bayesian theory as a main

workhorse for solving the addressed problem. This theory

allows one to model the uncertainty about the system and the

outcomes of interest by optimally combining prior knowledge

and the information from observations (measurements). Within

this framework, we want to compute the joint posterior distri-

bution of the entire sequence of states given the measurements

up to step n

p(x0:n|y1:n) =
p(y1:n|x0:n) p(x0:n)

p(y1:n)
, (1)

where p(x0:n) is the prior distribution incorporating all the

prior knowledge; p(y1:n|x0:n) is the perception model, i.e., the

likelihood for the measurements accounting for the observation

noise; and p(y1:n) is a normalization constant. The joint

posterior distribution (1) reflects all the up-to-date knowledge

about the state of the system at step n.

The main drawback in applying (1) directly is that it has

to be recomputed whenever a new measurement is taken

by making the computational complexity intractable as n
increases. The complexity can be drastically reduced by

resorting to a simplified but widely used model in which

the states x0:n form a first-order Markov sequence so that

p(xn|x0:n−1,y1:n−1) = p(xn|xn−1), i.e., the state at step

n depends only on the state at step n − 1. In addition, a

current measurement yn is assumed conditionally independent

of the past measurements and states, i.e., p(yn|x0:n,y1:n−1) =
p(yn|xn). In most practical cases, the measurements are also

conditionally independent, which implies that p(yn|xn) =
∏

m,k

p
(

y
(m,k)
n |xn

)

, where p
(

y
(m,k)
n |xn

)

is the likelihood of

xn given the measurements y
(m,k)
n between nodes m and

k. These assumptions lead to the probabilistic state space

Markovian model with the following ingredients:

• p(x0): prior information at time step 0, or the initial

uncertainty about the state;

• p(yn|xn): perception (or measurement) model, or how

the unknowns and observations relate;

• p(xn|xn−1): mobility (or dynamic) model, or the prior

information on the state evolution over time.

Often in theory and practice, one adopts the following

general description of the state space model:

xn = g(xn−1) +wn (2)

yn = h(xn) + νn , (3)

where the function g(·) models the dynamics, the function h(·)
maps the state to a measurement signal, and wn and νn are the

process and measurement additive random noises, respectively.

B. Performance Metrics

The requirements and performance metrics of interest are

driven by the application. Due to the inherent uncertainties

present in the system (e.g., the measurement noise), the node’s

state estimate will be characterized by errors as well. The

position estimation error at time instant n is given by the

Euclidean distance between the estimated position p̂n and the

true position pn as e (pn) = ‖p̂n −pn‖. From the errors one

can construct various statistics that can be used as performance

metrics of a given method. For example, one may use the root

mean square error (RMSE) of the position estimates

RMSEn =
√

E
(

e2(pn)
)

, (4)

where E(·) indicates the statistical expectation of the argu-

ment. We note that, in general, the expectation is a function of

time. In practical performance evaluation tests, the expectation

is approximated by a set of L independent Monte Carlo trials

as RMSEn ≃
√

1
L

∑L

ℓ=1 e
2
ℓ (pn), with eℓ (·) being the error

at the ℓth trial. The RMSE is often referred to as accuracy

as it is a measure of the statistical deviation of the position

estimate from the real position. A similar definition can be

given with reference to the node’s velocity and orientation.

The position mean square error (MSE) is the sum of the MSEs

of the estimates of the elements of pn [9].

It is always important to compare the tracking performance

of a proposed method with the theoretically best achievable

performance. To that end, we resort to the Posterior Cramér-

Rao bound (PCRB) [10]. We recall that in tracking, the aim

is to estimate xn modeled by (2) and observed via (3). If we

define the covariance matrix of a particular estimator x̂n by

Cn, where

Cn = E

(

(x̂n − xn) (x̂n − xn)
⊤
)

(5)

then we must have1

Cn � J−1
n , (6)

where Jn is the Bayesian information matrix, which is a

sum of two information matrices, the observation information

matrix and the a priori information matrix. In (5), the state xn

is random and the expectation is with respect to xn and the

random observations. We point out that the bound is computed

for the model (2)–(3), where the a priori and observation

information matrices are obtained by exploiting (2) and (3),

respectively. Also, it is a bound that is for the estimate x̂n of

the complete state vector, and not only of the node’s position at

time n. Every time instant has its own bound of the covariance

of the state. A key issue in computing Jn is to make the

computation recursive. This is readily done for the linear state

space model. When the model is nonlinear, recursive equations

can be formulated (see [11]), but unlike in the linear case, the

bounds have to be computed by simulations. With knowledge

of the indoor environment and the used type of sensors, one

can construct priors that allow for obtaining better PCRBs

[12], [13]. Recent results on the PCRB and other bounds can

be found, for example, in [14], [15].

The RMSE may not be fully descriptive of the accuracy

of an employed method. To correct for that, one may use

temporal ratios of confidence in the estimate. For example,

one could compute the percentage of time of an error being

above some threshold. This representation can be seen as a

localization error outage (LEO), where an outage event is

1A � B means that A−B is non-negative definite.
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defined as the event when the error exceeds a threshold eth,

i.e.,

LEO(eth) = P
(

e (pn) > eth

)

, (7)

where P(A) indicates the probability of the event A, and eth is

the threshold (i.e., the maximum allowable position estimation

error). The probability is evaluated over the ensemble of

all possible spatial positions and time instants resulting in

a global performance index [14]. An equivalent index, often

adopted in the literature, is the cumulative distribution function

(CDF) of the position estimation error defined by Fe(eth) =
1−LEO(eth). In specific applications, it could be of interest to

evaluate the LEO only for a subset of spatial positions belong-

ing to specific trajectories [16]. In such cases the calculated

LEO would indicate the ability of the system to track the

mobile node when moving along predefined trajectories and

hence it would be trajectory-dependent. Given the same level

of accuracy, two different systems could give different LEOs.

For example, a system characterized by LEO(1.5) = 0.1 (a

precision of 10% within 1.5m) is performing better than a

second system characterized by LEO(1.5) = 0.5 (a precision

of 50% within 1.5m). One may use similar metrics for the

velocity and the orientation.
Other performance metrics include the coverage and the

robustness of the applied method. The former indicates the

area where mobile nodes can be tracked by the method

within a specific accuracy, and the latter, the resistance of

the method to some impairments including lack of radio

visibility, measurement outliers, and node failures. When the

tracking system operates in real-time, the localization update

rate, defined as the number of position estimates computed per

second, is a parameter of importance, especially in navigation

systems. Scalability represents another important feature of a

method. Namely, not every method can be applied in large

scale networks and using low cost nodes.

III. TYPES OF MEASUREMENTS

This section presents the types of measurements used for

tracking. We classify them as (a) measurements directly related

to the geometric constraints between nodes, (b) measurements

that are not related to the geometric relationship among

nodes, and (c) self-measurements with information on node

acceleration and orientation. We also discuss the main sources

of error that are present in indoor environments.

A. Geometric-related Measurements

The optimum approach to manage the measurements (e.g.,

the received signal waveform) is to use them directly as

input yn to the tracking estimator (direct position estimation).

However, for complexity and implementation constraints, a

more pragmatic but sub-optimal two-step approach is followed

in practical systems. It consists in estimating the geometric

quantities from the signal features, such as the distance be-

tween nodes, and then in feeding the tracking estimator with

these values (two-step position estimation).
In this section we give an overview of a number of wire-

less measurements that convey geometric constraints between

nodes.

1) Received Signal Strength (RSS): Distance estimation (or

ranging) based on received signal strength (RSS) measure-

ments relies on the principle that the greater the distance

between two nodes, the weaker their relative received signals.

This technique is commonly used in low-cost systems such as

wireless sensor networks (WSNs) or Wi-Fi because of the easy

availability of this type of measurement. The mapping between

the measured RSS and the distance between the transmitting

and receiving nodes is typically done by using theoretical

and/or empirical path loss models.

A widely used statistical model to characterize the RSS is

given by [17]

Pr(d) = P0 − 10 γ log10 d+ S , (8)

where Pr(d) (dBm) is the received signal power at a distance

d from the emitter, P0 is the received power (dBm) at a

reference distance of 1 m (which depends on the radio and

antenna characteristics as well as the signal wavelength), d
(m) is the separation between nodes, and S (dB) represents the

large-scale fading variations (i.e., shadowing). It is common

to model S as a Gaussian random variable with zero mean

and standard deviation σS. The parameter γ is known as the

path loss exponent which in indoor environments typically

assumes values between 2 and 6 [17]. More sophisticated RSS

models could also be considered, e.g., models that introduce

dependence of σS and γ on distance [18].

The main advantage of RSS-based approaches compared

to other methods is the availability of RSS measurements in

practically all wireless systems and the fact that the nodes

do not have to be time synchronized. The most relevant

drawback of RSS ranging is that in cluttered environments

the propagation phenomena cause the attenuation of the signal

to be poorly correlated with distance, especially in non-line-

of-sight (NLOS) channel conditions, resulting in inaccurate

distance estimates, as discussed in Sec. III-D.
2) Time-of-Arrival (TOA): Information related to the sep-

aration distance d between a pair of nodes can be obtained

by using measurements of the signal propagation delay, or

time-of-flight (TOF) τp = d/c, where c is the speed of

electromagnetic waves in air (c ≃ 3 · 108 m/s). This is

usually accomplished using a two-way time-of-arrival (TW-

TOA) ranging protocol or time difference-of-arrival (TDOA)

techniques.

In TW-TOA ranging, a node A transmits a packet to node

B which replies by transmitting an acknowledgment packet

to A after a known or measured response delay τd [3]. Then

the node A estimates the signal round-trip time (RTT) τRT =
2τp + τd, from which it can calculate the distance without

the need of a common time reference. While synchronization

offsets are intrinsically eliminated by the two-way protocol, a

relative clock drift still might affect the ranging accuracy.
3) Time-Difference-of-Arrival (TDOA): Systems that use

TDOA do not rely on absolute distance estimates between

pairs of nodes. Such systems typically employ one of two

schemes. According to the first one, multiple signals are

broadcast from synchronized anchor nodes and the mobile

node measures the TDOA (this technique is similar to that

adopted by the GNSS technologies). According to the second
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scheme, a reference signal is broadcast by the mobile node

and it is received by several anchors. The anchors share their

estimated time-of-arrival (TOA) and compute the TDOA. Each

scheme requires that the anchors are tightly synchronized

through a network. To calculate the 2D position of the mobile

node, at least three anchors and two TDOA measurements

are needed. Ideally, each TDOA measurement can be geomet-

rically interpreted as a hyperbola formed by a set of points

with constant range-differences (time-differences) from two

anchors [19].

4) Angle-of-Arrival (AOA): Angle-based techniques esti-

mate the position of a mobile node by measuring the angle-

of-arrival (AOA) of signals arriving at the measuring node

through the adoption of antenna arrays. With perfect measure-

ments, the positioning problem can be solved geometrically by

finding the intersection of a number of straight lines represent-

ing the signals AOA (triangulation). In 2D scenarios, 2 AOAs

are sufficient. In practice, noise, finite number of antennas in

the array, and multipath propagation might drastically impact

the accuracy of the final position estimate [20].

5) Phase-Difference-of-Arrival (PDOA): Phase-difference-

of-arrival (PDOA) techniques were originally introduced for

distance estimation in radar systems and have been recently

rediscovered to improve the localization accuracy of RFID and

WSNs systems [21]. The basic version of PDOA consists in

transmitting a couple of continuos wave signals at frequencies

f1 and f2, respectively, and measuring the phase difference at

the receiver that results to be proportional to the distance and

inversely to the difference f2 − f1. Thanks to the extremely

small signal bandwidth, phase estimation errors can be very

small and hence the distance estimation quite accurate. Re-

grettably, 2π phase periodicity and the presence of multipath

might create unavoidable ambiguities in evaluating the true

distance.

6) Proximity: The simplest way to obtain informative mea-

surements for positioning is proximity where binary connec-

tivity is used to estimate the nodes’ positions at time n. The

location information is provided from the proximity of the

mobile node to some of the anchor nodes in the system.

One very simple model for the definition of proximity is

the so called circular radio coverage model or disk model,

where the transmission range is modeled by a circle with

fixed radius r0. A key advantage of the proximity technique

is that it does not require any dedicated hardware and time

synchronization among the nodes. This makes it particularly

suited for very low-cost wireless devices such as RFID tags

where the deployment of a large number of tags is not an issue

[22]. Starting from connectivity information, more sophisti-

cated range-free positioning approaches can be introduced to

enhance the tracking accuracy such as those referenced in Sec.

IV-F.

B. Position-related Measurements

Signals generated by pre-deployed infrastructures, such as

Wi-Fi, broadcast stations (television, FM or AM radio), and

cellular networks are already present in most of indoor en-

vironments and can potentially be exploited for positioning

without the need of deploying dedicated infrastructures [23],

[24]. Such radio signals-of-opportunity are designed for other

purposes and are not intended for positioning. Indeed, these

signals are usually received in NLOS channel conditions

and hence their dependence on the relative distances/angles

among the nodes is complex. As a result, inference from

such measurements is very challenging. However, this does

not prevent their exploitation for positioning if fingerprinting

methods are considered, for example. In fact, such methods are

based on the uniqueness of the measurements (fingerprint) at

different locations that is exploited using mapping approaches

described in Sec. IV-C.

Besides radio signals-of-opportunity, the geomagnetic field

has been recently proposed as a viable alternative (or com-

plementary) signal-of-opportunity for positioning through the

use of low-cost magnetometers that also provide orientation

information. In fact, anomalies in the field caused by magnetic

disturbances, typically present in indoor environments, can be

used as a fingerprint [25]. The main cause of these distur-

bances are the steel shells of most modern buildings. In [26], it

has been experimentally shown that the magnetic field is stable

for long time and that its characteristics change significantly

with location, making it suitable for fingerprinting approaches.

Even though in some scenarios the achievable accuracy can

be on the order of few centimeters, the availability of only

three components of the magnetic field in the X , Y and Z
directions (two if the magnetic north is unknown), makes

the uniqueness of the measurements as a function of position

problematic. Moreover, interference from moving objects con-

taining ferromagnetic materials and electronic devices might

cause difficulties in modeling the consequent anomalies in the

measured magnetic field. For this reason magnetometers are

typically coupled with other kinds of measurements (e.g., radio

and inertial) via data fusion methods, as explained in Sec.

IV-C.

A clear advantage in using signals-of-opportunity for posi-

tioning is that these are cost effective solutions, since no addi-

tional infrastructure deployment is required. For completeness,

we mention other signals-of-opportunity and sensors that can

be exploited for tracking such as ambient audio and light [27],

[28], ultrasound [29], and video signals [30].

C. Self-Measurements: Inertial Devices

Most handheld devices incorporate small and light IMUs

based on microelectromechanical systems (MEMS) technol-

ogy. Typically, an IMU is composed of three orthogonal

gyroscopes and three orthogonal accelerometers [31]. These

triads of sensors measure angular velocity and a specific

force, respectively. The specific force is a combination of

gravitational an inertial linear acceleration. Some IMUs in-

clude three-dimensional magnetometers (delivering heading

information) and a barometer/altimeter, thus providing ten

degrees of freedom. Stand-alone inertial navigation is possible,

given that the initial position, velocity, and orientation are

known. The dominant type of inertial navigation system (INS)

are the so-called strapdown systems, where the inertial sensors

are mounted rigidly onto the device and thus the measurements
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are referred to the body frame. In this case, the gyroscopes

are used to project the accelerometer observations onto the

global frame, as well as to provide orientation information.

Then, after correcting for gravity, one could integrate twice

the accelerations and obtain the estimated position by the INS.

The generation of attitude, position and velocity involves, in

part, integration of the sensor measurements. Therefore, any

error on the output of the sensors leads to correlated attitude,

position, and velocity errors that are potentially unbounded.

The error sources of the accelerometers can be modeled by a

constant (deterministic) bias and a white noise (random) term,

both a priori unknown. Other sources could be seen as time

fluctuations of these two. Similarly, one could model the errors

at the gyroscopes. These reasons prevent the consideration

of stand-alone inertial navigation with relatively low-cost

IMU, leaving this approach to high-performance tactical grade

devices.

IMUs are very popular in navigation systems, especially

when they are integrated with other technologies [32]. The rea-

son is the complementarity of errors between inertial sensors

and the geometric-based approaches for position estimation.

While an INS provides very accurate acceleration (and thus

position) measurements, it produces an error that increases

over time because of the sensor biases. On the other hand, the

geometrical-related measurements discussed in Sec. III-A are

typically unbiased, at least in line-of-sight (LOS) conditions,

but are more noisy than those of an INS. Therefore, proper

data fusion of geometric-based systems with an IMU brings

the best of both worlds: reduced variance and unbiasedness.

Such data fusion can be optimally handled using Bayesian

theory and the associated methodologies described in Sec. IV.

D. Main Sources of Error

The tracking performance of any method is highly de-

pendent on the quality of the gathered measurements. Both,

technological constraints (e.g., device’s clock accuracy) and

radio propagation anomalies in indoor environments might

cause sources of error, including multipath, thermal noise,

direct path excess delay, and NLOS channel conditions.

Multipath propagation can be severe in harsh scenarios.

When narrowband systems are used, for example to extract

RSS values, signal components coming via different propa-

gation paths usually cannot be resolved. This results in de-

structive and constructive interference of components causing

fading effects at small-scale level, thus making the correlation

of RSS with distance extremely weak. In wideband or UWB

systems, multipath can be in part resolved and accurate TOA

signal estimation is possible. However, the presence of a high

number of multipath components might make the detection of

the direct path, carrying the correct distance information, a

non-trivial task [33].

In small areas, time-based ranging relies on precise time

measurements that is accomplished by equipping nodes with

an oscillator from which an internal clock reference is derived.

Physical effects can cause oscillators to experience frequency

drifts that could be detrimental in systems with low-cost

oscillators. Considering that the achievement of sub-meter

ranging accuracies requires the estimation of TOF in the order

of a few nanoseconds, estimation uncertainty of the received

signal TOA and device’s clock drift might not be negligible in

indoor environments, even in the (ideal) absence of multipath.

To get an idea on the basic parameters affecting the ranging

accuracy, we illustrate the fundamental limit in the estimation

of the TOA, τ , of a generic unitary energy signal s(t) with

a spectrum S(f) and transmitted through an additive white

Gaussian noise (AWGN) channel. In the absence of other

sources of error, the smallest variance of an unbiased estimator

of τ is given by the Cramér-Rao bound (CRB) [34]

CRBTOA =
1

8 π2 β2 SNR
, (9)

where β represents the effective bandwidth of s(t), that is, β =
√

∫

∞

−∞
f2|S(f)|2 df . The corresponding CRB on ranging can

easily be obtained by multiplying (9) by the squared speed of

light c2. Notice that the lower bound in (9) reveals that signals

with large signal-to-noise ratio (SNR) and wide transmission

bandwidth are beneficial for ranging. This justifies the large

interest in the UWB technology in indoor RTLS [33]. As a

comparison, the CRB for a distance estimate d̂ based on RSS

measurements under the path loss model (8) is given by [35]

CRBRSS =

(

ln 10

10

σS

γ
d

)2

. (10)

In contrast to time-based methods, the ranging capability

using RSS measurements does not depend on the shape of

the transmitted signal but it rapidly increases with distance

(with d2). On the other hand, for time-based ranging methods,

the signal shape, and hence the bandwidth, represents an

additional degree of freedom to improve the ranging accuracy

(as is evident from (9)).

Finally, we note that the most challenging problems for

tracking in indoor environments are caused by NLOS mea-

surements. When measuring RSS values, very poor or almost

zero correlation between RSS and distance could be obtained,

and such measurements can only be usefully exploited by

non-geometric approaches such as fingerprinting tracking al-

gorithms (see Sec. IV-C). In TOA-based approaches, if the

direct-path is completely obstructed, the receiver will only

observe NLOS multipath components resulting in estimated

distances larger than the true distance (outliers). Therefore, it

is important to design tracking methods so that they are less

susceptible to these errors (e.g., cooperative tracking schemes

discussed in Sec. IV-B) or to introduce NLOS identification

schemes and compensate for the positive bias present in

NLOS measurements. In the literature, several NLOS detection

schemes have been presented. Most of them rely on the

extraction of received signal features that are mainly affected

by NLOS propagation and take a decision based on some a

priori statistical knowledge or learning approach [36], [37].

It is worthwhile to mention that even if the direct path is

not completely blocked by an obstacle, the measured TOA

could be overestimated due to the excess delay experienced

by the electromagnetic wave when traveling through different

materials [38].
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Other potential sources of errors are co-channel interfer-

ence [39], caused by coexisting wireless systems sharing the

same radio band, and environment variability that could make

tracking methods based on fingerprinting less reliable.

IV. METHODS

In the previous section, we described various types of mea-

surements that are used for indoor tracking. Tracking methods

process these measurements to produce reliable sequences of

position estimates of mobile nodes. The main challenge of the

methods is the various types of errors in the measurements

as well as the anomalies caused by the environment and its

dynamic variations.

In this section, we first present the main methods for indoor

tracking, including cooperative and fingerprinting approaches.

Then we formulate the SLAM problem which is intimately

related to that of tracking, and review fusion methods, where

information from measurements of different sensors is com-

bined to obtain improved tracking. Finally, a brief overview

of other methods is given.

A. Bayesian Tracking

In Sec. II, we introduced the problem of tracking by using a

state space model as given by (2) and (3). In this subsection,

we present the general solution to tracking provided by the

Bayesian filter, illustrate the types of estimates one can obtain

with the filter, and describe some of its implementations.

1) Bayesian filter: In many practical settings, we are not

interested that at a given time instant n we get the full joint

posterior distribution of the sequence of states x0:n. Instead,

the marginal posterior distribution p(xn|y1:n) of the current

state xn given all the past measurements y1:n is sufficient. This

posterior quantifies the belief we have in the values of the state

xn given the measurements y1:n. Here we present a recursive

approach for the evaluation of p(xn|y1:n) that requires a

constant number of computations at each time instant n. It

is based on Bayes’ theory, and therefore we refer to it as

Bayesian filtering. Its formulation is as follows:

• Initialization: The marginal at time step 0 is set to the

prior p(x0) of x0;

• Prediction step: By exploiting the mobility model, the

predictive distribution of state xn at time instant n is

given by

p(xn|y1:n−1) =

∫

p(xn|xn−1) p(xn−1|y1:n−1) dxn−1;

(11)

• Update Step: The marginal posterior distribution of xn,

given the new incoming measurement yn at time instant

n (and all past measurements), can be computed using

the Bayes’ rule and the perception model according to

p(xn|y1:n) =
p(yn|xn) p(xn|y1:n−1)

∫

p(yn|xn) p(xn|y1:n−1) dxn

. (12)

We observe that in the prediction step, the previous marginal

posterior p(xn−1|y1:n−1) and the mobility model are used

to obtain the predictive distribution p(xn|y1:n−1). The new

marginal posterior, p(xn|y1:n), is determined in the update

step. The prediction step requires integration and the update

step finding a product of two functions. We note that the

denominator in (12) is just a normalizing constant.

2) State estimation: Once the marginal posterior distribu-

tion p(xn|y1:n) of the current state xn is computed, we can

obtain from it any point estimate or confidence interval that

we desire. A point estimate x̂n of xn can be defined by using

some criteria. Within the Bayesian methodology, the most

common are the minimum mean-square error (MMSE) and

the maximum a posteriori (MAP) criteria [34]. According to

them, the respective point estimates are defined by

x̂MMSE
n =

∫

xn p(xn|y1:n) dxn (13)

x̂MAP
n = argmax

xn

p(xn|y1:n) . (14)

It is well-known that when the posterior distributions are

Gaussian, the MAP and MMSE estimates coincide.

In some methods, the state transition model given by (2)

is ignored, and thus, there is no prior constructed for the

estimation of the state at the next time instant. In fact, the prior

is considered to be proportional to a constant. If only current

measurements are considered (without taking into account past

state estimates to avoid an exponentially increasing complex-

ity), the posterior is obtained from the perception model only

and the point estimate that corresponds to the MAP estimate

is known as maximum likelihood (ML) estimate. Formally, we

write,2

x̂ML
n = argmax

xn

p(yn|xn) . (15)

When the measurements can be put in the form as in (3), and

no statistical characterization is available for the measurement

noise νn, least squares (LS) estimators offer a valid alternative

[38]. When the measurement noise is Gaussian and the model

is linear, the LS and ML estimates are the same. Theoretical

performance bounds on ML position estimates can be found

in [40], [41].

3) Filtering algorithms: We recall that the unknown state

is considered a Markovian stochastic process and that it has

to be estimated sequentially. Equations (11) and (12) provide

the predictive and filtering densities of the state xn, and

they are the complete solution to the tracking problem. The

computation of these densities is difficult except in a few cases,

including the ever important linear Gaussian model. In the

latter case, the functions g(·) and h(·) in (2) and (3) are linear,

and the process and observation noises are Gaussian. Then the

optimal solution is given by the Kalman filter (KF) [42]. We

point out that this filter is also optimal in the case when we

do not make distributional assumptions about the noise except

that it is zero mean and with finite covariance. Then the KF

provides the optimal solution in the LS sense.

Once the model (2)–(3) deviates from linearity, one has

to resort to approximating approaches. Two popular methods

are the extended Kalman filter (EKF) [42] and the unscented

Kalman filter (UKF) [43], respectively. The former is based

on linearization of the nonlinear function in the model and

2In the literature, where these methods are used, one refers to the xns as
deterministic parameters.
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Fig. 2. Illustration of particles generation in PF: a) the belief before sampling,
b) computation of particles weights, c) resampling.

assumes that the noises are Gaussian. The latter avoids lin-

earization and employs a deterministic sampling approach to

parameterize the mean and covariance of the state vector.

Basically, the integrals in the Bayesian recursion are solved

numerically by the unscented transformation, which requires

2dx + 1 carefully selected points (also referred to as sigma

points) around the mean and where dx is the dimension of the

state.

Recently, there have appeared enhanced KF-like methods

based on more precise numerical integration rules. They funda-

mentally differ from the UKF in the generation and weighting

of the deterministic samples that are employed to propagate

the mean and covariances of the distributions of interest. They

are based on the cubature and Gauss–Hermite quadrature rules.

For more information on these and their variants, see [44]–

[46].

An important alternative to the above methods is particle

filtering (PF) [47]. This method allows for tackling general

nonlinear and non-Gaussian systems and hence is well suited

for tracking problems. The main idea underlying the method is

to approximate all the probability density functions of interest

by probability mass functions with M samples (see Fig. 2).

To that end, at every time step n, one uses samples of the

unknown state xn,m and assigns to them weights, wn,m,

m = 1, 2, . . . ,M , where all the weights sum up to one. With

these samples and weights, we approximate, for instance, the

filtering density by

p(xn|y1:n) ≈

M
∑

m=1

wn,mδ(xn,m − xn) , (16)

where δ(·) is the Dirac delta pseudo-function. In this way

integral operations simplify into sums.

The PF method is a sequential method and there exist

various versions of it. Here we explain its basic version known

as the bootstrap filter [48]. At every time instant the bootstrap

filter performs three operations: 1) propagation of particles,

2) computation of particle weights, and 3) resampling. If the

current time instant is n, the approximation of the posterior

is given by the particles and weights in (16). With particle

propagation, we generate the particles of xn+1. To that end,

we draw them from the prior p(xn+1|xn). In the next step,

we find the weights of the particles by simply computing

p(x
(k)
n−1|y1:n−1)

p(x
(k)
n |y1:n)

a) b) c) 

Fig. 3. An illustrative example of a belief propagation step.

w̃n,m = p(yn|xn,m) and normalizing the w̃n,ms so that they

sum up to one. With the obtained particles and weights, we

can find a point estimate of the unknown states. For example,

if we want the MMSE estimate, we use

x̂MMSE
n =

M
∑

j=1

wn,m xn,m . (17)

In the third step, the resampling, we draw particles from the

existing set of particles randomly and based on their weights.

With this step, we move the region of exploration of the sample

space from parts that do not contain large probability masses to

parts that are more relevant. After resampling all the particles

have equal weights.

As a method for indoor tracking, PF has been adopted in

various settings including Wi-Fi RSS readings [49], ubiquitous

computing (that exploits a commercial infrared badge system,

an ultrasound TOF badge system and a Wi-Fi device position-

ing system) [50], RFID [51], and UWB TOA readings aided

with INS measurements [16], [52].

B. Methods for Distributed and Cooperative Tracking

In indoor environments, the presence of NLOS channel

conditions, and hence the difficulty for a node to communicate

directly with a sufficient number of anchor nodes, makes

the achievement of sufficient coverage and high positioning

accuracy particularly challenging. This issue can be partially

overcome with distributed cooperative positioning and track-

ing approaches. With these approaches, the nodes cooperate

to improve the knowledge about their own positions, and

they conduct the tracking. Namely, the task of tracking is

distributed to the nodes rather than being delegated to a

common central unit. Consequently, distributed algorithms

are in general scalable, hence attractive for large networks,

and intrinsically reliable. Another advantage of distributed

cooperative tracking is that there is no need that all the mobile

nodes are within the communication range of multiple anchors

[53].
One natural way to build decentralized schemes is to extend

the classical localization/tracking schemes to the cooperative

scenario, such as cooperative LS [38]. On the other hand,

new powerful methods belonging to belief propagation have

received particular attention in recent years for distributed co-

operative tracking. Belief propagation is an iterative approach,

where at each iteration the nodes obtain an approximated

posterior distribution (belief ) about their own positions by

means of message passing. We briefly explain it by using

Fig. 3. In particular, let p
(

x
(k)
n−1

∣

∣y1:n−1

)

be the belief of a
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Fig. 4. Example of fingerprinting using RSS measurements from Wi-Fi
access points.

generic node k about its state at time n− 1 (Fig. 3a). During

the subsequent iteration, its neighbors use their own beliefs

and measurements to compute their beliefs about x
(k)
n that is

sent to node k through message exchange (Fig. 3b). Then,

node k combines all the messages to update its own belief

p
(

x
(k)
n

∣

∣y1:n

)

at time n (Fig. 3c). This node also computes

the messages for its neighbors. The operations are repeated

iteratively till convergence.

Factor graphs are efficient tools for representing the condi-

tional dependence among the random variables of a model

as happens in cooperative tracking settings [54]–[56]. Fac-

tor graphs exploit the factorization of the joint distribution

function of the observed measurements and the unknown

locations. They are bipartite graphs composed of sets of

variables (measurements and unknown locations) and factor

nodes (which describe likelihoods). With these graphs, one

is able to estimate the posterior distribution of the unknown

locations by passing messages between the factor and variable

nodes of the graph. The messages that are passed from the

factor nodes to the variable nodes are likelihoods based on

the measurements connected to the respective factor nodes,

whereas the messages from the variable nodes to the factor

nodes are marginal posteriors of these variables obtained from

the information of all the factors except the one where the

message is passed to. For a recent use of factor graphs for

node localization, see [57] and for tracking, see [53].

C. Fingerprinting Methods

A completely different approach to tracking from the ones

based on geometric-related measurements is fingerprinting

(also referred to as mapping or scene analysis). As illus-

trated in Fig. 4, the basic idea of fingerprinting is to build

a database with features (fingerprints) of the scenario at

reference locations and then apply regression techniques to

match the measurement and infer current position. Specifically,

the fingerprinting techniques typically operate in two stages,

namely [4]:

1) Off-line stage: The scenario is surveyed at known loca-

tions and the features of the environment at each location are

then recorded into a database. These features are referred to as

fingerprints and could be RSS, magnetometer measurements,

or any other type of position-dependent data. For instance,

when RSS is considered for fingerprinting, the database is

Inference (n-1) Inference (n)

(1)p

(2)p

(3)p

M

n 11x
M

nx

M L

n n np 1 1: 1 1( , , )n n nn n n, , )n n n1 1: 1 11 1: 1 11 1:n n nn n nn n nn n nx x y u M L

n n np 1:( , , )x x y u

Fig. 5. An illustrative example of SLAM where a robot is moving while
measuring RF signals transmitted from three landmarks. At each time step,
the robot estimates its own state and the landmarks’ location from the filtering
distribution p

(

xM
n
,xL|y1:n,un

)

.

composed of the coordinates of the training location, and the

RSS of the nearby base stations measured at that location, as

shown in Fig. 4.

2) On-line stage: This stage refers to the process where the

mobile node navigates, while sensing the same type of finger-

prints that were recorded in the database. These measurements

are then used to perform matching with the content of the

database and provide a positioning solution for the mobile.

Fingerprinting techniques are in general conceived for

localization purposes, but they could also be adapted for

tracking. For instance, in [58] a Viterbi-like algorithm was

proposed to perform continuous tracking of user’s position

from fingerprinting solutions. Many of the proposed methods

that use position measurements come from the theory of

pattern recognition [59], [60]. The most popular algorithms are

probabilistic methods [61], where the position is estimated as

the one that maximizes the likelihood of the target being in a

certain position, given a set of possible discrete locations. This

approach can be enhanced by using kernel methods and even

extended to non-discrete locations. The k-nearest neighbor

(kNN) algorithm [62] provides a position estimate based on

the average position of the k closest training points in the

database. The closeness to these k points is defined according

to some adopted distance metric, e.g., the Euclidean distance.

The estimate is obtained by averaging, possibly using weights

depending on the type of measurements. Also, in the literature,

other methods have been combined with fingerprinting. They

include support vector machines [63] and neural networks

[64].

A clear drawback of tracking based on fingerprinting is the

reliance on training, which can be costly and time-consuming.

Besides, the database should be updated regularly to account

for changes in the scenario. However, the mapping techniques

do not require a measurement model and thus they are popular

due to their simplicity.
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D. Methods for Simultaneous Localization and Mapping

(SLAM)

SLAM is the process by which a mobile node navigates

through an environment, senses it, and performs estimation of

both the map of the environment and its own location within

it. The birth and bloom of SLAM was in the field of robotics.

This technology makes a robot autonomous and, in some

sense, “self-conscious.” Probably, the most popular surveys

on the topic are [5] and [65], where the authors reviewed the

foundations, the approaches, and the open problems at the time

of their writing. A more recent review can be found in [66].

In SLAM, the problem is to track a mobile node based

on real-time range-related measurements with KL landmarks,

which are basically anchor nodes deployed at unknown fixed

positions p
(l)
n = p(l), ∀n for the lth landmark. Here the

state of the system, xn, is composed of the mobile’s state

xM
n and xL = pL which includes all landmarks’ states

{

p(1),p(2), . . . ,p(KL)
}

. Typically, in a SLAM problem one

mobile node does the surveying, although more sophisticated

setups might be possible including a larger number of co-

operative mobile nodes. In a general setting, the state of

the mobile node is intentionally affected by the node itself

according to some navigation policy, for instance, following

a predefined path. To account for this, the mobility model

has to be modified by including a control signal un used

to drive the node (e.g., a vehicle) from state xn−1 to the

desired state xn, that is, p(xn|xn−1,un). This control vector

could be a function un = un(x̂0:n−1) of past estimated states

x̂0:n−1 implementing the navigation policy. For instance, the

perception model in (2) could be rewritten in the SLAM

context to include this control signal as

xn = g(xn−1) + un +wn . (18)

The purpose of SLAM is to find p(xn|y1:n,un) =
p
(

xM
n ,x

L|y1:n,un

)

and infer both xM
n and xL. Notice that

the location of the landmarks is unknown, in contrast to

the classical tracking problem. However, the probabilistic

representation allows one to treat SLAM using the general

framework of sequential filtering. As a result, the mathe-

matical tools used to solve the SLAM problem are tightly

linked to those for the tracking problem discussed in Section

IV-A. The main idea behind SLAM is illustrated in Fig.

5. There we see a mobile node and its trajectory passing

among three landmarks (with fixed locations p(1), p(2), and

p(3)). At time instant n − 1, the mobile node constructs

the posterior p
(

xM
n−1,x

L|y1:n−1,un−1

)

, where xL is the set
{

p(1),p(2),p(3)
}

, and to that end it uses all the measurements

y1:n−1 and its control signal un−1. At time instant n, the node

receives new measurements yn, and it updates the posterior

to p
(

xM
n ,x

L|y1:n,un

)

.

There is a vast literature on the so-called EKF-SLAM ap-

proach with different implementations and information sources

[67]. There is also considerable literature on PF approaches

where challenging nonlinearities and non-Gaussianities are

treated. A prominent PF solution is the celebrated FastSLAM

[68]. FastSLAM takes into account the conditional linear struc-

tures in the model to reduce the dimensionality of the problem

[47]. Common challenges associated to SLAM include wrong

data association among observations and landmarks [69],

[70] and the close-the-loop problem, which occurs when a

landmark is re-observed after a large period. When the latter

happens, in general, it is hard to make an association to the

same landmark, especially when using visual-aids to detect

features. Other challenges are related to the applied methods.

For example, the solutions based on the EKF typically suffer

from linearization errors [71], [72] whereas the solutions based

on the PF suffer from particle depletion [73]. Furthermore,

some works point out that the static nature of the locations of

the landmarks might cause the PF to diverge [74]. Finally, the

computational demands of SLAM techniques are in general

high [75].

Visual aids are typically used as the primary source of infor-

mation in robotics, and thus one resorts to image processing

techniques to determine the relative location of the mobile

node to landmarks. Refer to [76] for a thorough introduction to

the Visual SLAM topic. In recent years, due to the widespread

deployment of WiFi access points, the SLAM research com-

munity has worked on exploiting the WiFi infrastructure. The

underlying idea is to achieve SLAM by range-measurements

computed using RF signals received by the mobile node.

Probably, the most popular approach is WiFi-SLAM [77]. This

approach builds on Gaussian process latent variable models

to reduce the dimensionality and determine the latent-space

locations of unlabeled signal strength data. An extension of

this work considers the use of GraphSLAM for computational

reduction and removing the signature uniqueness assumption

[78]. FootSLAM [79] proposes to mount an inertial unit on

pedestrians to perform SLAM based on its measurements and

a Bayesian filter. FootSLAM was extended to incorporate spo-

radic observations from other sensors (e.g. RFID or camera)

and to combine data from multiple pedestrians collaboratively.

These approaches are termed PlaceSLAM and FeetSLAM,

respectively. The use of WiFi signals in FootSLAM was

treated in the so-called WiSLAM algorithm [80]. It integrates

RSS measurements of the communication network and the

foot-mounted inertial sensors.

E. Fusion methods

In many settings, there are measurements acquired by differ-

ent types of sensors. With fusion techniques, the information

from these measurements is combined to improve on the track-

ing when only single type of measurements is used. In general,

when one employs probabilistic models and Bayes’ theory,

with the assumption of conditionally independent measure-

ments, the optimal fusing is known as independent likelihood

pool. Suppose the mth node has different types of sensors with

measurements about node k. Let the measurements of these

sensors be denoted by y
(k,m)j
n , j = 1, 2, · · · , Jm. Then, if the

measurements are conditionally independent, the perception

model in (12) can be written as

p
(

y(m,k)
n

∣

∣xn

)

=

Jm
∏

j=1

p
(

y(m,k)j
n

∣

∣xn

)

. (19)
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If the conditions of independence are not met, there are

other ways of combining information from different sensors.

For example, one of them is based on attaching a weight to the

information provided by each sensor and combining linearly

the likelihoods

p
(

y(m,k)
n

∣

∣xn

)

=

Jm
∏

j=1

α
(m,k)
j p

(

y(m,k)j
n

∣

∣xn

)

, (20)

where α
(m,k)
j are the weights assigned to the sensors and

∑Jm

j=1 α
(m,k)
j = 1.

As an example of fusion, we explain how inertial measure-

ments, discussed in Sec. III, can be integrated with measure-

ments of other type. There are several options for integrating

them, and they mainly differ on the level of integration.
1) Loose integration: The simplest integration consists of

fusing the position estimates of the strapdown INS with the

position estimates of another geometric-based system to form

a final integrated position solution. The resulting estimate is

better than the estimates obtained from the individual systems.

In the literature, this is referred to as loose integration.
2) Tight integration: Loose integration could be further

improved if the information of the INS is taken into account

when computing the geometric-based position solution. This

is referred to as tight integration in the literature, as there

are no independent solutions for both systems but a single

blended navigation solution. This approach is known to be

more robust and reliable than loose integration. For instance,

a tight integration of INS data and a technology supporting

one of the aforementioned distance-based measurements could

consist in plugging the acceleration measurements in the state

equation, while introducing the sensor biases on the state

vector. Data fusion is then readily performed by the filtering

methods discussed earlier in this section.
As another example of fusion, suppose that a system needs

to track several targets with two types of sensors, one that

provides information about the ID of the targets, referred to

as ID sensors, and another that has accurate ranging (e.g.,

laser range finders). When the targets are far away from the

ID sensors, the systems tracks the targets but does not know

their IDs. When these targets get close to the ID sensors, they

get identified. Thus, the system needs information from both

sensors to perform as desired. When the targets leave the area

covered by the ID sensors, the system may lose their identity.

This is known in the literature as the data-association problem.

There are many recent papers on fusion methods for indoor

tracking. They address different applications (e.g., tracking

of moving human targets [81] or navigation in emergency

scenarios [82]) and present fusion of different types of mea-

surements (e.g., radio-based ranging and speed-based sensing

measurements [83], ToF wireless ranging and micro-electro-

mechanical (MEMS) inertial sensor measurements [84], iner-

tial sensor and Wi-Fi measurements [85], or various signals

of opportunity [86]).

F. Other Methods

In this section we briefly describe some other methods

to solve the tracking problem. Details can be found in the

referenced papers.

While multipath usually represents a detrimental effect

on the accuracy of positioning systems, it can be usefully

exploited to reduce the number of anchors as done in [87].

Specifically, through the use of floor plan information, signal

reflections are interpreted as originating from so called virtual

anchors, which can be used to resolve the position ambiguities.

The effectiveness of this approach has been demonstrated

in [87] in a cooperative tracking setting by formulating the

problem with factor graphs and using belief propagation.

As stated in Sec. III-A6, position information can also be

inferred from simple connectivity information. One method

is counting the number of hops necessary to reach a specific

node starting from another node in the network and derive a

rough estimate of the distance by evaluating the average hop

length, as proposed in the DV-hop algorithm [88]. A different

approach is represented by range-free localization algorithms.

Here, the problem is to find a node’s position such that all,

or most of, proximity constraints are satisfied. As the number

of constraints increases, the feasible region of solutions for

the nodes’ position, given by the intersection of individual

constraints, becomes smaller [89], [90].

Another methodology that exploits RSS is known as RF

tomography. It is based on RSS measurements of RF trans-

missions between multiple sensor nodes. If there are targets

near the LOS path between two nodes, they cause change of

the RF signal. One exploits the changes or the absences of

changes of the RSS to estimate the location of a target and/or

to perform tracking. It has been shown that RF tomography

is promising in that one may track accurately several targets

simultaneously [91].

Swarm optimization is a bioinspired technique for mul-

tidimensional optimization. It has been tailored to address

also problems in WSNs including optimal deployment, node

localization and tracking. Swarm optimization is iterative in

nature and is based on trying a set of candidate solutions to

the problem, and modifying them with iterations according to

predefined rules. For a recent survey of their use in WSNs,

see [92].

V. TECHNOLOGIES FOR INDOOR TRACKING

The number of technologies for indoor tracking is large and

they include laser, computer vision, sonar, and infrared. Here,

due to lack of space, we focus specifically on those based on

radio signals exchange.

Most of the wireless standards have been designed and opti-

mized having in mind data and voice communication services

but not positioning and tracking. Only recently, wireless com-

munication standards have started to take into consideration

the support of dedicated positioning and tracking capabilities.

The interest of the mobile industry to accelerate the adoption

of indoor position solutions turned into the foundation of the

InLocation Alliance (ILA, inlocationalliance.org). The goal of

the alliance is to facilitate a rapid market adoption of RTLS so

that new business streams are opened up with context aware

applications in indoor environments. The ILA chose Wi-Fi and

Bluetooth as the preferred technologies.
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Table I presents a qualitative comparison of the available

technologies with a brief description of their main charac-

teristics. The numbers are only indicative as they strongly

depend on the environment and its variability. It can be noted

that there is no technology that is able to provide satisfactory

performance in terms of positioning accuracy, coverage and

infrastructure cost in all the environments. As a consequence,

at least in the short-term, we will most likely see the adop-

tion of single technologies in niche applications and mix of

technologies via fusion methods in consumer applications.

A. Short-Range Wireless Technologies

In the past 20 years, we have witnessed the proliferation

of many standards that offer short-range wireless connectivity,

each of them targeting a different application segment. The

most widely used are Wi-Fi for wireless local area networks

(WLANs) applications, RFID and NFC for items/objects

identification, Bluetooth for wireless personal area networkss

(WPANs), and IEEE802.15.4/ZigBee enabling WSNs [93].

These standards were not conceived for localization and

tracking purposes, and therefore localization/tracking services

can only exploit connectivity information or RSS and phase

measurements, as illustrated in Sec. III. Consequently, the

corresponding positioning performance could be rather poor.

Moreover, nodes are often deployed randomly or with the ob-

jective of coverage of communication services. This generates

the necessity to support the network with suitable tracking

algorithms, for example, exploiting cooperation between nodes

or signals-of-opportunity as described in Sec. IV. In large

networks (e.g., WSNs), it is of paramount importance that the

complexity of the positioning algorithm is scalable with the

number of nodes and/or the connectivity level of the network

[94].

B. Cellular Networks

Cellular networks rely on a set of BSs, with a cover-

age radius from a few meters to about tens of kilometers.

Historically, the first example of location service offered by

cellular systems is the E-911 introduced for emergency calls

in the US [95]. The simplest but very inaccurate way to get

location information is through the cell ID from which the user

equipment is served (i.e., proximity). As a consequence, the

localization accuracy is of the order of the cell size. Potentially

2G/3G cellular physical layer can provide ranging information

through signals TOA estimation (more precisely, observed

TDOA, OTDOA), even though the relative small bandwidth

and signal structure limit the achievable time resolution (1µs

for GSM, about 200 ns for 3G systems). Current location

estimation algorithms try to exploit any available informa-

tion about the environment (e.g., fading conditions, Doppler

frequency, and network topology) to attain higher accuracy

through data fusion methods.

In the last decade, cellular network standard protocols have

allocated resources to carry GNSS assistance data to GNSS-

enabled mobile devices, in order to implement assisted GPS

(AGPS)/assisted-GNSS (AGNSS) services in both GSM and

UMTS networks [96]. 3GPP introduced location services in

Technology Measurement
technique

Accuracy Pros Cons

GPS TDOA 10-20m Earth scale coverage Expensive

infrastructure,

only outdoor

Galileo TDOA 1-5m Earth scale coverage Expensive

infrastructure,

only outdoor

A-GNSS TDOA < 5m Country coverage Scarce indoor accuracy

Cellular (2G/3G) E-OTD / OTDOA 50-500m Country coverage Requires
synchronized

base stations

Cellular (LTE) OTDOA 20m Country coverage Requires

synchronized
base stations

Cellular CellID Cell size Country coverage Scarce accuracy

Wi-Fi RSS–Fingerprinting 1-5m Indoor coverage,

low cost

Data base required

for fingerprinting,

low accuracy

WSN (ZigBee) RSS/PDOA 1-10m Indoor coverage,

low power

consumption,

low cost

Low accuracy

UWB TOA/ TDOA/ AOA 0.1-1m Indoor coverage,

high accuracy

Short range,

problems in NLOS

RFID/Bluetooth Proximity/RSS/PDOA Connectivity

range

Indoor coverage,

low power
consumption,

low cost

Low accuracy,

one tag per location

NFR E.M. near-field

characteristics

1-5m Indoor coverage,

low cost

Low frequency,

large antennas

INS Acceleration

Angular rate

Earth magnetic field

1-5% of the

traveled

distance -
angle

Works everywhere Position/orientation

drift,

magnetic disturbance
in indoor

TABLE I
COMPARISON OF EXISTING POSITIONING SYSTEMS.

long-term evolution (LTE) release 9, published in December

2009 [97]. LTE technology offers a tight synchronization be-

tween base stations and the possibility to use wideband signals

with low interference. This standard specifies a dedicated

support for positioning. With it, a significant performance

improvement with respect to previous cellular network gener-

ations is expected with positioning accuracy better than 20m

for 50% of the cases and 63m for the 95% of the cases using

OTDOA [98]. The forthcoming 5G mobile communication

standard is expected to embed high-positioning capabilities

thank to the adoption of small cells and massive antenna arrays

at millimeter waves [99].

C. The Ultrawide Band (UWB) Technology

This technology has generated considerable and growing

interest since February 2002, when the Federal Communi-

cations Commission (FCC) opened up 7.5 GHz of spectrum

(from 3.1 GHz to 10.6 GHz) for use by UWB devices [100].

The traditional design approach for a UWB communication

system uses narrow time-domain pulses of very short duration,

typically on the order of a nanosecond, thereby spreading the

spectrum of the transmitted signal over a wide frequency band

larger than 500MHz. This method is usually called impulse

radio UWB (IR-UWB). A great advantage of the short pulse

modulation is the possibility to estimate the TOA with a

fine resolution, which translates in ranging estimation with a

few centimeter accuracy [101]. Therefore, UWB is promising

for high-definition indoor tracking [35], especially after the

publication of the first UWB-based standard IEEE 802.15.4a

specifically addressed to WSNs applications as a low-cost

and low-power physical layer (PHY) layer substitute of the
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IEEE802.15.4 PHY [3]. The first commercial IEEE 802.15.4a

compliant chip-set has been delivered in 2014. In parallel,

several companies proposing proprietary UWB products for

RTLS have been deeply involved in the development of the

new IEEE802.15.4f standard, which is devoted to specify a

solution for precise indoor positioning and tracking using low-

cost and low-consumption tags [102].

D. Near-Field Technology

Here we briefly mention the near-field electromagnetic rang-

ing (NFER)-based technology which adopts low frequencies

(typically around 1MHz) and consequently long wavelengths

(about 300m) [103]. The key idea of this solution is to

exploit the deterministic relationship that exists (in free space)

between the angle formed by electric and magnetic fields of the

received signal and the distance among transmitter and receiver

when operating in near-field propagation conditions. This

low-frequency approach to ranging provides good obstacle

penetration and multipath resistance. The main drawback of

NFER is due to the large antennas required and the scarce

energy efficiency of the corresponding wireless devices.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have described the problems of indoor

wireless tracking and mapping. We provided a mathematical

formulation of the problems and showed their solutions from

a signal processing perspective. We reviewed the performance

metrics and elaborated on the types of measurements that

are used to reach the stated objectives. The main methods

for solving the postulated problems including those of fusion

were illustrated. The emphasis in the survey was given to the

Bayesian approaches. Finally, we also provided a brief review

of available technologies.

In the years to come, we will see further increase of

research for indoor tracking. This research will be motivated

by the development of new technologies and the introduc-

tion of new applications. It will not be surprising if we

witness a widespread use of indoor tracking technologies to

complement and empower pedestrian and vehicular systems

in the fields of intelligent transportation systems, automated

vehicles, robotics, and location-based services. An important

line of work will remain the fusion of information that comes

from existing infrastructure, such as signals-of-opportunity

and information that will be provided from newly deployed

systems or collected by the growing pervasive presence of

smartphones (crowd sensing) [104].

Some of the described methods in this paper are compu-

tationally intensive. The reason for this is that they are by

design ambitious in the sense of their capacity to extract a

large amount of information from available data. An important

challenge is then to bring these methods to a somewhat

reduced form which would allow for their practical use in

a wider range of real-world applications.

There is no doubt that the appearance of novel technologies

will continue to drive the research in localization and tracking.

One of them is the upcoming Internet-of-Things (IoT). The

IoT will become a very large network of devices, sensors,

and objects that will be connected through communications so

that novel value-added services will be provided. Furthermore,

the network will be dynamic and will find many applications

in various indoor settings including smart homes and smart

buildings. It goes without saying that an important piece of

information in many of the applications will be the tracking

of the “things” in the network. In the IoT, most of these opera-

tions will require implementations in a distributed way, that is,

without a particular central unit in place. Within this scenario,

another important challenge is the development of networks

able to identify and track low-cost and energy-autonomous

devices (tags) attached to objects/persons. This will require

the design of energy-efficient or zero-power solutions (e.g.,

using passive tags) towards the full integration of RFID and

RTLS technologies [8], [105]. This in turn will accelerate

developments of localization and tracking by signal processing

methods over networks.
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