Conference paper Open Access

Understanding of representative 24h travel activity sequences of Londoners

Chen, Yiqiao; Silva, Elisabete A.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210407002725.0</controlfield>
  <controlfield tag="001">4665386</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">14-16 April 2021</subfield>
    <subfield code="g">GISRUK</subfield>
    <subfield code="a">29th Annual GIS Research UK Conference</subfield>
    <subfield code="c">Cardiff, Wales, UK (Online)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Lab of Interdisciplinary Spatial Analysis, Department of Land Economy, University of Cambridge</subfield>
    <subfield code="a">Silva, Elisabete A.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">241771</subfield>
    <subfield code="z">md5:eb399d532b3372116f1365a96821676f</subfield>
    <subfield code="u">https://zenodo.org/record/4665386/files/GISRUK2021_paper_11.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://cardiff.gisruk.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:4665386</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Lab of Interdisciplinary Spatial Analysis, Department of Land Economy, University of Cambridge</subfield>
    <subfield code="a">Chen, Yiqiao</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Understanding of representative 24h travel activity sequences of Londoners</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A 24-hour travel activity sequence is a traveller&amp;rsquo;s time-use activity in a day, containing location, function, purpose, and trip mode information in each time interval. Understanding the daily time-use profile of travellers can reveal the travel patterns in a city, uncover the travel behaviour of citizens, and increase the accuracy of activity-based travel forecasting models. The focus of this paper is to cluster the 24h travel activity sequences and learn the daily travel activity patterns of Londoners. We analyse the National Travel Survey data. A three-stage clustering algorithm is applied to group similar travel sequences and find representative travel patterns.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4665385</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4665386</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
119
91
views
downloads
All versions This version
Views 119119
Downloads 9191
Data volume 22.0 MB22.0 MB
Unique views 114114
Unique downloads 8484

Share

Cite as