DiNatale

CHO004.tex June 16, 2020 16: 28 Page 95

Chapter 4

Design techniques to improve the resilience
of computing systems: software layer

Alberto Bosio!, Stefano Di Carlo?, Giorgio Di Natalée’,
Matteo Sonza Reorda’, and Josie E. Rodriguez Condia®

Hardware techniques to improve the robustness of a computing system can be very
expensive, difficult to implement and validate. Moreover, they require long evalua-
tion processes that could lead to the redesign of the hardware itself when reliability
requirements are not satisfied. This chapter will cover the software techniques that
allow improving the tolerance of the system to hardware faults by acting at soft-
ware level only. We will cover the recently proposed approaches to detect and correct
transient and permanent faults.

4.1 Introduction

This chapter presents the reliability issues and solutions targeting the software layer
of a computing system. The software layer plays an important role from the system
reliability point of view. Indeed, software can either mask or amplify errors thus
improving or reducing the overall computing system reliability. This is the main idea
behind the concept of Software-Implemented Fault Tolerance (SWIFT) Techniques:
how to write the software in order to maximize the error-masking effect.

Before moving to the details of software level fault-tolerant techniques, let us
first introduce some basic concepts. Figure 4.1 depicts a simple view of a computing
system divided into hardware and software layers. From the figure, it is possible to
identify the “propagation” of the hardware faults (i.e., Physical faults) through the
hardware layers composing the computing system. Some of these faults are masked by
hardware layers, while some others reach the software layer. It is interesting to point
out that at software level two more source of faults can be identified: the presence of
bugs and the misuse of the software external User Interface (UI). These sources are
completely independent of the hardware level.

!Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, Lyon, France
2Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
3TIMA Laboratory, CNRS, Grenoble, France

DiNatale

96

the

CHO004.tex June 16, 2020 16: 28 Page 96

Cross-layer reliability of computing systems

A-r Misuse
System failure uI
-

Software 1 Software 1= ;
error masking ; \ —x Latent Bug

; Virtual ISA :

" |I5 Hardware independent

i S " H

. S0 '

¢ T\ |IE] ISA '

I 9 !

1 =1 upP H

Hardware : 2 i

error masking ¢ TN - @ '

T Caches i

P RAM :

A e

M Hardware dependent

External physical faults

Figure 4.1 System layers and fault propagation

The chapter is structured as follows: Section 4.2 presents the taxonomy of
faults affecting the software layer. Section 4.3 reviews the existing Software-

Implemented Hardware Fault Tolerance (SIHFT) solutions. Section 4.4 describes the
techniques for Software-Based Self-Test (SBST), while Section 4.5.1 focuses the
analysis of SBST solutions for GPUs.

4.2

Fault taxonomy

As already pointed out in the introduction, faults affecting software have different
sources that can be classified using the following definitions:

Design faults: these faults are introduced during the software implementation.
Usually this kind of faults is referred to as bugs.

Physical faults: these faults are originated at hardware level and reach the
software level through propagation.

Interaction faults: these faults are due by interaction between the software level
and the external environment.

Independently from the earlier sources, faults can be further classified by the

following characteristics:

Intent: the fault can be intentionally or not introduced into the software. In
the first case, the intent is to obtain a malfunction of the software, and in the
literature the term malicious faults is usually adopted. In the second case, the
term non-malicious fault is adopted [1].

Nature: the fault is defined as Permanent if it is always present. The fault is
defined as Transient if it appears at a certain time and then disappear.

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 97

Design techniques to improve the resilience of computing systems 97

o Effect: the fault effect can impact a single or multiple locations. The location can
be either a variable or an instruction.
e TImpact: the fault can have different impacts at application-level:
— Hang: the application does not terminate within a reasonable time interval.
The time interval depends on the application itself.
— Silent Data Corruption (SDC): the output of application has been corrupted.
— Data Undetected Error (DUE): an unexpected exception, assertion, or
segmentation fault, deadlock or interrupt occurred.
— Masked: no mismatch at the application output.

Table 4.1 presents the fault taxonomy through a fault source/characteristic matrix.
Each row corresponds to one fault characteristic, while each column corresponds to
fault source. As it can be seen, independently from the fault source, all the fault
characteristics have to be considered. For example, a design fault can be malicious
if the software code has been intentionally modified to introduce the fault itself. The
latter can be a Trojan or a virus [2,3]. In the same way, an interaction fault can be
malicious too, and in this case we have to consider the case of intentionally misuse that
typically occurs during an attack [4]. Malicious Physical faults have been intentionally
introduced into the hardware level of the system (e.g., Trojan) [5].

The next subsection will present how faults are modeled at software level.

4.2.1 Software faults

Table 4.2 reports a detailed list of Software fault models induced by hardware faults.
They can be grouped into three main categories:

e Data fault models: they enable to model faults corrupting data processed by
a software application. They include (i) Wrong Data in an Operand, (ii) Not-
accessible Operand and (iii) Operand Forced Switch;

e Code fault models: they enable one to model faults that corrupt the set of instruc-
tions composing a program. They include (i) Instruction Replacement, (ii) Faulty
Instruction and (iii) Control Flow Error.

e System fault models: they enable one to model both timing faults and com-
munication/synchronization faults during the software execution. They include
(1) External Peripheral Communication Error, Signaling Error, Execution timing
Error and Synchronization Error.

Table 4.1 Software fault taxonomy/characteristic matrix

Design fault Interaction fault Physical fault
Intent Malicious, non-malicious
Nature Permanent Permanent, Transient Permanent
Effect Single, multiple

Impact Hang, SDC, DUE, Masked

AQl

DiNatale CHO004.tex

June 16, 2020 16: 28

Page 98

98 Cross-layer reliability of computing systems

Figure 4.2 shows an example of the earlier fault modeling. It represents the multi-
plication instruction as specified in the ARM®© Instruction Set Architecture (ISA) [6].
We will consider the case of three different faults (F1, F2 and F3) affecting different
locations in different time. F1 affects the portion of the instruction responsible of
the encoding of the destination register (Rd). Due to F1, it is possible that the Rd
changes so that the result will be stored in a different register w.r.t. the fault-free one.
This case is modeled by the Data fault model and more specifically by the Source
Operand Forced Switch model. F2 affects the instruction opcode. This case may lead
to a different opcode and thus the microprocessor decodes the faulty instruction as a
different one w.r.t. the fault-free one. This case is modeled by the Code fault models

Table 4.2 Software fault models

Software fault model

Description

Wrong Data in a Operand
Not-accessible Operand

Source Operand Forced Switch
Instruction Replacement

Faulty Instruction

Control Flow Error

External Peripheral Communication
Error

Signaling Error

Execution timing Error

Synchronization Error

An operand of the ISA instruction changes its value
An operand of the ISA instruction cannot change
its value

An operand is used in place of another

An instruction is used in place of another

The instruction is executed incorrectly

The control flow is not respected (control-flow faults)
An input value (from a peripheral) is corrupted or
not arriving

An internal signaling (exception, interrupt, etc.)

is wrongly raised or suppressed

An error in the timing management (e.g., PLL)
interferes with the correct execution timing

An error in the scheduling processes causes an
incoherent synchronization of processes/tasks

F3 F2 F1
31 28 27 2221 20 19 16 15 12 11 8 7 4 3 0
[Cond lO 0000 OIAISI Rd l Rn I Rs ll 00 1| Rm I
 CH—— L] L | L]

T

[

Operand registers
Destination register

Set condition code
0= do not alter condition codes
1 = set condition codes
Accumulate

0 = multiply only
1 = multiply and accumulate

Condition field

Figure 4.2

Fault modeling example

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 99

Design techniques to improve the resilience of computing systems 99

and more specifically by the Instruction Replacement. Finally, F3 affects the condi-
tion flags (cond) of the instruction. This case may lead to have an erroneous flag thus
impacting the control flow of the program. This case is modeled by the Code fault
models and more specifically by the Control Flow Error.

4.3 Software-Implemented Hardware Fault Tolerance

The concept of Commercial Off-The Shelf (COTS) hardware and software compo-
nents has been introduced in safety-critical applications. These components guarantee
high performance at the price of a low dependability. Since COTS hardware cannot
be modified to introduce fault-tolerant mechanisms, the only possibility is to protect
systems acting at the software layer. More in particular, the low-cost solution is to
take advantage of SIHFT techniques that allow, by only using software, to detect and
correct errors affecting the hardware.

SIHFT techniques are, in general, based on the addition, to the original target
application, of software routines able to check the validity and correctness of the exe-
cuted code and the managed data [7]. This section presents recent STHFT techniques to
guarantee the correct behavior of the system, even in the presence of hardware faults.
Most of the existing solutions are inspired by equivalent solutions implemented in
hardware but then adapted in software so that their cost is reduced. These techniques
can be classified into two main categories:

1. techniques that modify the software in order to reduce the probability of fault
occurrences;

2. techniques that allow detecting/tolerating the presence of an error: mainly based
on redundancy, control flow integrity, checkpoints/rollbacks and the so-called
Algorithmic-Based Fault Tolerance (ABFT).

The following subsections will detail each of the previous categories.

4.3.1 Modify the software in order to reduce the probability of fault
occurrences

These techniques mainly aim at modifying the code source in order to use in a more
smart way the hardware resources. The ultimate goal is to reduce the probability that
a fault-affecting hardware resources will propagate to the software.

Let us resort to an example depicted in the assembly code of Listing 4.1. The
reader can notice that register 0 is written at line 2 and then read at line 5. This means
that the /ifetime of such a register corresponds to three cycles.” The point here is that
higher the lifetime higher the exposure time and thus higher the probability to observe
a single event upset. By simply change the code source, it is possible to minimize the
lifetime and thus reduce the probability of observing a fault at hardware level. The

*For the sake of simplicity, we consider that each instruction needs one clock cycle to be executed.

DiNatale CHO004.tex June 16, 2020 16: 28 Page 100

100 Cross-layer reliability of computing systems

code shown in Listing 4.2 provides a lower fault probability because the lifetime of
70 has been reduced to 1 w.r.t. to the first code.

In [8-10] works, the main idea is to perform instruction rescheduling (after
the performance-optimized scheduling) to reduce the vulnerable periods of registers.
The main drawback of such approaches is that register file covers only a small por-
tion of the processor layout. As a result, these techniques provide limited reliability
improvement (from 2% to 9%) w.r.t. to a normal code.

4.3.2 Detecting/tolerating the presence of an error

N-Version programing is probably the most applied software level fault diversity
technique [11]. The idea behind N-version programing is the development of N
implementations of the same software application (with N > 2) by an independent
development team. These versions are all functionally equivalent, i.e., they imple-
ment the same functionalities, but given the different instruction flow, they expose
different failure characteristics that increase the likelihood that not all versions fail
at the same time in a specific fault scenario. N-version programing can be coupled
with redundancy techniques such as Dual Modular Redundancy and Triple Modular
Redundancy.

When recovery from failures is a key point, software-based checkpoint recov-
ery techniques are an interesting solution [12]. The overall idea when implementing
checkpointing is to modify the software by inserting checkpoint instructions inside
the code. A good practice to decide where checkpoint instructions must be inserted
is to identify instructions with high error probability and to place checkpoints just
before these instructions. Inserting a checkpoint means inserting calls to proper rou-
tines able to save the state of the program in a reliable storage area. In the case of
failure, the program execution can be restarted from a safe state by restoring the latest

1 mov r0, @a

2 inc r0 ; r0 write
3 mov rl, Qb

4 add r2, rl

5 mov @a, r0 ; r0 read

Listing 4.1 Asm example

1 mov r0, Qa

2 inc r0 ; r0 write
3 mov @a, r0 ; rO read
4 mov rl, @b

5 add r2, rl

Listing 4.2 Asm example: reduced lifetime

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 101

Design techniques to improve the resilience of computing systems 101

saved checkpoint. The literature is the reach of software-based checkpointing tech-
niques. Compilers can be modified in order to assist the insertion of checkpoints as
proposed in [13] that propose the use of an adaptive scheme to minimize the storage
overhead required to save the checkpoints. Software libraries such as Libckpt [14]
and libFT [15] have been released to the developers to facilitate the task of dumping
the state of a program when performing checkpointing. However, full checkpoint-
ing automation is still not supported. At the Operating System (OS) level, [16]
proposes a loadable kernel module for providing application-aware reliability and
dynamically configuring reliability mechanisms. The module is implemented in Linux
and supports the detection of application/OS failures and transparent application
checkpointing.

Besides diversity and checkpointing, several software and compiler level tech-
niques propose protection schemes based on data redundancy and control flow
checking.

Data error detection using Duplicated Instructions [17] and SWIFT [18] and
REliable Code COmpliler [10] represent the most famous software redundancy tech-
niques based on duplicated instructions followed by checkpoint instructions able to
compare the result of the two executions usually placed before store and/or condi-
tional branches. These techniques generate a significant performance and memory
overhead due to redundant instruction execution and shadow memory locations to
store redundant data, respectively. Performance overhead can be also aggravated by
the increased cache usage to hold redundant data for computation of original and
duplicated instructions, generating additional memory traffic.

Control flow checking techniques instead aim at verifying that the control flow of
the application is properly respected during the execution. The program is usually split
into elementary blocks of instructions with a single entry and a single exit, usually
referred to as basic blocks. A reference signature representing the correct execution
flow in the blocks is calculated off-line and stored. At run-time the same signature
is calculated again and compared with the golden one. Software-based control flow
checking techniques insert appropriate instructions to compute the execution signature
at run-time.

Different techniques such as Block Signature Self Checking [19], Control Check-
ing with Assertions [20], Control-Flow checking via regular expressions [21] and
Control Flow Checking by Software Signatures [22].

Similar to data redundancy techniques, also control-flow checking techniques
may introduce significant overhead in the software execution associated with the
tasks of computing and checking the software signatures.

A completely different approach is to implement fault tolerance techniques at the
algorithm level by exploiting the characteristic of specific computations implementing
the so-called ABFT [23]. Figure 4.3 shows a simple example of ABFT application.
The algorithm is the matrix multiplication. Here it is possible to exploit the property
of the algorithm in order to add an extra row and column of the two matrices. These
extra elements contain a kind of code (in the example is the sum of the elements).
After the multiplication, the extra row and column will satisfy the same property. It
is thus possible to identify which element of the matrix has been affected by a fault.

DiNatale CHO004.tex June 16, 2020 16: 28 Page 102

102 Cross-layer reliability of computing systems

n P
thtr 2202 2011 0[4] [10[6l11 9 440
21100[(nll20210[5 [8|2l6 4 1[21
m (10002 (222118 _|2]2]35 214
01011 11200/[4| [3}10l5 3 1]14
12201 0112 1[5 [10[5]107 3|35
20122 816(10 7 3|34
76638 41 23 45 35 14)158

Figure 4.3 ABFT example

4.4 Software-Based Self-Test

In the last decades, electronic systems have been increasingly used in safety-critical
applications, where the effects of possible faults affecting the hardware may have
severe consequences. Several solutions were introduced to early detect the presence
of permanent faults, or to mitigate their effects. The latter are based on (hardware,
information, time) redundancy, the former involves in-field test, which allows detect-
ing possible permanent faults arising during the operational phase (e.g., due to aging)
before they cause serious consequences. In this way, the resulting failure probability
can be decreased. In-field test of an embedded system can be performed in different
ways depending on the considered scenario and the required reliability targets. In
some cases, in-field test is performed at the system power-on, before the real appli-
cation is started. In other cases, it is performed periodically, often exploiting the idle
times of the application. Alternatively, the in-field test is performed concurrently to
the application, e.g., by monitoring the produced results. In any case, in-field test must
take the form of self-test, since no support from the outside can be provided, and must
minimize the intrusiveness with respect to the resources used by the application. It is
worth emphasizing that the activation frequency of in-field test and the fault coverage
it must achieve are higher when semiconductor technologies with lower reliability
are used. Since the latest technologies are known to be less reliable, their adoption
in safety-critical systems makes the constraints on in-field test even harder. Different
alternatives exist to implement effective in-field test solutions in a device used for
a safety-critical application. If the device is specifically developed for that applica-
tion, and hardware overhead constraints allow for that, solutions based on Design for
Testability (DfT), e.g., Logic BIST, can be successfully exploited. This approach has
several advantages, including a good support from commercial EDA tools, the ability
to reach a high fault coverage (at least for static faults), and the possibility to reuse at
least some of the hardware infrastructures already used for end-of-manufacturing test.
On the other side, its main drawback lies in the fact that the required DfT hardware
must be introduced early in the design flow, and the mechanism for its access from the
outside must be agreed between the semiconductor company producing the device
and the system company managing the in-field test. Moreover, when each activation

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 103

Design techniques to improve the resilience of computing systems 103

of the in-field tests must fit into relatively short-time slots, this solution may not be
suitable. As an alternative, in the last years several semiconductor and IP compa-
nies, including Infineon [24], STMicroelectronics [25], Renesas [26], Cypress [27],
Microchip [28], ARM [29], started adopting a solution based on the so-called Self-
Test Libraries (STLs). The idea is to use the CPU existing in most of the considered
devices and to develop a set of procedures, whose execution can be easily triggered
by the application software or by the OS (if any). When executed, these procedures
perform a suitable sequence of operations, able to trigger possible permanent faults
in the CPU or in other modules and to produce results that can reveal the existence
of the faults. This approach is known in the literature as SBST [30]. Since STLs are
developed by the semiconductor or IP companies, which know the structure of the
hardware, the fault coverage (e.g., in terms of stuck-at faults) that STLs can achieve
can be computed via fault simulation. This approach provides a nice compromise
between the requirements of semiconductor and IP companies, which want to pre-
serve the property of their hardware but must provide a flexible and effective solution
for its test, and those of the system companies, which must test in-the-field the dif-
ferent devices composing their systems to achieve a given reliability or safety. As a
further advantage, this approach performs a test of the whole device while it is operat-
ing in the same conditions of the application and can thus detect defects (e.g., delay or
interconnection defects) that can hardly be caught by the DfT-based solutions. Finally,
it is worth mentioning the fact that being based on the execution of a piece of code, a
test based on SBST can be easily changed during the product life, e.g., to target new
defects. On the other side, the major limitation of the solution based on STLs lies
in the cost for their development, since this activity must be done manually without
very limited support by EDA tools.

4.4.1 Basics on SBST

The idea of using a piece of code to test a CPU was first proposed several decades
ago [31] to face the scenario in which the CPU was a simple processor,and its ISA and
basic architecture were known only. More recently, the same idea was exploited to
support end-of-production test of high-end processors, with the main goal of avoid-
ing the usage of expensive high-frequency testers [30]. A similar approach found
applications in industry to support silicon debug and speed binning [32]. A compre-
hensive overview about the usage of SBST for end-of-manufacturing CPU testing
can be found in [33]. Similar solutions were also explored for testing communica-
tion peripheral components [34], system peripherals [35],and on-chip memories [36],
including caches [37]. The growing interest toward in-field test pushed researchers
to analyze how SBST could be effectively used in that domain. In principle, SBST
has several nice properties, as mentioned earlier. However, some key points must be
faced, which are not relevant when SBST is used for end-of-production test, such as
(i) how to trigger the execution of each test procedure, (ii) how to retrieve the results,
(ii1) how to limit the invasiveness of each test procedure while still maintaining the
final fault coverage, (iv) how to limit the duration of each test procedure to the max-
imum allowed time, (v) how to write the test code such that it complies with the

DiNatale CHO004.tex June 16, 2020 16: 28 Page 104

AQ3

104 Cross-layer reliability of computing systems

coding stiles and rules that are valid for the application software. Some first analysis
of the issues connected to the usage of SBST for on-line test, together with some first
solutions are reported in [38]. In [39], some examples of solutions adopted on real
test cases from industry are reported, while algorithms for automatically compacting
existing test programs to reduce their size [40] or duration [41] have been recently
developed. Finally, the work in [42] shows that formal techniques can be successfully
used to automate the generation of test programs to be used for in-field test of pipe-
lined processors. Current challenges in the area of SBST include the techniques for
developing and optimizing STLs for multicore systems, and the solutions for address-
ing special categories of faults, such as the performance faults, i.e., those faults that
only impact on the performance of a system, while still producing correct result val-
ues [43]. Extension of SBST techniques to special types of computing elements, such
as VLIW processors [44] or GPGPUs [45] is also a hot topic at the moment.

4.5 SBST for GPGPUs

This section first summarizes the state of the art in terms of SBST solutions for per-
manent faults in GPGPUs. Then it shows that the potential effects of permanent faults
in critical units of GPGPUs may become relevant. Finally, some SBST techniques are
introduced to detect those faults.

4.5.1 Introduction

GPGPUs are an effective solution to speed up massively parallel computation and
are mainly employed as accelerators in highly data-intensive applications such as
video, image and multi-signals processing, due to their powerful parallel architecture.
Nowadays, these devices are promising solutions for new low-energy, real-time and
high-performance applications with safety-critical requirements, such as autonomous
automotive drivers and autonomous industrial machines [46]. As commented below,
in order to match the requirements for these applications, these devices are designed
using aggressive technology scaling techniques, thus increasing the fault-rate across
the operational lifetime, mainly because these devices are prone to internal and
external sensitive effects, such as aging and radiation [47—49]. Moreover, tradi-
tional end-of-manufacturing test solutions cannot guarantee the correct operation
,and unexpected misbehaviors could arise in the application. When considering system
integration companies developing GPGPU-based solutions in safety-critical domains,
a critical issue is that these companies often do not have detailed knowledge of the
implementation of the adopted GPGPU devices. In this context, functional test tech-
niques represent a viable solution to guarantee the correct in-field operation. This
issue becomes critical when a product for safety-critical environments should fol-
low industrial standards, such as the ISO 26262 for the automotive applications.
The adoption of SBST techniques for GPGPU devices is feasible in such a scenario,
although the cost of developing effective test solutions for such complex devices,

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 105

Design techniques to improve the resilience of computing systems 105

including large numbers of parallel execution units, may be challenging. By prin-
ciple, SBST techniques introduce zero hardware overhead. However, restrictions of
execution cycles, resource overhead,and power consumption should be considered.
Moreover, GPGPUs are mainly special-purpose processors and potentially all previ-
ous SBST solutions for single-core processor devices can be adapted to these parallel
devices. Some SBST solutions for GPGPUs have been proposed in the past. Some
of them focus on data-path modules, including the register files and the execution
units [45] using adaptations of well-known SBST programs for single and multicore
processors. Other works [50] employed internal thread identifiers to schedule tasks
in the GPGPU, avoiding corrupted units and mitigating errors in the application.
In [51], the authors proposed new mitigations strategies to face permanent faults in
the processing core units, or Streaming Multiprocessors (SMs) (in Nvidia’s termi-
nology) employing a reverse engineering approach for the block scheduler policies
and distributing the application blocks across the fault-free units. Finally, the work
in [52] analyzed the fault sensibility and its relation with the employed sub-modules
and program description.

4.5.2 Effects of permanent faults in GPGPU devices

One important cause of permanent faults in GPGPU devices lies in the aging effects
damaging the hardware integrity. In most multimedia applications, a fault located in
the data-path can generate errors in the output. Nevertheless, some of these could
be tolerated due to the graphical nature of the application (they only produce slight
degradation of the image quality, which is often even difficult to detect). On the other
hand, a faultlocated in a control-unit can generate severe consequences for the running
application. When hitting a sensitive location, a fault could generate execution hang-
ing or thread execution missing. In order to present an example showing the effects
of permanent faults affecting the control logic of a GPGPU device, we considered an
image preprocessing application (edge-detection) and performed some experiments
resorting to the GPGPU-SIM simulator [53]. In this case study, a permanent fault is
injected in a memory cell of the scheduler. The fault prevents the execution of a partic-
ular thread in the program kernel. During the execution of the GPGPU program, the
affected thread can partially damage the neighbor thread results introducing errors.
Results are graphically visible in the produced image (Figure 4.4), as the reader can
see, the effects are far from being negligible. The previous application shows the
impact of one permanent fault in a sensitive location. One or a few faults in a more
complex and critical application could produce critical misbehaviors compromising
the entire execution. SBST solutions can be applied to detect permanent faults in
special-purpose units of a GPGPU. The next subsection introduces some strategies
applied to control units in GPGPU devices.

4.5.3 SBST techniques for testing the GPGPU scheduler

Developing effective SBST procedures for control-path modules in processor-based
systems is not a trivial task. This is true also for GPGPU-based systems. The warp

DiNatale CHO004.tex June 16, 2020 16: 28 Page 106

106 Cross-layer reliability of computing systems

Figure 4.4 Effects of one permanent fault in the control unit of a GPGPU. Original
fault-free gray-scale image (left), fault-free edge-detection output image
(top-right) and faulty edge-detection output image (bottom-right).

scheduler is one of the control-path modules, and it is a critical unit for the GPGPU
operation. This unit manages the parallel execution of multiple threads inside the SM,
and the detection of permanent faults in this unit is crucial to avoid the application
collapsing. The basic functions of this unit are (i) warp submission, (ii) warp execution
checking (this process is done after finishing each instruction by the warp and updating
the related information) and (iii) warp termination. A fault in this unit is able to
generate critical issues, such as execution hanging, performance degradation and
SDC effects. This module includes some sub-modules, such as warp generators,
dispatchers and checkers. Additionally, some special-purpose memories are included.
One of these memories is the status warp pool memory. This memory stores the status
information of each warp dispatched to the SM in an entry line. Each entry line is
composed of a Thread-Mask (ThMKk) field, indicating the number of active threads

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 107

Design techniques to improve the resilience of computing systems 107

per warp, the warp program-counter (WPc) field and some other fields. In [54],
some approaches to detect faults affecting the warp scheduler based on the SBST
solution have been proposed. The authors used the available instructions to design
SBST programs targeting permanent faults in the warp pool memory of a GPGPU.
These techniques are mainly based on combinations of multiple instructions and
clever algorithmic mechanisms to generate the input sequences to the targeted unit
in order to make the faulty effects visible. In this work, architectural information
about the targeted GPGPU was available, and it was possible to use it to develop
a suitable test for each field of each entry line inside the memory. The proposed
algorithms are based on a sequence of subroutines to generate stimuli able to write
to and read from a specific field inside the warp entry line. The targeted fields
in the entry line were the ThMk and WPc. These fields depend on control-flow
instructions. ThMk can be written by adding multiple combinations of conditional
control-flow instructions in the program kernel. The WPc field can be modified
through unconditional control-flow instructions. A major difference with respect to
other strategies is the observability mechanism, based on signatures. The method that
presents better results implements the test by means of a subroutine, which computes
one signature per thread to check its correct execution and hence detect possible
faults affecting the ThMk and WPcm fields. The subroutine execution generates
thread divergence. Moreover, this changes the program counter location. Then, on
each path (taken and not-taken) each thread modifies its signature, allowing the fault
detection. At the end, the signature is stored in global memory and checked by the
host. This strategy takes the advantage of supported instructions and includes zero
hardware overhead in the system. A moderate memory overhead is required and the
total number of required memory locations is equal to the number of threads per block
to be executed by the SM. A comparison between a reference application, a typical
embarrassing parallel application (denoted as Basic), and the proposed approach is
shown in Figure 4.5. Results show that the proposed approach increases the percentage

100
" SDCY%

100
11.68 *Testable FC%

®EC%
®Hang%

18,69

50 62,29

44,71

Basic Proposed Basic Proposed
approach approach

Figure 4.5 Comparison of fault coverage between a typical parallel application
and the proposed method to detect permanent faults in the scheduler
warp pool memory of a GPGPU (detailed testable FC (left), testable
FCand FC (right))

DiNatale

AQ4

108

CHO004.tex June 16, 2020 16: 28 Page 108

Cross-layer reliability of computing systems

of permanent faults detection. The method is able to reach the 100% of detectable
fault coverage. The detectable fault coverage corresponds to the total number of faults
that can be detected using SBST strategies. On the other hand, the total fault coverage
is lower. This difference occurs due to the presence of faults that cannot be tested,
e.g., because they relate to unused memory bits.

References

(1]

(2]

(3]

(4]

(3]

(8]

(9]

[10]

[11]
[12]

[13]

Avizienis A, Laprie JC, Randell B, et al. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing. 2004;1(1):11-33.

Avizienis A and He Y. Microprocessor entomology: A taxonomy of design
faults in COTS microprocessors. In: Dependable Computing for Critical
Applications 7; 1999. p. 3-23.

Xiao G, Zheng Z, Yin B, et al. Experience report: Fault triggers in Linux oper-
ating system: From evolution perspective. In: 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE); 2017. p. 101-111.
Singh YN and Singh SK. A Taxonomy of Biometric System Vulnerabilities and
Defences. International Journal of Biometrics. 2013;5(2):137—159. Available
from: http://dx.doi.org/10.1504/1JBM.2013.052964.

Xiao K, Forte D, JinY, et al. Hardware Trojans: Lessons Learned After One
Decade of Research. ACM Transactions on Design Automation of Electronic
Systems. 2016;22(1):6:1-6:23. Available from: http://doi.acm.org/10.1145/
2906147.

ARM ISA. Accessed: 2019-06-27. https://www.arm.com.

Benso A, Di Carlo S, Di Natale G, et al. Data criticality estimation in software
applications. In: International Test Conference, 2003. Proceedings. ITC 2003.
vol. 1; 2003. p. 802-810.

Rehman S, Shafique M, and Henkel J. In: Introduction. Cham: Springer Inter-
national Publishing; 2016. p. 1-21. Available from: https://doi.org/10.1007/
978-3-319-25772-3_1.

Xu J, Tan Q, and Shen R. The instruction scheduling for soft errors based on
data flow analysis. In: 2009 15th IEEE Pacific Rim International Symposium
on Dependable Computing; 2009. p. 372-378.

Benso A, Chiusano S, Prinetto P, et al. A C/C++ source-to-source com-
piler for dependable applications. In: Proceeding International Conference
on Dependable Systems and Networks. DSN 2000; 2000. p. 71-78.

Avizienis A. The N-Version Approach to Fault-Tolerant Software. IEEE
Transactions on Software Engineering. 1985;(12):1491-1501.

Koo R and Toueg S. Checkpointing and Rollback-Recovery for Distributed
Systems. IEEE Transactions on Software Engineering. 1987;(1):23-31.

Li CC and Fuchs WK. Catch-compiler-assisted techniques for checkpoint-
ing. In: Digest of Papers. Fault-Tolerant Computing: 20th International
Symposium. IEEE; 1990. p. 74-81.

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 109

[14]
[15]

[16]

[17]

[18]

[19]

Design techniques to improve the resilience of computing systems 109

Plank JS, Beck M, Kingsley G, et al. Libckpt: Transparent Checkpointing
Under Unix. Computer Science Department; 1994.

Huang Y and Kintala C. Software implemented fault tolerance: Technologies
and experience. In: FTCS. vol. 23. IEEE Computer Society Press; 1993. p. 2-9.
Wang L, Kalbarczyk Z, Gu W, ef al. An OS-level framework for provid-
ing application-aware reliability. In: 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). IEEE; 2006. p. 55-62.
Oh N, Shirvani PP, and McCluskey EJ. Error Detection by Duplicated
Instructions in Super-Scalar Processors. IEEE Transactions on Reliability.
2002;51(1):63-75.

Reis GA, Chang J, Vachharajani N, et al. Software-Controlled Fault Tolerance.
ACM Transactions on Architecture and Code Optimization. 2005;2(4):366—
396. Available from: http://doi.acm.org/10.1145/1113841.1113843.
Miremadi G, Harlsson J, Gunneflo U, et al. Two software techniques for on-
line error detection. In: Digest of Papers. FTCS-22: The Twenty-Second
International Symposium on Fault-Tolerant Computing. IEEE; 1992. p.
328-335.

Alkhalifa Z, Nair VS, Krishnamurthy N, ef al. Design and Evaluation of
System-Level Checks for On-Line Control Flow Error Detection. IEEE
Transactions on Parallel and Distributed Systems. 1999;10(6):627—641.
Benso A, Di Carlo S, Di Natale G, ef al. Control-flow checking via regular
expressions. In: Proceedings 10th Asian Test Symposium. IEEE; 2001. p.
299-303.

Oh N, Shirvani PP, and McCluskey EJ. Control-Flow Checking by Software
Signatures. IEEE Transactions on Reliability. 2002;51(1):111-122.

Huang K-H and Abraham JA. Algorithm-Based Fault Tolerance for Matrix
Operations. IEEE Transactions on Computers. 1984;C-33(6):518-528.
Infineon. 2018. https://www.hitex.com/software-components/selftest-libraries-
safety-libs/pro-sil-safetcore-safetlib/.

STMicroelectronics. AN3307 — Application note. In Guidelines for Obtaining
IEC 60335 Class B Certification for any STM32 Application; 2016.

Renesas. 2018. https://www.renesas.com/en-eu/products/synergy/software/
add-ons.html#read.

Cypress. AN204377 FM3 and FM4 Family, [IEC61508 SIL2 Self-Test Library;
2017.

Microchip. DS52076A 16-bit CPU Self-Test Library User’s Guide; 2012.
ARM. 2018. https://developer.arm.com/technologies/functional-safety.

Chen L and Dey S. Software-Based Self-Testing Methodology for Processor
Cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. 2001;20(3):369-380.

Thatte SM and Abraham JA. Test Generation for Microprocessors. IEEE
Transactions on Computers. 1980;C-29(6):429—441.

Parvathala P, Maneparambil K, and Lindsay W. FRITS — A microprocessor
functional BIST method. In: Proceedings. International Test Conference; 2002.
p- 590-598.

| DiNatale

110
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

CHO004.tex June 16, 2020 16: 28 Page 110

Cross-layer reliability of computing systems

Psarakis M, Gizopoulos D, Sanchez E, et al. Microprocessor Software-Based
Self-Testing. IEEE Design Test of Computers. 2010;27(3):4-19.

Apostolakis A, Gizopoulos D, Psarakis M, ef al. Test Program Generation for
Communication Peripherals in Processor-Based SoC Devices. IEEE Design
Test of Computers. 2009;26(2):52—-63.

Grosso M, Perez WJH, Ravotto D, ef al. A software-based self-test method-
ology for system peripherals. In: 2010 15th IEEE European Test Symposium,;
2010. p. 195-200.

van de Goor A, Gaydadjiev G, and Hamdioui S. Memory testing with a RISC
microcontroller. In: 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010); 2010. p. 214-219.

Di Carlo S, Prinetto P, and Savino A. Software-Based Self-Test of
Set-Associative Cache Memories. IEEE Transactions on Computers.
2011;60(7):1030-1044.

Paschalis A and Gizopoulos D. Effective Software-Based Self-Test Strategies
for On-Line Periodic Testing of Embedded Processors. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems. 2005;24(1):
88-99.

Bernardi P, Cantoro R, De Luca S, et al. Development Flow for On-Line Core
Self-Test of Automotive Microcontrollers. IEEE Transactions on Computers.
2016;65(3):744-754.

Gaudesi M, Reorda MS, and Pomeranz I. On test program compaction. In:
2015 20th IEEE European Test Symposium (ETS); 2015. p. 1-6.

Gaudesi M, Pomeranz I, Reorda MS, et al. New Techniques to Reduce the Exe-
cution Time of Functional Test Programs. IEEE Transactions on Computers.
2017;66(7):1268-1273.

Riefert A, Cantoro R, Sauer M, et al. A Flexible Framework for the Auto-
matic Generation of SBST Programs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2016;24(10):3055-3066.

Sabena D, Reorda MS, and Sterpone L. On the Automatic Generation of Opti-
mized Software-Based Self-Test Programs for VLIW Processors. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems. 2014;22(4):813—-823.
Hatzimihail M, Psarakis M, Gizopoulos D, et al. A methodology for detecting
performance faults in microprocessors via performance monitoring hardware.
In: 2007 IEEE International Test Conference; 2007. p. 1-10.

Di Carlo S, Gambardella G, Indaco M, et al. A software-based self test of
CUDA Fermi GPUs. In: 2013 18th IEEE European Test Symposium (ETS);
2013. p. 1-6.

Shi W, Alawieh MB, Li X, et al. Algorithm and Hardware Implemen-
tation for Visual Perception System in Autonomous Vehicle: A Survey.
Integration. 2017;59:148—-156. Available from: http://www.sciencedirect.com/
science/article/pii/S0167926017303218.

Hamdioui S, Gizopoulos D, Guido G, et al. Reliability challenges of real-time
systems in forthcoming technology nodes. In: 2013 Design, Automation Test
in Europe Conference Exhibition (DATE); 2013. p. 129-134.

DiNatale

CHO004.tex June 16, 2020 16: 28 Page 111

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Design techniques to improve the resilience of computing systems 111

Agbo 1, Taouil M, Hamdioui S, ef al. Read path degradation analysis in SRAM.
In: 2016 21th IEEE European Test Symposium (ETS); 2016. p. 1-2.
Baumann RC. Radiation-Induced Soft Errors in Advanced Semiconduc-
tor Technologies. IEEE Transactions on Device and Materials Reliability.
2005;5(3):305-316.

Defour D and Petit E. A Software Scheduling Solution to Avoid Corrupted
Units on GPUs. Journal of Parallel and Distributed Computing. 2016;90—
91:1-8. Available from: http://www.sciencedirect.com/science/article/pii/
S0743731516000022.

Di Carlo S, Gambardella G, Martella I, ef al. An improved fault mitigation
strategy for CUDA Fermi GPUs. In: Dependable GPU Computing workshop,
Dresden; 2014.

Farazmand N, Ubal R, and Kaeli D. Statistical fault injection-based AVF anal-
ysis of a GPU architecture. In: IEEE Workshop on Silicon Errors in Logic;
2012.

Bakhoda A, Yuan GL, Fung W, ef al. Analyzing CUDA workloads using a
detailed GPU simulator; 2009. p. 163—-174.

Du B, Condia JER, Reorda MS, et al. About the functional test of the GPGPU
scheduler. In: 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS); 2018. p. 85-90.

