
Machine Learning and Deep Learning in Smart Manufacturing: The Smart Grid
Paradigm

Thanasis Kotsiopoulosa,b, Panagiotis Sarigiannidisa, Dimosthenis Ioannidisb, Dimitrios Tzovarasb

aDept. of Electrical and Computer Engineering, University of Western Macedonia, Karamanli & Ligeris Street, 50100 Kozani, Greece
bInformation Technologies Institute, Centre for Research & Technology Hellas, 57001 Thermi, Greece

Abstract

Industry 4.0 is the new industrial revolution. By connecting every machine and activity through network sensors to
the Internet, a huge amount of data is generated. Machine Learning (ML) and Deep Learning (DL) are two subsets
of Artificial Intelligence (AI), which are used to evaluate the generated data and produce valuable information about
the manufacturing enterprise, while introducing in parallel the Industrial AI (IAI). In this paper, the principles of the
Industry 4.0 are highlighted, by giving emphasis to the features, requirements, and challenges behind Industry 4.0. In
addition, a new architecture for AIA is presented. Furthermore, the most important ML and DL algorithms used in
Industry 4.0 are presented and compiled in detail. Each algorithm is discussed and evaluated in terms of its features,
its applications, and its efficiency. Then, we focus on one of the most important Industry 4.0 fields, namely the smart
grid, where ML and DL models are presented and analyzed in terms of efficiency and effectiveness in smart grid
applications. Lastly, trends and challenges in the field of data analysis in the context of the new Industrial era are
highlighted and discussed such as scalability, cybersecurity, and big data.
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1. Notation

a activation function of hidden layers in Auto
Encoders

ABOD Angle-Base Outlier Detection

AM Additive Models

AMQP Advanced Message Queuing Protocol

AE Auto Encoders

ANN Artificial Neural Networks

AI Artificial Intelligence

Ai...An conditional probability

ARIES smArt gRid Intrusion dEtection System

b regression coefficient

CNN Convolutional Neural Networks
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CPS Cyber Physical Systems

C Definition for a class in Bayesian algorithm

DBN Deep Belief Network

DIDEROT Dnp3 Intrusion DetEction pReventiOn
sysTem

DL Deep Learning

DODAG Destination Oriented Directed Acyclic Graph

e residual term

E(v,h,theta) Energy function of RBM model

ECNN Enhanced Convolutional Neural Network

ELM Extreme Learning Machine

FDI False Data Injection

Fp Activation function

fj(.) smooth terms

g(.) Smooth functions
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GS Grid Search

H non linear transformation function

IBL Instance Based Learning

IAI Industrial Artificial Intelligence

IETF Internet Engineering Task Force

IF Isolation Forest

IoT Internet of Things

IIoT Industrial Internet of Things

k hidden layer representation of Auto Encoders

L Loss function

(l,h) loss function bounding its capacity of the
learning machine

LLNs Low Power and Lossy Networks

LSTM Long Short Term Memory

LWL Locally Weighted Learning

m centroids of the clusters

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MBR Memory Based Reasoning

ML Machine Learning

MSE Mean Square Error

MQTT Message Queue Telemetry Transport

NB Bayesian Networks

O() notation for computational complexity

p* optimal average reward of SMART algorithm

PCA Principal Component Analysis

PEFL privacy-enhanced federated learning

PILCO Probabilistic Inference for Learning Control

phi activation function of CNN

R cost (error) function of Support Vector Machine

R(x,a) Action Values on SMART algorithm

RBM Restricted Boltzmann Machine

RC Reservoir Computing

RFE Recursive Feature Elimination

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RUL Remaining Usage Life

SLT Statistical Learning Theory

SMART Semi-Markov average Reward Technique

SMOTE Synthetic Minority Over-Sampling
TEchnique

SOM Self Organizing Maps

SOS Stochastic Outlier Selection

SPEAR Secure and Private Smart Grid

SVM Support Vector Machine

SVR Support Vector Regression

theta optimal control policy of PILCO

Thetak identically distributed random vectors

u Filter Vector of CNNs

V* optimal Value Function of SMART algorithm

W differantiable transformation function

w weight of the connections of a neural network

XGB XG-Boost

x input (predictors) of an algorithm

y output (target variable) of an algorithm

Z normalization factor of RBM

z Output values of Auto Encoders
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2. Introduction

The large amount of data produced daily on the planet
and the rise of recent exponentially growing technolo-
gies (e.g. IoT, Big Data, cloud computing) in combi-
nation with the need for faster and better production of
products and services, have created a new trend in in-
dustry, the Industry 4.0. Industry 4.0 combines several
technologies. CPS, IoT, cloud computing and Big Data
Analytics are used to automate the production process,
optimize products, reduce cost, reduce energy waste and
provide useful information by analyzing the data col-
lected from different aspects across the manufacturing
enterprise, including manufacturing equipment, man-
ufacturing process, labour activity, and environmental
conditions. In general, Industry 4.0 optimizes the com-
puterization of Industry 3.0. Once computers were in-
troduced in Industry 3.0, due to the addition of a com-
pletely new technology, it was disruptive. Today, and
as Industry 4.0 progresses in the future, machines are
linked and collaborating with each other to make deci-
sions without human involvement in the end (1),(2).

It can be easily spoken that Industry 4.0 is driven by
four fundamental aspects. First, is the digitization of
product and service offerings. The integration of new
data collection and analysis methods, such as the ex-
pansion of existing products or the creation of new digi-
tized products, helps companies to generate product us-
age data and, therefore, to refine products in order to
best meet the needs of customers. Second, it is the dig-
itization and integration of vertical and horizontal value
chain. Industry 4.0 incorporates processes throughout
the enterprise, such as processes in product develop-
ment, production, distribution and service, while Indus-
try 4.0 vertically covers internal operations from man-
ufacturers to consumers and all key value chain part-
ners. Third is the digital business models and customer
access. Customer satisfaction is a multi-stage, never-
ending process that needs to be changed at the moment
as the needs of consumers change all the time. Com-
panies therefore expand their offerings by setting up
disruptive digital business models to provide their cus-
tomers with digital solutions that best suit their needs
(2; 3).

By implementing the IoT technology in industry to
obtain data from the manufacturing enterprise, a huge
amount of data is generated. Nowadays, it is easier
to handle and process this amount of data due to the
growth of computational power and cloud computing.
ML and DL make use of the data collected by sensors
and actuators of the product line. In this way, the ap-
plication of ML and DL help to reduce costs of the

manual inspection personnel for defects on products and
also help to reduce the cost in the total value of the
production. By extracting knowledge from aggregated
data, ML or DL techniques play a key role in identi-
fying standards and patterns, producing valuable infor-
mation about the state of the manufacturing equipment-
manufacturing process and introducing the principles of
AI in the industrial sector, forming this way the Indus-
trial AI (4),(5).

Different levels of data analytics can be generated
using the aforementioned techniques, such as predic-
tive analytics, diagnostic analytics, prescriptive analyt-
ics and descriptive analytics. Predictive analytics use
statistical models to predict the possible size of the pro-
duction and/or the RUL of the machinery. Diagnostic
analytics examine and report faults on the machinery
and the product. Prescriptive analytics propose taking
over actions to optimize the production and forecast the
impact of these actions. Descriptive analytics aim to
summarize and describe the conditions occurring in the
manufacturing process and the manufacturing environ-
ment (6), (7). The combined usage of them, could lead
to provide an automated solution to industries for max-
imizing the profit, identifying early possible defects in
the structure of the product and predicting the cause of
any defect might occur, by calculating the RUL of the
machinery.

The impact of ML and DL technologies in the world
is rising and promising. Applications of ML and DL
can be initially found in condition monitoring of elec-
tric machines. Models for fault prediction on electric
machines and rolling bearings are emerging and provide
solid and accurate measures. Furthermore, applications
can also be found in logistics and supply chains. As
new information is presented, a connected supply chain
will adapt and accommodate it. If a shipment is related
to a weather delay, a connected system can proactively
adjust to that reality and change priorities for manufac-
turing. Transportation is also another sector, where ML
and DL models are applied. There are shipping yards
that use autonomous cranes and trucks to streamline op-
erations as shipping containers from ships are accepted.
In addition, secure IIoT architectures are developed, to
store and process scalable sensor data (big data) for
health care applications. Smart Grids is another frame-
work where models of ML and DL are applied. Due to
the demand and the growth of Smart Grid applications
and scenarios, this paper aims to collect and present in
section vi the use cases and models developed for the
Smart Grid case study.

The contribution of this paper can be summarized in
three main pillars. First, we provide a new approach
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for applying AI in industrial ecosystems, while we also
describe and present in details, scenarios where IAI is
met. Second, we present and analyze ML and DL al-
gorithms and models utilized for the needs of IAI and
provide guidelines to correctly choose a ML/DL algo-
rithm or model under different cases. Third, we present
several ML and DL algorithms and models utilized in
smart grid applications.

The reminder of this paper is organized as follows.
Section 3 presents the fundamental elements and the
Ecosystem of the Industrial AI. In details, scenarios
where Industrial AI is applied are highlighted, while
we present a new architecture for applying AI in Indus-
try. Industrial AI applications and the correlation with
ML and DL technologies are also presented. In Section
4 and 5, ML and DL algorithms used in the industry
are surveyed and presented. Section 6, addresses ML
and DL models utilized for the needs of the Smart Grid
framework. At the end, section 7 concludes this paper
and discusses the challenges and trends on the fields of
the Industry 4.0 and on the fields of Smart Grid.

3. Industrial Artificial Intelligence

AI was introduced to the public in 1956 and it is
broadly defined as ”the science of making computers do
things that the human needs intelligence to do”. Nowa-
days with the big development of cloud computing and
computational power it is easy to apply AI or AI’s sub-
sets such as Machine Learning or Deep Learning, in any
field like image recognition, automotive, industry (8).

In (9) - [40] are distinctively presented AI applica-
tions or potential AI applications in the industrial field.
Automotive, manufacturing, financial services, health-
care and supply chains benefit from AI. The research fo-
cused on discovering the fundamental elements of IAI.
First, we researched for papers containing the terms IAI,
Industry 4.0, ML and DL. The analysis of these papers
has risen questions about the applicable fields of the IAI.
To this end, we investigated also for papers containing
the terms automotive, manufacturing, financial services,
healthcare and supply chain on the Industry 4.0. In a
nutshell, the following paragraphs present the analysis
of the investigated papers about the applicability of the
IAI in the aforementioned sections.

The rapid rise of mobile bank fraud due to the in-
creasing usage of mobile banking applications may
cause profit loss, which can be translated into bil-
lion of dollars. Creating a ML model to efficiently
detect anomalies in customers behavior (log-in loca-
tion, money transfer) and producing descriptive analyt-
ics about anomaly detection to mobile bank applications

and to e-banking applications, would be a huge step in
attenuating the problem ((9), (10; 11; 12; 13; 14; 15; 16;
17)).

We should also take under consideration the Capax
Global’s Solution for financial institutes. Capax Global
by applying Machine Learning algorithms, predict the
amount of cash an ATM is expected to allocate, on any
day of the week. This is important because knowing
the amount of cash dispensing from the ATMs, finan-
cial institutes can store the needed amount of cash in
each ATM without having to leave extra cash that can
otherwise be used for lending to customers and generat-
ing a profit (9).

Healthcare is also a sector in which AI can be appli-
cable. Data collection from patients (e.g. blood pres-
sure, diabetes), hospitals, drug stores (e.g. availability
in drugs) and doctors (e.g. files with historical medi-
cal and treatment data) can provide valuable informa-
tion. Delivering them through IoT techniques to a ML
algorithm, generates predictive analytics about patients,
hospitals and drug stores.((18; 19; 20; 21; 22; 23; 24;
25; 26)).

Another application of AI is in the supply chain. AI
brings contextual intelligence to the supply chain that
can be used by them to minimize running costs to suc-
cessfully manage inventory. In addition, businesses
use AI to gain new insights into diverse fields, includ-
ing warehouse operations, distribution and supply chain
management ((27; 28; 29; 30; 31; 32; 33; 34; 35; 36;
37)).

Furthermore, as it is presented in (32), many people
tend to use online shops for their needs. This has an
enormous impact to the traditional shops, which strug-
gle to keep their customers. A proposed solution, to
this problem is to apply face recognition in every per-
son entering the shop floors, so as to deliver specified
information due to the customer’s need. We believe that
this application must be taken into further consideration
because it raises questions about the security of the per-
sonal data, how and by whom the data are stored and
processed.

Last but not least, AI provide new solution to mo-
bile communications (38) and to cognitive computing
(39). AI is also applicable in Industry, by estimating
the RUL of the Machinery, generating predictive, diag-
nostic, prescriptive, and descriptive analytics about the
manufacturing Enterprise ((40; 41; 42; 43)). More in-
formation about this topic are presented in Section III
and Section IV respectively.

Although an interpretation of the basic components
of industrial artificial intelligence and its architecture is
given, a lot of research needs to be done.
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As Lee et al. in (44) states, the key elements in Indus-
trial AI can be characterized by the rule of ”ABCDE”.
”A” stands for Analytics, which is the core of AI but it is
only valuable if other elements are present. ”B” stands
for Big Data, which provide the data, the source of the
information. ”C” is about the Cloud infrastructure, pro-
viding a platform for Industrial AI. ”D” is referred to
Domain know-how, which is about understanding the
architecture of the system and how it works. Also it
is about dealing with any problems to solve and under-
standing the physical meanings of the information, how
they are related with the machinery and how they vary
from machine to machine. Last but not least, ”E” is re-
lated with Evidence, which is the feedback given to the
AI system in order to evaluate and improve itself.

Lee et al. also in (44) defines the Industrial AI
architecture as a pyramid of six layers, presented in
Fig. 1. The first layer includes the Industrial Sec-
tors. The embedded AI Devices, the Resilient Factory,
Smart Human and Health Performance, Productive En-
ergy Systems, Worry-free Transportation and Industrial
AI - based Education System. The second layer meets
the needs of Industry 4.0. This layer contains all the
attributes of every intelligent system, named as: self-
aware, self- compare, self- predict, self-optimize, re-
silient. The third layer highlights the challenges an IAI
System could come up with. These challenges includes
Data Quality, Operational Regimes, Machine to Ma-
chine Variations, Expert Knowledge and Cyber Secu-
rity. The fourth layer presents the enabling technologies
for constructing Industrial AI systems: Data Technol-
ogy, which refers to identifying the appropriate equip-
ment and mechanism to acquire useful data , Analytics
Technology, which refers to converting the data obtains
from sensors into useful information, Platform Technol-
ogy, which refers to the hardware architecture for manu-
facturing data storage, analysis and feedback and finally
Operations Technology, which refers to a series of deci-
sions made and actions taken based on the information
extracted from data. The fifth layer includes the devel-
opment tools, the Machine or Deep Learning method-
ology and the platforms used to develop the system. In
conclusion, the sixth layer is referred to the impact an
AI system could have.

Bearing in mind the proposed ecosystem described
above and our research about the requirements for a
system to belong in Industry 4.0, we propose a slightly
different approach of the Industrial AI Ecosystem, as
shown in Fig. 2.

The first layer from bottom up is about obtaining
data from the environment. Collecting data from ma-
chinery in the manufacturing, data about the sum-

mation/duration/faults of the production, and data-
knowledge about the procedure of the Logistics is cru-
cial to form a solid and well performed Industrial AI
system. Of course, in this level we cannot exclude the
hardware components we use to obtain the data, such as
sensors, actuators and Embedded AI devices.

The next layer establishes the communication con-
nections between the industrial sectors and the proper
acquisition of the data. In addition, it is responsible to
store the data collected from the first layer, secure them
with the best tools and processes and if needed, extract
valuable features from a pre-processing procedure.

The third layer corresponds to the demands of Indus-
try 4.0, which an industrial AI system must fulfill. A
CPS should follow the proposed architecture described
below, to tackle the needs of the new Industrial revolu-
tion. It consists of 5 levels: Configuration level, Cogni-
tion level, Cyber level, Conversion level and Connection
level. Configuration level is about providing feedback
from the user or from the action taken from the cogni-
tion level. Cognition level refers to collecting data from
the machines and the machinery network and providing
a comprehensive knowledge of the system. Cyber level
introduces all the connected machines and operates as
a central hub for data processing in the Industry 4.0.
Conversion level is responsible for collecting the raw
data values from the field and converting them in useful
information.To conclude, Connection level refers to the
correct data handling methodologies to accurate acquire
the data (6).

Furthermore, the fourth layer introduces the foun-
dations of data analytics. ML, DL, RL and Cogni-
tive Models are the tools to produce valuable informa-
tion about the manufacturing Enterprise. The available
HPC platforms used to build the models (e.g. Microsoft
Azure (45), Amazon Web Services (46), etc) play key
role in this layer (47), as also the model building - pro-
cessing toolkit, which refers to the available program-
ming languages (e.g. python, R, C++ ) and libraries
(Scikit learn (48), PyTorch (49), Keras (50), Theano
(51), TensorFlow (52)).

The fifth and last layer includes the results of an In-
dustrial AI system. It produces information about the
conditions occurring in the manufacturing process and
manufacturing environment. Propose taking over ac-
tions to optimize the manufacturing Enterprise and fore-
cast the impact of these actions. Examines and reports
faults on the machines and predicts the possible size of
the production as also the RUL of the machinery.
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Figure 1: Industrial AI Architecture proposed by Lee et Al. in (44)

4. MACHINE LEARNING IN INDUSTRY 4.0

ML is the science of getting machines to take ac-
tion without specific programming. Machine learning
has brought us self-driving vehicles, functional speech
recognition, successful web search and a much en-
hanced understanding of the human genome over the
past decade. There are several ML Algorithms used in
the Industrial sector. They could be categorized as su-
pervised or unsupervised, depending on how they learn
from the data. In the following paragraphs are presented
the surveyed ML algorithms used in Industry. To begin
with, Statistical Learning Theory (SLT) is a supervised
ML framework used in Industry. SLT’s major advan-
tage is the variety of possible application in strategies
and scenarios. By using SLT it is also possible to over-
come the observer variability issue. It’s main purpose is
the best estimation of the output for previously unseen
inputs. However, a large number of samples is needed to
perform and the application of SLT in some cases might
lead to over-fitting (53).

4.1. Bayesian Networks

An application of SLT is BNs or NBN. BNs describe
the probability relationship between several variables.
Similar to BN are NBNs, a simplest form of Bayesian

Networks. Fig. 3 presents our proposal about the struc-
ture of NBNs. From a theoretic approach, NBNs could
be described as follows. Given a class label C, the naive
Bayesian classifier learns from the data (training data)
the conditional probability Ai of each attribute. Clas-
sification is applied then, by utilizing the Bayes rule to
compute the probability of C, given the particular in-
stance of A1, ..., An and prediction is made about the
highest class with the posterior probability. This com-
putation is generally based on the assumption that all
the Ai attributes are conditionally independent given
the value of the class C. Here, independence stands for
probabilistic independence, that is A independent of B
given C whenever

Pr(A|B,C) = Pr(A|C) (1)

for all possible values of A, B and C, whenever Pr(C) >
0 (54). Although BNs require limited storage, they are
robust to missing values and they are easy to grasp out-
put, the tolerance to interdependent and redundant at-
tributes are very limited (55)-(56; 57; 58). Bayesian
Networks where used in (54) to predict fraudulent sam-
ples received by the tea tasting unit of the Sri Lanka Tea
Board.
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Figure 2: Our Proposal about Industrial AI Architecture

Figure 3: Structure of a Naive Bayesian Network

4.2. Support Vector Machine

SVM is an algorithm for two group classification,
who could best apply the theoretical background of
SLT. SVM achieve high performance,high accuracy and

has the ability to handle high-dimensional multi-variate
datasets (53; 59; 60; 61). In order to have a good gen-
eralization property, SVM keeps the value of training
error equal to zero or equal to some acceptable level
and it minimizes the confidence interval.The utilization
of this approach drives to resolving the trade between
under-fitting and over-fitting. The cost (error) function
of the SVM is (62):

R =

l∑
i=1

Le + W(l, h) (2)

where Le is a loss function, which assert the closeness
to data and W(l, h) is a function bounding the capacity
of the learning machine. In particular, Le is a typically
0-1 loss function but in regression problems is the Vup-
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nik’s ε-insensitivity loss (error) function described by
the following equation:

Le = |y − f (x,w)|e = 0, i f |y − f (x,w)|e ≤ e (3)

or

Le|y − f (x,w)|e = |y − f (x,w)| − e (4)

where e is a radius of a tube where the regression func-
tion should lie, after successful training (63)-(64). Ap-
plications of SVM can be found in (65), monitoring
machine condition and fault diagnosis. Also SVM was
used in (66), to predict the physical quality of intermedi-
ate products in interlinked manufacturing processes and
in (67), to calculate Steel Quenching Degree. Similar to
SVM algorithm is the Support Vector Regression algo-
rithm. The difference is that SVR is used for regression
problems. It is found that SVR was used in (68) to es-
timate the manufacturing cost of jet engine components
during the early design face.

4.3. Instance-Based Learning

Another supervised ML algorithm is Instance - Based
Learning (IBL) or Memory - Based Reasoning (MBR).
These algorithms are applied in regression and classi-
fication and can achieve a high classification accuracy
and a solid performance. However, if a large training
set needs to be processed, then there will be a huge time
complexity. Also, they cannot set the weight vector in
unknown or little known domains and they tend to over
fitting with noisy data (53),(69; 70; 71). Table 1 de-
scribes the IBL algorithm.

Instance Based Algorithm
CD=0

For each x ∈ Training set do
1.For each y ∈ DC do

S im(y) = S imilarity(x, y)
2. ymax = somey ∈ CDwithmaximalS im[y]

3. if class(X) = class(ymax)
then classification = correct

else classification = incorrect
4. CD=CD ∪ x

Table 1: The algorithm of the Instance Based Learning (69)

4.4. K-Nearest Neighbors

K-nearest neighbors algorithm belongs to the family
of IBL algorithms and it was used in (72) to predict
and estimate machine specification data, such as ma-
chine geometry and design, motor performance, range

and cost. Furthermore, it was used in (67) to predict
the physical quality of intermediate products in inter-
linked manufacturing processes and in (68), to estimate
the manufacturing cost of jet engine components. Ta-
ble 2 describes the K-Nearest neighbor algorithm. The
Nearest Neighbor classification rule assigns an input y
sample vector, which is of unknown classification. The
classifier also require no pre-processing of the labeled
sample set prior to their use ((73; 74; 75; 76)).

K-nearest Algorithm
Let W = X1, X2,∆∆∆, Xn be a set of n labeled samples.

1. BEGIN
Input y, of unknown classification.

Set K, 1 <= K <= n
Initialize i = 1

2. DO UNTIL (K-nearest neighbors found)
Compute distance from y to Xi

3. IF (i! = K) THEN
Include Xi in the set of K-nearest neighbors

4. ELSE IF ( Xi is closer to y
than any previous nearest

neighbor) THEN
Delete farthest in the set of K-nearest neighbors

Include Xi, in the set of K-nearest neighbors.
END IF

Increment i.

Table 2: The K-nearest algorithm (73)

4.5. Ensemble Methods

Ensemble Methods are a ML algorithm family, where
a weighted committee of learners is used to solve a re-
gression or a classification problem. The ensemble’s
base learners could be Neural Networks, nearest neigh-
bor or trees. Base learners from the same algorithm
family form the ”Homogeneous ensemble” and base
learners from different families form the ”Heteroge-
neous ensemble”. It is demonstrated that ”Ensemble
Methods” lead to a better generalization model than a
single classifier (53).

4.6. Neural Networks

ANN ”simulate the decentralized ’computation’ of
the central nervous system by parallel processing”. De-
centralization gives the ability to process information by
dynamic response to external inputs.The building blog
of an ANN could be expressed as (53)::

yp = fp(
∑

i∈inputs

wp,i × xp,i) (5)
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where, yp is the target variable, Xp,i are the predic-
tors with associated weights Wp,i and Fp is the activa-
tion function. Their advantages are the wide applica-
bility, and the good handling of high-dimensional and
multi-variate data. However, there might be in some
cases an over-fitting of the training data, but it is ac-
ceptable in high variance algorithms. Other challenges
include the intolerance in missing values, the time con-
suming training and the complexity of the models pro-
duced (53; 77; 78). ANN are applied in different as-
pects in manufacturing like semiconductor manufactur-
ing or process control (72). Furthermore ANNs were
used in (68) to estimate the manufacturing cost of jet
engine components during the early design face, in (67)
to predict and estimate machine specification data, such
as machine geometry and design, motor performance,
range and cost. Last but not least, ANNs where used in
(65) to real-time monitor machine tools.

Other supervised ML algorithms used in industry
are Multiple Linear Regression, Decision or Regression
Tree, Gradient Boosted Trees, Additive Models, Logis-
tic Regression, Random Forest, Bag of Words and Lo-
cally weighted training. Multiple Linear Regression,
Addictive Models, Gradient Boosted Trees found to be
used in (67) for the calculation of the Steel Quenching
Degree. Decision or Regression Trees algorithm was
used in ((67),(65),(79),(80)), while Random Forest al-
gorithm was implemented in ((53),(81)) and in (82) to
predict possible equipment stoppages (or faults) of an
industrial equipment for anode production. Logistic Re-
gression was used in (72), Locally weighted training in
(83) and Bag of Words was used in (84) to identify melt-
ing pool points.

4.7. Multiple Regression-Logistic Regression

Multiple Regression describes how a single response
variable Y depends linearly on a number of predictor
variables X. A Multiple Regression model with n pre-
dictor variables X1, X2..., Xn and a response Y can be
stated as follow ((85; 86; 87; 88; 89)):

y = b0 + b1x1 + b2x2 + ... + bnxn + e (6)

where, e are the residual terms of the model and the dis-
tribution assumption we place on the residuals. This
term (e) will allow later to do inference on the rest
model parameters. The b0, b1, b2....bn are the regres-
sion coefficients. In addition, Logistic Regression is a
slightly different approach (generalized linear model) of
Linear Regression. The equation that best describes its
operation is (86) :

y = 1 (7)
if b0 + b1x1 + e > 0

else

y = 0 (8)

4.8. Decision Tree

Decision Tree algorithm utilize a decision tree to ob-
serve data about an instance and produce a brief conclu-
sive report about the instance’s target value. The differ-
ence with Regression Trees is that Regression Trees are
used to predict continuous values, while Decision Tree
is used to predict categorical values. In those type of
algorithms, data stream in the form of ((79; 80; 90)):

(X, y) = (x1, x2, x3, ...xk,Y) (9)

where x1, x2, x3..., xk are the predictor variables and Y is
the target variable ((91; 92; 93)).

4.9. Gradient Boosted

Gradient boosted is a ML algorithm for regression
and classification cases. The purpose of Gradient
Boosted algorithm is to iterate over the prediction of
weaker models and then, sum their predictions.The
equation which describes the above statement is the fol-
lowing ((94; 95; 96)):

Fk+1(X) = Fk(x) + h(x), 1 ≤ x ≤ M (10)

where the h(x) must be able to fit y−Fk(x). The Gradient
Boosted algorithm steps are shown in Table 3.

Gradient Boosted Algorithm
1. A constant value F0 is the initial model

F0(X) = argming
∑n

i=1 L(gi, g)
2.a. Generate m learner through iterations

gik = −( ∂L(yi,F(xi))
∂F(xi)

)F(x)=Fk−1(x) , i = 1, 2...n
b. By calculating gim through:

gk = argming
∑n

i=1 L(gi, Fk−1(xi) + ghk(xi))
3. Renew the model

Fk(x) = Fk−1(x) + gkhk(x)

Table 3: The Gradient Boosted algorithm (65)

4.10. Additive Models

Additive Models (AM) are an extension of Multiple
Linear Models with a basic difference. They map the
target variable as a sum of non linear transformation of
the input variable, not as a sum of linear terms. The
equation which describes best the Additive Model is:
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g(E(Y)) = b0 +
∑
j=1

f j(X., X.) (11)

where g(.) is a smooth function and f j(.) are complex
linear functions (smooth terms). Furthermore, AM be-
long to the non parametric models because the smooth
terms are highly non linear and they are not pertaining
to any predetermined family of functions ((97; 98; 99)).

4.11. Locally Weighted Learning

Locally Weighted Learning (LWL) is a Lazy Learn-
ing method utilized for ML techniques. LWL imple-
mentation requires dealing with insufficient amount of
data (mostly for training data), regularization of the es-
timates for measured introduction bias and methods for
predicting the prediction’s quality. LWL could be used
for outlier detection and noise filter (100)-(101). Table 4
is presented the Locally Weighted Learning algorithm.

Locally Weighted Learning Algorithm
1. Given a query point xp

p training points (xi, yi) in memory
2. Compute prediction

a) compute diagonal weight matrix W
where wd = exp(− 1

2 (xi − xq)T D(xi − xq))
b) build matrix X and vector y such that:

X = (x1, x2, ..., xp)T where
xi = ((xi − xq)1)T

y = (y1, y2, ....., yp)T

c) compile locally linear model
β = (XT WX) − 1XT WY

d) the prediction for xq is thus
yq = βn+1

Table 4: The LWR algorithm (83)

In the d and final step of the LWR algorithm, the
βn+1 denotes the n+1 element of the regression vector,
while the computational complexity of the algorithm is
O(pn2).

4.12. Bag of Words

Bag of Words is a generic visualization ML algo-
rithm. It corresponds to a histogram of the number
of instances of image patterns in a given image. The
advantages of this algorithm are computational effi-
ciency, simplicity, invariance to affine transformations,
as well as lighting, occlusion and intra-class variations
(84; 102).

4.13. Random Forest

Random Forest is a collective method, which is work-
ing based on the nearby neighbor predictor. It utilizes
the divide and conquer algorithm to enhance its perfor-
mance. In particular, Breiman L. in (103) define Ran-
dom Forest algorithm as ”as a classifier consisting of a
collection of tree-structured classifiers h(x,Θk), k = 1...
,where the Θk are independent identically distributed
random vectors and each tree casts a unit vote for the
most popular class at input x”. Random Forest algo-
rithm fits well with limited data and has high accuracy.
On the contrast, it cannot achieve good accuracy on high
dimensional datasets ((104; 105; 106)).

4.14. K-means

The unsupervised ML algorithms found to be used
in industry are the k-means algorithm and the Self Or-
ganizing Map. K-means algorithm aims to partition n
observations in k clusters, in which each observation
belongs to the cluster with the nearest mean, by min-
imizing the average Euclidean Distance between the
point in each cluster. Afterwards, it calculates the mean
vector of each cluster and reassigns each data point to
the cluster with the closest mean. Table 5 presents the
aforementioned described in brief algorithm, which is
Lloyd’s approach ((107; 108; 109)).

K-means Algorithm
For an initial set of k-means m1,m 2....mn

proceed by alternating between two steps:
1. Assign instances to the cluster whose mean

has the least squared Euclidean Distance
S t

i = xp : ||xp − mt
i ||

2 ≤ ||xp − mt
j||

2 ∀ j, 1 ≤ j ≤ k
2. Calculate the new mean cendroids of the clusters:

m(t+1)
i = 1

|S (t)
i |

∑
x j∈S

(t)
i

x j

Table 5: The k-means algorithm (110)

Kmeans are simple to implement and east to adapt
to new data. However, it is noticed to cluster a lot of
outliers ((111; 112; 113)).

4.15. Self Organizing Map

Self Organizing Map (SOM) is an ANN with the pur-
pose to reduce dimensions and use competitive learn-
ing instead of error-correction learning than the other
ANN. Concretely, SOM achieves clustering and dimen-
sionality reduction by mapping inputs from a higher di-
mensions into a fixed number of points on a lower di-
mensional grid. SOMs are capable of clustering large
datasets, but they are slow to training and are diffucult
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to generalize (114; 115). K -means algorithm and Self
Organizing Map were used in (67), to predict the physi-
cal quality of intermediate products in interlinked man-
ufacturing processes.

4.16. SMART algorithm -PILCO algorithm
SMART and PILCO are the two Reinforcement

Learning algorithms found to be used in manufactur-
ing. SMART, which stands for Semi-Markov average
Reward Technique, was used in (116; 117) to optimize
a transfer line. This algorithm utilizes action values
R(x, a) to represent value function. To approximate the
action values, one could run a simulation model of the
manufacturing domain and use a feed-forward neural
network. SMART algorithm can be derived through the
Bellman’s equation:

V∗(x) = maxa(r(x, a)−p∗y(x, a)+
∑
z∈S

Pxz(a)V∗(z))(12)

where p∗ is the optimal average reward and V∗ is the
optimal value function. Table 6 depicts the SMART al-
gorithm.

SMART algorithm
1. Set decision epoch n=0 and initialize action
values Rn(x, a) = 0. Choose the current state x

arbitrarily. Set the total reqard cn and total time tn to
0.

2. While n¡MAX STEPS do a. With high probability
pn, choose an action a that maximizes Rn(x, a),

otherwise choose a random action.
b. Perform action α. Let the state at the next decision

epoch be z, the transition time be r,
and rimm be the cumulative reward earned in this

epoch as a result of taking action α in state x.
c.Update Rn(x, a) using:

Rn+1(x, a) = (rimm − ρt + maxbRn(x, b)
d. In case a nonrandom action was chosen in step

2(a)
update total reward cn = cn + rimm

update total time tn = tn + r
update average reward ρn = cn

tn
e. Set current state x to new state z, and n=n+1

Table 6: The SMART algorithm (116)

PILCO (Probabilistic Inference for Learning Control)
uses a Gaussian process (GP) as a non-parametric ap-
proximation of the system and belongs to the RL Algo-
rithms. PILCO was used in (118), to design a feedback
control strategy for the swing-up of the double pendu-
lum on a cart. PILCO’s algorithm is explained in Table
7.

PILCO Algorithm
1. Select random controller parameter θ

2. Apply a random control sequence and collect data
repeat

3. Learn system dynamics f
by means of GP based on the existing data

4.Determine the optimal control policy θ = π(xi, θ∗)
by minimizing J(θ)

5. Apply the control strategy π(xi, θ∗)
and collect further data,which are addet to the existing

until Control Task is fulfilled

Table 7: The PILCO’s algorithm (118)

4.17. Discussion

Table 8 illustrates the ML algorithms found to be used
in industry, categorized as supervised, unsupervised or
reinforcement learning algorithms. Table 9 depicts the
advantages and the disadvantages of the aforementioned
algorithms. Before we provide our opinion about the
utilization of ML algorithms for classification, cluster-
ing and regression purposes, we feel the need to define
what we think as a small dataset and what as a large
one. A small dataset is a set of data that can be pro-
cessed for acceptable time at a regular computer. A
large dataset is a set of data that need a Hyper Per-
formance Computing in order to get processed. The
authors are of the opinion that classification problems
with a limited amount of data, can be handled by ap-
plying SVM or Logistic Regression. SVM and Logistic
Regression are able to deliver an enhanced classifica-
tion accuracy when the dataset is small. On the oppo-
site side, RF performs well enough when we have to
deal with a mid range dataset. In the case where the
previously ML models cannot fit and address the high
amount of data, ANNs can handle the problem really
well, due to the ability of finding correlations between
the independent variables without any prepossessing.
When a clustering problem occurs, K-means algorithm
is able to provide a good adoption to new samples. For
mid range datasets, SOMs can assist the problem in a
sufficient way. Regression problems can efficiently be
solved with Multiple Linear Regression and Logistic
Regression in a small range dataset problem. RF is also
a good solution for regression problems in mid range
dataset. For large datasets, Artificial Neural Networks
provide a solid way to deal with these kind of data, as it
is explained before. In a nutshell, we strongly suggest
that all the available ML Algorithms could be utilized in
the industrial sector,not only the ones mentioned above.
However, they should be tested and then examined by
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their performance(Accuracy, training loss, testing loss)
over the problem’s data-set.

Machine Learning Algorithms in Industry
Supervised Learning SVM/SVR

Bayesian Networks/
Naive Bayesian Networks

K-nearest Neighbors
Artificial Neural Networks
Multiple Linear Regression

Decision Tree/ Regression Tree
Addictive Models

Logistic Regression
Bag of Words

Locally Weighted Training
Unsupervised Learning K-means, Self Organizing Map
Reinforcement Learning PILCO, SMART

Table 8: Categorization of Machine Learning Algorithms used in In-
dustry by supervised Learning, unsupervised learning and reinforce-
ment learning
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Algorithm Advantages Disadvantages
SVM/SVR high performance, high accuracy,

good handling of high dimensional
data (59; 60; 61)

lack of transparacy in high di-
mensional data, extensive memory
requirements(59; 60; 61)

Bayesian Networks limited storage requirements,robust
to missing values (57; 58)

very limited tolerance towards in-
dependent attributes, computational
expensive (57; 58)

K-Nearest Neighbors Intuitive and simple, easy to imple-
ment for multiclass problems (69;
76)

computational expensive in large
datasets, performance depends on
dimensionality (69; 76)

Artificial Neural Networks Good at handling large datasets,
detect all possible interactions be-
tween prediction variables, implic-
itly detection complex non linear re-
lationships between depended and
independent variables (77; 78)

high hardware depedencies (GPU),
Unexplained behavior of the net-
work, the duration of the network is
unknown (77; 78)

Multiple Linear Regression ability to determine the relative in-
fluence of one or more predictor
variables to the target value (78; 88;
89)

difficulties on handling incomplete
data (78; 88; 89)

Decision Tree/ Regression Tree scaling and normalization of data is
not required, missing data do not af-
fect the building of the algorithm,
very intuitive and simple (91; 92;
93)

small change in data can cause in-
stability of the algorithm, involves
higher time to train the data (91; 92;
93)

Additive Models model highly complex nonlinear re-
lationships when the number of po-
tential predictors is large (97; 98;
119)

high propensity for overfitting (97;
98; 119)

Logistic Regression highly interpretable,easy to regu-
larize, outputs well-calibrated pre-
dicted probabilities (89)

cannot solve non linear prob-
lems,not a powerfull algorithm can
be easily outperformed by others
(89)

Bag of Words very simple to understand and im-
plement, great success on prediction
problems,offers a lot of flexibility in
data customization (102)

vocabulary requires careful de-
sign, sparse representations hard to
model (102)

Locally Weighted Training non parametric prediction by local
cost functions (100; 101)

computational expensive, memory
requirements increase with bigger
datasets (100; 101)

Random Forest fits well with limited data, high ac-
curacy (104; 105; 106)

cannot improve accuracy on high di-
mensional datasets (104; 105; 106)

K-means Simple to implement, easy adoption
to new examples (111; 112; 113)

scale to large datasets, cluster-
ing outliers,depend on initial values
scaling with number of dimensions
(111; 112; 113)

Self Organizing Maps capable of clustering large datasets,
data mapping easily interpreted
(114; 115)

slow training, do not build a gener-
ative model for data (114; 115)

PILCO Data efficient, does not rely on ex-
pert knowledge (118)

get stack in a local optimum be-
cause of zero gradients, does not
take temporal correlation int ac-
count (118)

SMART handle continuous state and action
spaces,allow incorporation of do-
main knowledge in the parametriza-
tion (117)

convergence rate is often slow in
discrete problems,difficult to use in
off-policy settings (117)

Table 9: Advantages and Disadvantages of Machine Learning Algo-
rithms used in Industry
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5. DEEP LEARNING IN INDUSTRY 4.0

Deep Learning is a branch of ML that process data by
multiple no -linear processing layers (120). Deep learn-
ing is a specific ML subfield: a new take on data learn-
ing representations, that emphasizes learning successive
layers of increasingly meaningful representations. The
”deep” in deep learning is not a reference to any kind of
deeper understanding that the approach achieves, rather,
it stands for this notion of effective layers of representa-
tions. Modern deep learning often involves tens or even
hundreds of successive layers of representations — and
from exposure to training data they are all learned auto-
matically. Meanwhile, other approaches to ML tend to
focus on learning just one or two layers of data represen-
tations, thus, they are sometimes referred to as shallow
learning (121). There are various deep learning models
used in Industry. In this section, first the authors de-
scribe their research on the deep learning models used
in Industry. Second, the general concept for every deep
learning model is discussed. Finally, a discussion about
the deep learning models, their advantages and disad-
vantages is presented.

5.1. Auto Encoders

Auto Encoders (AEs) consist of two components: the
encoder and the decoder. Both of them are designed
to learn a new representation of data by trying to refor-
mulate the input data. Encoder is used to perform data
compression by mapping input into a hidden layer. De-
coder is used to reconstruct the given input. When input
data is highly nonlinear, more hidden layers are required
to deal with this complexity. They are mostly used in di-
mensionality reduction,like a non linear Principal Com-
ponent Analysis. From a more mathematical approach,
the encoder takes a given input x and transforms it into
a hidden representation k as follows (122)-(123):

k = α(Wx + b) (13)

where α is an activation function. Then the decoder
maps the hidden representation into its actual value as:

z = α(W ′x + b′) (14)

Model parameters t = [W, b,W ′, b′] are optimized to
minimize the error (reconstruction error) between x and
z = ft(x) Bearing in mind the aforementioned equations,
in Fig. 4 is presented an architecture of an Auto Encoder
including input layer (Encoder) and output Layer (De-
coder).

Auto Encoder can handle large dimensionality
datasets and they work well with no prior knowledge

Figure 4: Structure of an Auto Encoder

of the data. However, training an Auto Encoder can
be computational and hardware expensive (124; 125).
Auto Encoder has several variants such as Stacked Auto
Encoder, Sparse Auto Encoder, Denoising Auto En-
coder and Contractive Auto Encoder (123). Auto En-
coder and its variants found to be used in many indus-
trial applications. It was used in (122) for fault detection
in wind turbines, in (123) for fault diagnosis on rotor
bearing systems. Stacked Auto Encoder and Denoising
Auto Encoder were utilized in ((126; 127; 128; 129)),
to monitor the RUL of the machines. It is highly con-
troversial in which learning category do Auto Encoders
belong. In ((126; 127; 128)) it is stated that Auto En-
coders are unsupervised DL algorithms. Data Scientists
in many forums are strongly suggesting that this type
of DL algorithm is supervised learning. They highlight
that the output of an Auto Encoder will be the input
again so it can be seen as the model learning from the
target variable (input). Our opinion states that AE is
unsupervised learning algorithms. The definition of un-
supervised learning is to learn from inputs without any
target variables (outputs-labels). Supervised learning is
from a given input, to select a function, which maps cor-
rectly the input to output and at the same time, input is
different from the output.

5.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have an im-
portant role in smart manufacturing. They are a special-
ized version of Neural Networks, designed to process
data in the form of multiple arrays. CNNs consist of
convolutional layers, nonlinear layers and pooling lay-
ers. The convolutional layers handle raw input data and
generate invariant local features. The non linear lay-
ers apply the activation function such as reflected linear
function or gradient based backpropagation. The pool-
ing layers extract the most important features by apply-
ing pooling operations such as max pooling and aver-
age pooling (121; 123). Assuming that the input data
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is x1, x2...., xn, the convolutional operation could be de-
scribed as:

ci = φ((uxi:i+m−1) + b) (15)

where xi:i+m−1 is a concatenation vector representation,
b and φ declare bias term and non-linear activation func-
tion. u is a filter vector where: u ∈ Rmd. A future map
could be given as follows, if we slide the filtering win-
dow from the beginning through the ending time step:

c j = c1, c2, ..., ci−m+1 (16)

where index j represents the j − th filter. CNNs are
good at pattern completition and feature extraction but
the speed of training depends on the available GPU and
large datasets are needed for training (130; 131). Con-
volutional Neural Networks are used in (132) to find de-
fective metallic parts and identify the cause of the defec-
tion. CNNs were also implemented in (133) to diagnose
faults in rotor bearing systems and in (134), to diag-
nose the attachment of silicon die or other wire bond-
able components on printed circuits boards. In (135),
CNNs were utilized for photo-voltaic installation, while
in (136) CNNs were implemented to localize slab iden-
tification numbers. In ((137; 138; 139; 140; 141)) CNNs
were utilized to monitor thre RUL of the machinery.
CNNs can be either supervised or unsupervised and it
depends highly on how the model is trained. Either
for feature extraction or for classification purposes. In
Fig. 5 is presented a structure of a convolutional neural
network, based on the mathematical approach described
above.

Figure 5: Structure of a Convolutional Neural Network

5.3. Restricted Boltzman Machine
Another DL model used in industry is Restricted

Boltzmann Machine (RBM) and its variants. Restricted
Boltzmann Machine is a two layer neural network. It
consist of a visible (v) and a hidden layer (h). The
visible layer is used to input data while the hidden
layer is used to extract features. Given the parameters
θ = [W, b, a] the energy function of the model is:

E(v, h, θ) = −

i∑
i=1

j∑
j=1

wi jvih j−

i∑
i=1

bivi−

j∑
j=1

a jh j(17)

where Wi j is the weight between the visible unit and the
hidden unit. a j and bi denote the bias terms for hidden
and visible unit respectively. The joint distribution is
given by:

p(v, h, θ) =
exp(−E(v, h, θ))

Z
(18)

where

Z =
∑
h,v

exp(−E(v, h, θ)) (19)

is the normalization factor (122; 142). Afterwars, the
conditional probabilities of the visible and hidden layer
can be given as:

p(vi = 1|v, θ) = δ(
J∑

j=1

wi jh j + bi) (20)

p(vi = 1|v, θ) = δ(
I∑

i=1

wi jhi + a j) (21)

where δ is a logistic function. RBM’s are trained
through contrastive divergence method to maximize the
joint probability. In Fig. 6 is shown a possible archi-
tecture of a RBM based on the mathematical approach
discussed above.

Figure 6: Architecture of a Restricted Boltzmann Machine

Deep Belief Network (DBF) is a variant of RBM and
in order to train them a mix of greedy and contractive
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wake-sleep algorithms are used. Its architecture con-
sist of stacking multiple RBMs together (121),(143).
RBM found to be used in (122) to detect faults in wind
turbines and in (143; 144) to monitor the machinery
health.RBMs can also be either supervised or unsuper-
vised,depending on the model’s training.

5.4. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are feed-forward
neural networks, if they are unfolded in time scale and
they are both supervised and unsupervised DL models.
RNNs consist of a structure of directed cycles among
hidden units. The inputs of the hidden unit come from
the output of the previous hidden unit at the past time
plus the input unit at the current time. The equation
which describes the above is:

ht = φ(Wxt,Hht−1) + b (22)

where H and W are non linear and differentiable trans-
formation functions. φ denotes the nonlinear activation
function and b is the bias vector(145; 146). in Fig. 7
presents a representation of the architecture of a Rec-
curent Neural Network. RNNs are well suited for nat-
ural speech recognition (146). Long Short-Term Mem-
ory (LSTM) is a variant of RNN which has the capabil-
ity to learn long term dependencies and it is consisting
of a memory cell which store continuously information
during the procession stage (147). LSTM was used in
(147) to predict the Remaining Usage Life of battery
sets. RNNs were also used in (148) to monitor the ma-
chinery health. RNNs are better than other techniques
at handling sequantial data, however, there are a lot of
input parameters to tune in order to achieve good accu-
racy (149; 150).

Figure 7: Architecture of a Recurrent Neural Network

5.5. Multilayer Perceptron
Multilayer Perceptron is a supervised feed forward

neural network and consist of at least an input layer a
hidden layer and an output layer. The hidden layer and
the output layer use a nonlinear activation function. The
total input xd+1

j received by a neuron j in layer d + 1
could be declared as:

xd+1
j =

∑
i

yd
i wd

i j − α
d+1
j (23)

where yi is the state of the ith neuron in the dth layer,and
Wi j is the weight of the ith neuron in layer d to the jth
neuron in layer d+1. While θ is the threshold of the
jth neuron in the d+1 hidden layer. Also, the output of
a neuron in any layer except the input layer could be
given as (151; 152; 153):

yd
j =

1

1 + e−xd
j

(24)

Fig.8 illustrates a possible structure of a Multilayer Per-
ceptron, with respect to the above mathematical ap-
proach. In order to train Multilayer Perceptron net-
works, a back propagation algorithm should be imple-
mented. Multilayer Perceptron were used in (122) to
detect faults in wind turbines and in (154) to predict six-
digit NAICS codes.

Figure 8: Structure of a Multilayer Perceptron

5.6. CAMP-BD model - YOLOv2 model
Other DL models used in Industry is the CAMP-

BD model and the YOLOv2 model. The CAMP- BD
model is a combination of a CNN and a RNN and it was
used in (155) to predict distortion within laser-based ad-
dictive manufacturing tolerance limits by considering
the local heat transfer for point-wise distortion predic-
tion. CAMP-DB has two advantages. First it leverages
large datasets captured in industrial environment by ut-
lizing DL. Second, the model could be generalized to
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solve other challenges of the process, like residual stress
and porosity by providing the needed dataset. Further-
more, CAMP-BD is backpropagated on the loss and op-
timized using Adam optimizer. ReLU activation func-
tion is used for training except the for the final output
layer,where it is used a linear function(155).

YOLOv2 is an object detection system targeted for
real-time processing and consist of twenty four convo-
lutional neural networks.In more details, YOLOv2 uti-
lizes a single neural network to predict class probabili-
ties and bounding boxes directly from full images. Input
image is divided into SxS grids. Each cell of the grid
predicts c confidence scores of the boxes and bounc-
ing boxes. Also it predicts a C conditional class prob-
abilities. YOLOv2 detection network has 24 convolu-
tional layers followed by 2 fully connected layers (156).
YOLO architectures are goot at real-time processing
and can be trained end to end in order to improve ac-
curacy. Nevertheless, YOLO struggles to generalize
groups of small objects (157; 158; 159). YOLOv2 was
used in (160) to recognize oil industry facilities.

5.7. Discussion
Table 10 summarizes the models described in Sec-

tion V and categorizes them in supervised or unsuper-
vised learning models. Table XI presents the advan-
tages and disadvantages of DL models used in Indus-
try. Convolutional Neural Networks coud be used to
achieve high performance in image recognition as well
as for feature extraction purposes. The benefit of us-
ing CNNs is their ability to develop a two-dimensional
image’s internal representation. This allows the model
throughout the data to learn position and scale, which is
critical when working with images (130; 131). Recur-
rent Neural Networks and especially LSTMs can effi-
ciently handle time series data for prediction purposes.
By working with sequences of words and paragraphs,
generally called natural language processing, RNNs in
general and LSTMs in particular have achieved an en-
hanced accuracy than other DL approaches. This in-
cludes both text sequences as well as spoken language
sequences represented as a time series. They are also
used as generative models requiring a sequence output,
not only with text, but also for applications like generat-
ing handwriting (149; 150). AE are fitting well enough
with high dimensional data and are a good choice for
anomaly detection techniques. However, the AE model
will work very well if you have correlated input data
since the encoding operation relies on the correlated
features to compress the data (124; 125). RBMs and
especially DBNs are very efficient on pattern recogni-
tion and feature extraction (161; 162). In conclusion

YOLOv2 can handle in an efficient way real time object
detection problems (157; 158; 159), while CAMP-BD is
a new DL approach and there is not sufficient literature
work in order to form an opinion about its capabilities.

Deep Learning Models in Industry
Supervised Learning Convolutional Neural Network

Recurrent Neural Network
Restricted Boltzmann Machine

Multiple Linear Perceptron
YOLOv2

Unsupervised Learning Auto Encoders
Convolutional Neural Network

Recurrent Neural Network
Restricted Boltzmann Machine

CAMP-BD

Table 10: Summary of Deep Learning Models used in Industry
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Model Advantages Disadvantages
Convolutional Neural Network high accuracy in image recogni-

tion,very good at feature extraction
(130; 131)

large dataset needed for training
purposes, high computational cost,
speed of training depending on GPU
(130; 131)

Recurrent Neural Networks better than other techniques at han-
dling sequantial data (149; 150)

more data are required for train-
ing than in other options, there
are lots of input parameters to
tune, high computational complex-
ity, hardware expensive (149; 150)

Restricted Boltzmann Machines good at pattern completion and fea-
ture extraction (161; 162)

complex to train (161; 162)

Auto Encoders Intuitive, no prior knowledge of
the data is needed, good handling
of large dimensional datasets (124;
125)

computational and hardware expen-
sive (124; 125)

CAMP-BD leverage of large data captured in in-
dustry 4.0 environment, generalized
to solve other LBAM proccess con-
trol challenges such as porosity and
residual stress (155)

due to the beginning state of this al-
gorithm drawbacks are not yet pre-
sented

YOLOv2 good at real-time proccessing, can
be trained end to end to improve ac-
curacy (157; 158; 159)

struggle to generalize groups of
small objects (157; 158; 159)

Table 11: Advantages and Disadvantages of Deep Learning Algo-
rithms used in Industry
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6. Case study scenario: The Smart Grid

The previous sections analysed ML and DL algo-
rithms and models utilized in Industry 4.0. This sec-
tion covers the applicability of the previously discussed
and presented algorithms and models in the Smart Grid
framework, a rising field of the Industry 4.0.

6.1. Machine Learning Algorithms
6.1.1. Bayesian Networks

Several ML Algorithms are implemented for the
Smart Grid framework. In (163), Bayesian classifica-
tion was used to predict the energy produced by PV
systems over a very short term period of 15 minutes
ahead. For the training and the testing phase of the clas-
sifier, four months of real historical data of a 30kWp PV
system were used. Bayesian classification was also se-
lected in (164), for detection and classification of com-
plex power quality disturbances. Specifically,a three-
level multiply connected Bayesian-Network is utilized,
consisting of Features Evidence Layer, Disturbances
State Layer and Circumstance Evidence Layer, aiming
to extract features from the sample signal. The com-
putation of the posterior marginal probabilities of each
event implements the classification. The training and
testing of the classifier was conducted not only by the
extracted features, but also with historical data. In addi-
tion, Babar et al. in (165) developed a secure demand-
side management engine in order to detect intrusions in
the SG use case. Concretely, the authors implemented
a Naive Bayes classifier in order to to control intrusions
and preserve the efficient utilization of energy based on
priorities.

6.1.2. Support Vector Machines
Support Vector Machines are used in general for load

forecasting in Smart Grid. Analytically, in (166), is pre-
sented an energy consumption forecasting methodology
based on the SVM. The data used for the training and
the testing were collected through the SCADA Office
Intelligent Context Awareness Management (SOICAM)
system. The system is implemented in real facilities
in GECAD Research Center, with more than 30 re-
searchers, located in the Institute of Engineering – Poly-
technic of Porto (ISEP/IPP), Portugal. De Yong et al
in (167) also used the wavelet transform and the SVM
for classifying the power quality. The suggested al-
gorithm is made up of a set of straightforward binary
SVM classifiers. Each SVM node is trained individu-
ally to allow parallels. The training phase is performed
using single events, but it enables the system to de-
tect complex incidents due to the composition of the

chosen SVM methodology. Real, complicated signals
were used to test and train the model. Furthermore in
(168), SVM was used to recognize the state of the op-
eration for heat pumps. The method is tested on real-
world power consumption time series with 1s resolu-
tion from three distinct structures tracked over 1 year.
Training information for the SVM algorithm are dis-
tilled by outlier removal and subsequent K-means clas-
sification from the assessment information due to the
lack of ground truth validation information. To con-
clude, Behera and Misra in (169) used SVM classifier
for predicting and re-engineering the hourly energy de-
mand in a residential building. The data for the train-
ing and testing phase were collected from iAWE dataset
read by two meters (primary, secondary) from a residen-
tial building in Delhi during 2013. Additional sensor in-
formation installed in the smart building were recorded
to play the function of explanatory variables. Electricity
consumption was evaluated at three levels: electricity
meter (using Schneider electric sensor EM6400), cir-
cuit panel and level of appliances. Power outages are
also taken into account during data set recording. Efs-
tathopoulos et al in (170) developed an anomaly-based
IDS designed specifically for SG using real power plant
operational data. Many ML approaches have been con-
sidered for detection of anomalies, including One Class-
SVM, Isolation Forest, Angle-Base Outlier Detection
(ABOD), Stochastic Outlier Selection (SOS), Principal
Component Analysis (PCA), and deeply connected AE.
The model is trained and tested on operational data ob-
tained from the Lavrio Unit 5 power plant.

6.1.3. K-Nearest Neighbor
Weng et al in (171) made a system for state esti-

mation based on K-Nearest Neighbor algorithm. They
build data-driven state estimation method based on re-
cent targeted sensor, data processing and electronics in-
vestment. The proposed architecture use physics and
patterns of the power system to systematically clean
historical data and perform supervised learning, using
historical related measurements and their states to learn
the relationship between current measurement and state.
Kernel trick is used to generate linear mapping in a
carefully selected higher-dimensional space to deal with
non-linearity. They evaluate the power system data set
and discover its clustering property due to the periodic
pattern of power systems to accelerate the information-
driven approach for online services. In (172) K Nearest
Neighbor is used for forecasting low voltage demand.
The inputs of this model are historic smart meter data
and it can predict the next day’s load without the con-
sumer’s explicit knowledge.
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6.1.4. Artificial Neural Networks
Artificial Neural Networks are also utilized to assist

the operation of Smart Grids. Macedo et al. in (173)
built a demand side management system based on Ar-
tificial Neural Networks for the optimisation of power
system management in real time. The system is trained
through patterns extracted from digital meter data. Fur-
thermore, Forderer et al in (174) utilized an ANN to
represent the devices and act as models of surrogacy.
The main benefit of this approach is its capacity for ar-
bitrary versatility in energy and the resulting universal
applicability in different usage patterns.

6.1.5. Multiple Linear Regression
Kim in (175) developed a Multiple Linear Regression

model to predict electric loads. In details, the utilized
model adopts a statistical approach which assumes that
past load and weather data are predictable. It defines a
reference load before the target time and collects past
loads similar to the reference load to render the data
vector and condition matrix observed. Lee and Ben-
japolakul in (176) present a Bagged Averaging of Mul-
tiple Linear Regression model, handling data from the
phasor measurement unit. The proposed model han-
dles and manages the missing values quickly and effi-
ciently in synchronized frequency data calculation. This
methodology is based on the ensemble learning to esti-
mate missing values by bootstrapping and integrating
several different linear regressions while data from the
Texas synchrophasor network were used to train and test
the model.

6.1.6. Decision Tree
Eissa et al in (177) present a new control proce-

dure to reduce the risk of disconnecting charged feed-
ers from electrical grids due to low frequency shed-
ding (UFLS) relays malfunction. The suggested tech-
nique is based on a decision-tree algorithm for taking a
precise decision to control thermostatically controllable
loads (TCL). Terzi et al in (178) also presented a model
based on Decision Tree algorithm. The proposed system
utilizes detection methods for cyber attacks on Smart
Grid scenario. The model is evaluated with the Power
System Dataset which was covered by Industrial Con-
trol System (ICS) Cyber Attack Datasets. In addition,
Achlerkar et al in (179) implemented a model based
on Variational Mode Decomposition and Decision Tree
for detection and classification of power quality distur-
bances in Grid-Connected Distributed Generation Sys-
tem. Attributes such as central frequency mode(MCFs),
relative energy ratios (RMERs), zero crossings and in-
stantaneous amplitude (IA) are derived using a decision

tree algorithm to distinguish single and mixed PQ dis-
turbances. A collection of simulated test signals, distur-
bance signals from real events as well as signals pro-
duced from the Real Time Digital Simulator (RTDS)
platform are used to test the effectiveness of the pro-
posed method in different operating scenarios and noise
levels of the device.

6.1.7. Gradient Boosted
Gradient Boosted algorithm is also used in Smart

Grid applications. Bessa et al. in (180), utilized a prob-
abilistic Solar Power forecasting model based on Gra-
dient Boosted algorithm. In particular, this work pro-
poses a new six-hour forecasting algorithm based on the
model of vector auto regression, which incorporates the
time series information collected by the infrastructure
of the Smart Grid. For residential solar photovoltaic
(PV) and secondary substation rates, probabilistic fore-
casts are produced. The test case consists of 44 Smart
Grid pilot units and 10 secondary substations in Évora,
Portugal. Punmiya et al in (181) utilized a model for
energy theft detection. This work presents a gradient
boosting theft detector (GBTD) based on the three latest
gradient boosting classifiers. 1) extreme gradient boost-
ing; 2) categorical boosting; and 3) light gradient boost-
ing method. The dataset used to evaluate the model is
the Irish smart energy dataset, which contains half-hour
recorded use of each customer(in kWh) for about 420
days, of which 361 and 59 days were used respectively
in the training set and test set. Razavi, Rouzbeh et al
also in (182) suggested a new model-agnostic, feature-
engineering architecture for smart grid theft detection
based on Gradient Boosted algorithm. The architecture
uses a combination of Finite Mixture Model clustering
for customer segmentation and a Genetic Programing
algorithm to identify new predictable features.

6.1.8. Additive Model
Pompey et al. in (183) presented a broad simula-

tion system emulating electrical load throughout the
electrical network, based on General Additive Models.
The platform supports customer portfolio shift simula-
tion and consumer behavior, installing new distributed
generation capability at any network level, and adap-
tive network reconfiguration. Taieb et al. in (184)
built a model for probabilistic time series forecasting
that allow the inclusion of a possibly large set of ex-
ogenous variables in Smart Grids. The approach was
based on boosted additive models. The evaluation of the
model was made by conducting extensive experiments
on aggregated and dis-aggregated scales using electric-
ity smart meter data. Thouvenot et al. in (185) present a
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load forecasting model which is using Additive Models.
The authors submit an automated explanatory factor se-
lection method in an additive model and display how to
correct short-term forecast errors.

6.1.9. Locally Weighted Training
Zhang et al in (186) proposed a system for instanta-

neous electromechanical dynamics monitoring in Smart
transmission Grid. Big data can be acquired by measur-
ing sensors mounted in the smart transmission system
for tracking electromechanical dynamics. The data ob-
tained from the time series carry information regarding
the instantaneous system oscillation modes relationship
with regard to operating conditions. To extract this in-
formation, they suggested a parallel online supervised
learning algorithm k-nearest neighbors called ”local
weighted linear regression” (KNN-LWLR), a system-
atic combination of two well-known machine-learning
algorithms: 1) KNN learning and 2) LWLR learning.

6.1.10. Random Forest
In (187) Lahouar and Slama are proposing a short-

term load prediction model based on random forests that
can predict the next 24 hours of load. They utilize ran-
dom forest algorithm to construct the model following
an online learning process. The inputs are optimized
by expert feature selection using a set of if – then rules
to include the country climate or market’s own con-
sumer preferences and generalize the forecasting capac-
ity. The proposed solution is checked by the Tunisian
Power Company’s real historical collection. Further-
more, Lin et al. in (188) propose a model on fault pre-
diction in the smart distribution network. They utilize
a voted based Random Forest approach to increase the
predictive accuracy of the faults. Through re-designing
the voting algorithm, they modify the decision process
through adding several SVM models for voting model
training a basic NSGA algorithm is used to find the best
voting model based on the trained models. In (189)
Singh et al. developed four models-including a Ran-
dom Forest model- to analyze energy consumption data
and associated weather data at different periods of time
and discuss the training strategies limitations.

6.1.11. Isolation Forest
Ahmed et al in (190) presented a machine learning-

based scheme to identify data integrity assaults in SG
communications networks using non-labeled data. An-
alytically, an Isolation Forest algorithm was introduced
by the developers, which distinguishes data integrity as-
saults based on the premise that the attack in a built ran-
dom forest has the shortest average path range. They

also utilized a PCA algorithm to tackle with the dimen-
sional reduction issue.

6.1.12. K-Means
Wakeel et al in (191) developed a load estimation al-

gorithm based on k-means cluster analysis. To predict
missing and potential measurements, the algorithm ap-
plies cluster centers – from previously clustered load
profiles – and distance functions. Several case stud-
ies were conducted using aggregated smart meter daily
and segmented load profiles. Segmented profiles span
a time window equal to or below 24 hours. To enable
better monitoring and control of distribution networks,
the developed load estimation algorithm can be com-
bined with state estimation or other network operational
tools. Yu et al in (192) developed a model utilizing K
Means algorithm for modeling and forecasting these in-
dividual household electricity loads. The new method
is tested for the period from September 2011 to Au-
gust 2013 on a data set of 5000 households in a joint
project with Chattanooga’s electric power commission.
Starke et al in (193) utilized a hybrid, distributed and
decentralized SDN architecture for resilient smart sys-
tems. They implemented a k-means algorithm in order
to detect anomalies in the traffic of the network.

6.1.13. Self Organizing Maps
In a nutshell, Llanos et al in (194) presented a

Load estimation for microgrid planning based on a self-
organizing map methodology. In details, this approach
presents a load estimation method for isolated commu-
nities not receiving or consuming power for a limited
period of time each day. The framework proposed con-
tains the components below. First the inputs are an-
alyzed on the basis of surveys of residents living in
any socio-economic level of housing and neighborhood.
Second, family groups are classified using an SOM
from which relevant information that distinguishes one
family from another is obtained. Then, each cluster’s
load profiles are selected from a database. In addi-
tion, social aspects and relevant information on energy
supply from communities with similar characteristics
are used to generate the database required. The SOM
for clustering community families with available energy
measurements is used as an initial assumption for clus-
tering community families with unknown energy mea-
surements.

6.2. Deep Learning Algorithms
Several Deep Learning algorithms found to be uti-

lized for the Smart Grid infrastructure. AE, CNNs,
RNNs, RBMs and Multilayer Perceptron.
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6.2.1. Auto Encoders
Tong et al in (195) propose a deep learning model

that first refines features from historical electricity
load information and related temperature parameters by
stacked denoising auto encoders (SDAs). The deep
learning model trains a support vector regression (SVR)
model to predict the total day-to-day electricity charge.
Then it is evaluated by comparing with plain SVR and
artificial neural networks (ANNs) models. Lu, Shixi-
ang, et al in (196) proposed a trend-based load char-
acterising approach. Initially, the candlestick chart
concept is used as an innovative load classification
method. Additionally, trend indexes for electricity, such
as stochastic oscillator and moving average convergence
/ divergence, were implemented as parameters for char-
acterizing the load. Then, stacked auto-encoders are
used to predict future loads based on historical pattern
index data. The evaluation of the model was imple-
mented by data obtained from a large user in Foshan,
Guangdong province of China. Yang et al in (197) built
a variational autoencoder for voltage stability evalua-
tion in Smart Grid. Various data-driven indicators were
proposed for comparison and evaluation on the basis
of sparse stacked AE and adversarial AE. Their meth-
ods were tested in IEEE-14, IEEE-57 and IEEE-118
bus standard system, and compared mutually. Ahmed
et al in (198) suggested a model to recreate sensor-
collected power network measurement data by elimi-
nating the impacts of the hidden information-integrity
attack. The model is utlized by a denoising autoen-
coder, which learns from the data about robust nonlinear
representations to root out the bias that a smart attacker
has added to the sensor measurements.The scheme was
evaluated utilizing standard IEEE 14-bus, 39-bus, 57-
bus, and 118-bus systems.

6.2.2. Convolutional Neural Networks
Convolutional Neural Networks were used in (199) to

build an electricity-theft detection method. The archi-
tecture consists of a wide CNN and a deep CNN. The
deep CNN component can identify the non periodicity
of electricity theft and the periodicity of normal elec-
tricity usage based on 2-D electricity consumption data.
Meanwhile, the wide component can capture the global
features of 1-D electricity consumption data. The eval-
uation of the model is made by a dataset released from
the State Grid Corporation of China. Zahid et al in (200)
built a model for Electricity Price and Load Forecasting.
They used XGB, DT, RFE and RF for feature selection
and feature extraction. Then, they used an Enhanced
CNN and Enhanced SVR as classifiers. GS is used to
improve the performance of the classifier parameters.

Ultimately, the proposed models were compared with
various stability analysis benchmark schemes. MSE,
RMSE, MAE, and MAPE performance metrics are used
to measure the performance of the proposed models.
Kuo et al in (201) built a model for short-term load fore-
casting in Smart Grids. Analytically, in order to predict
the amount of load needed in short term, they initialize
a CNN. The neural network consists of 3 convolutional
layers as well as 3 pooling layers. In order to eval-
uate the model, the USA District public consumption
dataset and electric load dataset from 2016 provided by
the Electric Reliability Council of Texas were used.

6.2.3. Recurrent Neural Networks

Kong et al in (202) proposed a LSTM, for short-
term residential load forecasting. The proposed frame-
work is tested on the Australia’s project Smart Grid
Smart City dataset, which contains smart meter data for
about 10,000 different customers in New South Wales.
Ouyang et al in (203), presented an approach of using
LSTM networks to identify false data of smart termi-
nals in the Smart Grid. In the master station gateways,
they use LSTM to detect abnormal data from smart ter-
minals. For the evaluation phase, the accuracy metric
and equal error rate metric were used. In (204) Has-
san et al. proposed an electricity theft detection system
based on CNNs and LSTMs. A SMOTE for data pre-
processing was also introduced in this work to measure
the missing instances in the dataset based on the local
values relative to the missing data point. In addition,
the number of users of electricity theft was relatively
low in this dataset, which might have made the model
inefficient in identifying users of theft. Nasser and Mah-
moud in (205) developed a photovoltaic power forecast-
ing model with LSTM-RNN network. The proposed
method is evaluated using hourly datasets of different
cities (Aswan and Cairo) for a year. The model is able to
predict an hour-ahead power of PV. Marino et al in (206)
built LSTM networks for energy load forecasting. Their
research discusses two versions of the LSTM:1) stan-
dard LSTM and 2) LSTM-based Sequence to Sequence
(S2S) architecture. The methods are applied for a single
residential consumer on a reference dataset of electric-
ity consumption, called ”Personal household electricity
use.” The dataset included measurements of power con-
sumption that were obtained with one-minute resolu-
tion between December 2006 and November 2010. The
dataset provided an effective cumulative power load for
the entire house and three submetering for the house’s
three parts.
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6.2.4. Restricted Boltzman Machines
He et al in (207) developed a system for real-time

detection of false data injection attacks in Smart Grid,
based on Deep Belief Networks.They applied deep Be-
lief Network techniques to recognize the behavior pat-
terns of FDI attacks using the historical measurement
data and employ the revealed features to detect the FDI
attacks in real-time. The performance of the proposed
strategy is illustrated through by using IEEE 118-bus
test system. The scalability of the system is also evalu-
ated through the use of the IEEE 300-bus test system.
Menon and Radhika in (208) used Deep Belief Net-
works to detect intrusions in smart home area network.
In details, the build a Deep Belief Network to detect the
normal and abnormal behaviors in the traffic pattern of
Smart Grid data. Deep belief Network was deployed to
classify the data traffic anomalies in the Smart Grid to
prevent intrusion. SVM algorithm is then used for iden-
tification of invasion. He Yusen et al in (209) use deep
learning techniques to identify the behavioral patterns
of FDI attacks using historical measurement data and
use the features discovered to detect FDI attacks in real
time. The data were gathered from an urbanized area
in Texas, USA. Forecasting hourly power load in four
different seasons in a selected year is examined. Two
forecasting scenarios, day-ahead and week-ahead fore-
casting were performed using the proposed methods and
compared to classical neural networks, SVR, ELM and
classical DBN.

6.2.5. Multilayer Perceptron
Hamedani et al in (210) presented a method for at-

tack detection of Smart Grids with wind power genera-
tors using reservoir computing (RC), temporal encod-
ing and multilayer perceptrons. Moon et al in (211)
presented a hybrid short-term load forecasting scheme
using Random Forest and Multilayer Perceptron. They
collected six-year electrical load data from a univer-
sity campus to develop this model and divided it into
learning, validation, and test sets. They also catego-
rized the information for the training set using a deci-
sion tree with input parameters including time, week-
day, holiday, and academic year. In (212), Alimi et al
proposed a hybrid Support Vector Machine and Multi-
layer Perceptron Neural Network (SVMNN) algorithm
combining Support Vector Machine (SVM) and Multi-
layer Perceptron Neural Network (MPLNN) algorithms
to predict and detect cyber intrusion attacks on power
system networks. As case studies, a modified version
of the IEEE Garver 6-bus test system and a 24-bus test
system was used. The IEEE Garver 6-bus test system
was used to define the attack scenarios, while the load

flow analysis was carried out on real-time data from a
modified Nigerian 24-bus network to produce the bus
voltage dataset which considered multiple cyber attacks
for the hybrid algorithm. In conclusion, Wahid et al
in (213) used Multi-layer perceptron and Random For-
est to identify residential buildings based on their con-
sumption of energy. Hourly historical data, of two types
of buildings, are predicted: high-power and low-power
buildings. The prediction consists of three stages: re-
covery of data, extraction of features, and prediction.
The hourly data collected on a daily basis is extracted
from the server at the data retrieval stage. Statistical
features are calculated from the recovered data in the ex-
traction stage of the feature: mean, standard deviation,
skewedness and kurtosis. In Table 12 are summarized
the ML models and Deep Learning models used in the
Smart Grid scenario.

6.3. Discussion

The accurate and fast detection of cyberattacks relies
on the proper selection of the Machine Learning and
Deep Learning model, which will detect the anomalous
incident. Different aspects should be considered in or-
der to select a ML/DL model. Aspects like the size of
the dataset, the application of a DL/ML model on other
cases and the generalization of the model on previously
unseen data. More guidelines for the proper selection of
the ML/DL model are given in subsection “Model Se-
lection” of section “Challenges and Trends”. However,
in order to tackle with the generalization problem and
increase the accuracy of intrusion detection, in our pre-
vious works ((214; 215)) we created ML/DL schemes,
which combine both supervised and unsupervised mod-
els. Concretely, DIDEROT (214) is a detection and in-
trusion system for the DNP3 protocol.It combines both
supervised (Decision Tree, Support Vector Machine)
and unsupervised ML/DL models (DIDEROT autoen-
coder, Local Outlier Factor) capable of discriminating
whether a DNP3 network flow is related to a particu-
lar DNP3 cyberattack or anomaly.ARIES (215) is an
anomaly-based intrusion detection system with super-
vised (Decision Tree, Support Vector Machine) models
and a novel unsupervised Generative Adversarial Net-
work. ARIES integrates three levels of surveillance
dedicated to the identification of suspected cyberattacks
and anomalies. In specific, a supervised multi-class
classification is conducted by the first layer, understand-
ing DoS, brute force attacks, port scanning attacks and
bots. The second layer detects potential Modbus packet-
related abnormalities, while the third layer tracks and
recognizes operating data anomalies.
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The on-time detection of anomalous incidents (cyber-
attacks) is another emerging topic on the Smart Grid
framework. The fast response and recovery of the Smart
Grid components after a possible cyberattack must be
the target of all the developing solutions. The solu-
tions on this topic should also maximize the observ-
ability, minimize the latency and maximize the QoS of
the Smart Grid. SPEAR and SDN-microSENSE are
two European Commission projects with aim to han-
dle and provide cybersecurity solutions on the Smart
Grid. SPEAR project in brief, is aiming to develop an
integrated platform of methods, processes, and tools for
in time detection of cyber attacks and risk assessment.
SDN-microSENSE project is aiming to provide and
demonstrate a secure, resilient to cyber-attacks, privacy-
enabled, and protected against data breaches solution
for decentralised EPES.
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Model Usage Model Usage
Bayesian Networks load prediction, intrusion

detection (163; 164; 165)
Support Vector Machine Energy consumption

forecasting, power quality
classification, power
consumption classifica-
tion, anomaly based IDS
(166; 167; 168; 169; 170)

K-Nearest Neighbor power state estima-
tion,forecasting low volt-
age demand (171; 172)

Artificial Neural Net-
works

power management sys-
tems (173; 174)

Multiple Linear Regres-
sion

load prediction (175; 176) Decision Tree control procedures, cyber-
attack detections, classi-
fication of power quality
disturbances (177; 178;
179)

Gradient Boosted solar power forecasting,
energy theft detection
(180; 181; 182)

Additive Models developing simulation
platforms for electric
grids, load forecasting
(183; 184; 185)

Locally Weighted Train-
ing

electromechanical dy-
namics monitoring (186)

Random Forest short term load predic-
tion, fault prediction, en-
ergy consumption analy-
sis (187; 188; 189)

K-Means load estimation-
forecasting, anomaly
detection (191; 192; 193)

Self Organizing Maps load estimation (194)

Auto Encoders feature extraction, load
characterizing, volt-
age stability evaluation
(195; 196; 197; 198)

Convolutional Neural
Networks

load estimation, theft
detection, price and
load forecasting
(199; 200; 201)

Recurrent Neural Net-
works

load forecasting,
false data identifica-
tion, theft detection,
power forecasting
(202; 203; 204; 205; 206)

Restricted Boltzman
Machines

cyber attack detec-
tion, intrusion detection
(207; 208; 209)

Multilayer Perceptron cyber attack detec-
tion, load forecasting
(210; 211; 212; 213)

Isolation Forest intrusion detection (190)

Table 12: Smart Grid: Machine Learning models, Deep Learning
models and their usage
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7. Challenges and Trends

Despite the potential vision of Industrial AI, many
challenges and trends need to be addressed to under-
stand fully its capabilities. Scalability, Cyber Security,
Fault Tolerance, Network latency from the one hand
and data handling, Machine or Deep Learning model
selection from the other have a great impact on the ap-
plication of Industrial AI. Machine Learning and Deep
Learning techniques found to play an important role in
Industry 4.0. The ability to handle high dimensional and
multi-variate data, in combination with the ability to re-
duce cycle time and scrap, improve resource utilization.
The ability also, to discover formerly unknown knowl-
edge, makes these techniques a crucial factor in Industry
4.0 (216),(217).

7.1. Data Quality and Processing

First of all, a basic need is the handling of missing or
imbalanced data. In some cases, there might be missing
data or bad quality of data, aspects that have a strong in-
fluence on the performance of ML and DL algorithms.
Even if there are techniques that allow us to tackle with
these problems, we should take into account the possi-
bility that they could be not successful (53). Dealing
with missing data is crucial. Replacing missing data is
an important factor because the original dataset is in-
fluenced. The goal is to reduce the negative influence
as much as possible, in order to achieve a good per-
formance, which will lead in a successful application
(53),(216).

7.2. Model Selection

To the authors opinion, the most important challenge
is the proper selection of ML/DL algorithm. The in-
creased attention of researchers on the field of ML/DL
in manufacturing, developed a large number of algo-
rithms. So, the question raised is which ML/DL tech-
nique should be used?

First, we have to look at the available data and their
format, to choose the appropriate approach between
a supervised, unsupervised or Reinforcement Learning
algorithm (53).

In addition, the availability of each algorithm to han-
dle specific data-sets has to be considered and investi-
gated. ML algorithms should be used for datasets that
can be processed for acceptable time at a regular com-
puter. DL algorithms should be used for a set of data
that need a Hype Performance Computing in order to
get processed.

Last but not least, previous applications of the chosen
algorithm has to be investigated to identify a suitable
algorithm (53).

After gathering a set of suitable algorithms, each
one should be applied to the problem’s dataset and no-
tice how they correspond. Next, the model’s accuracy
should be evaluated relying on different metrics - such
as Root Mean Square Error, Adjusted R Square or R
Square - and techniques.

Azmoodeh et al in (3) highlighted that the most cru-
cial parameters in order to use a Deep Learning model
is the generalization of the model and the selection of
the correct training parameters (e.g batch size, learning
rate, weight decay).

To ensure generalization, several approaches in sta-
tistical learning theory have been deployed, which in-
clude: Hypothesis-space complexity, stability and ro-
bustness. Hypothesis-space relates to the decoupling of
the model function from its training data and the worst-
case distance for functions in the space hypothesis. Sta-
bility refers to dealing with the dependence of the model
on the dataset, by taking into consideration also the sta-
bility of the learning algorithm with regard to different
datasets. Robustness refers to the elimination of some
specifics of the model function ’s reliance on the dataset,
by taking into account the robustness of the learning al-
gorithm for all possible datasets (3).

7.3. Fault Tolerance
Every machine is connected to sensors,embedded de-

vices, as well as to other machines. Faults due to ma-
chine failure, software faults in the cloud, or malicious
attacks will significantly affect the reliability and avail-
ability of the system. It is vital to design a fault-tolerant
system and fault recovery mechanisms to adapt to un-
foreseen failures that may lead to service degradation
or unavailability. Different approaches are developed to
improve the system reliability. In (217) a hardware fault
handling system was developed to to achieve a predic-
tive maintenance and reduces the chance of system fail-
ure. In (218) an edge computing system is deployed to
reduce uncertainty in the data transfer.

7.4. Network Latency
In industrial AI systems machines, sensors, actuators

and devices should properly work together and achieve
real time monitoring and data transmission. Thus it is
very important to ensure reliable and low latency data
transmission, to achieve reliable and efficient industrial
systems. To reduce the latency in industrial AI sys-
tems one can apply fog computing or edge comput-
ing. Fog computing is suitable for industrial systems
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that require low and predictable latencies and real-time
performance(219)

Fog computing is a computational tool that provides
storage, networking services, computing and network-
ing services between end devices and Clouder Servers
typically, but not exclusively located at the edge of net-
work. Benefits of cloud computing could be considered
the low latency, widely distributed deployments of inter-
connected devices, mobility, real time interactions, het-
erogeneity, interoperability and federation(220).

Edge Computing is referring to the processes and
technologies allowing the computation to be performed
at the edge of the network. The term ”edge” is con-
nected with the computing and network resources along
the path between the physical layer of the Internet of
Things Architecture and the layer which refers to the
cloud computing. Shi W. et al in (218) state that edge
computing is ”interchangeable” with fog computing,
but, edge computing relies more on the embedded de-
vices, sensors and actuators while fog computing fo-
cus more in the architecture of an IoT system. Fur-
thermore, at the ”edge” interconnected things can not
only request service and content from the cloud but also
perform processes from the cloud. Such processes are
data storage,computing offloading, distribute request as
well as caching and delivery service from cloud to user.
The benefits of edge computing could be summarized
as energy reduction of the system (about 20% - 40%),
reduced response time and reduced running time(218).

7.5. Scalability
The control systems are usually independently engi-

neered and do not scale. Therefore,it is a challenge here
to enable heterogeneous devices and systems to commu-
nicate and collaborate. It is highly required to reduce the
manual effort in order to communicate and collaborate
heterogeneous devices. To tackle with this challenge,
different communication protocols are developed, such
as Message Queue Telemetry Transport (MQTT) (221),
Advanced Message Queuing Protocol (AMQP) (222),
Data Distribution Service (223), Low Power Wide Area
Networks (224) and Narrow Band-IoT (225).

MQTT is a communication protocol for machine to
machine (M2M)/”Internet of Things. ”It has been de-
veloped as an extremely lightweight messaging trans-
portation to publish / subscribe. It is useful for remote
location connections where a limited code footprint is
required and/or a premium network bandwidth(221).

A common standard for transmitting business mes-
sages between applications or organizations is the Ad-
vanced Message Queuing Protocol (AMQP). It links
networks, feeds workflows with the data they require,

and transmits the guidance for achieving their goals ef-
ficiently (222).

The Data-Distribution Service for Real-Time Sys-
tems is the first open global middleware interface that
directly addresses real-time and embedded publish-
subscribe communications. DDS implements a digital
Global Data Space where applications can share infor-
mation simply by reading and writing addressed data
objects using an application-defined name (Topic) and a
password (223).

Low-power WAN (LPWAN) is a wide-area wireless
network technology that interconnects low-bandwidth,
battery-powered devices over long ranges with low bit
rates. Designed for machine-to-machine (M2 M) and
Internet of Things (IoT) networks, LPWANs run more
effectively than conventional mobile networks at a lower
cost.This can also support more connected devices over
a larger area. LPWANs can handle packet sizes ranging
from 10 to 1,000 bytes at uplink speeds up to 200 Kbps.
Depending on the system, the long range of LPWAN
ranges from 2 km to 1,000 km (224).

Narrowband Internet of Things (NB-IoT) is a Low
Power Wide Area Network (LPWAN) radio technology
standard developed by 3GPP. NB-IoT focuses on indoor
coverage, low cost, long battery life, and high density of
communication. NB-IoT uses an LTE standard subset
which limits the frequency to a single 200kHz narrow
band (225).

7.6. Cyber Security

Security is crucial to Industrial AI systems. Intercon-
nected machines, sensors, actuators are driving towards
the development of security systems to ensure authen-
tication and data confidentiality. The ability to connect
to the Internet and deliver data through it, leaves poten-
tial vulnerability for attackers to exploit and take control
of the system. Therefore, the software needs to be pro-
tected from malicious attacks without interfering with
the control process.

In order to tackle with this problem various security
services should be considered. Authentication is one
parameter, which addresses the capability to ensure the
identity of any communicating object. Confidentiality
is another parameter, which ensures that data is accessi-
ble only to the intended recipients. Next User’s Privacy
is also vital. It guarantees that any data related to the
user, could not be obtained without its explicit approval,
and will be used only for the intended purposes. Data
Integrity is another aspect which should be considered
and ensures that received data were not modified in an
unauthorized way(226),(227).
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7.6.1. The RPL protocol

In previous years many solutions were developed to
secure the Industrial Internet. One of them is the RPL
security protocol (228). It was created by the Inter-
net Engineering Task Force(IETF) and is used to route
messages in Low Power and Lossy Networks (LLNs).
It operates by creating a Destination Oriented Directed
Acyclic Graph (DODAG) that initiates an objective
function. The existance of secure variations of the RPL
packets (DIS,DIO,DAO,ACK) and the capability to ap-
ply three security modes is the base of the security in the
RPL Protocol. Integrity, replay protection, delay protec-
tion, and optional confidentiality are provided by these
variations. To conclude, the confidentiality, the integrity
and the authenticity of the information in the RPL proto-
col is guaranteed by the significant security mechanism
it provides.

7.6.2. The TLS protocol

Another solution is the TLS security protocol. The
TLS protocol consist of individual protocols and it is
formed by two layers.Record Protocol is included in the
first layer while Alert Protocol, the Change Cipher Spec
Protocol, the Heartbeat protocol and the Handshake pro-
tocol are included in the second layer (228).

The operation of the Record Protocol is initially to
separate the application data into blocks of 214 bytes or
less. Then, a symmetric encryption algorithm is used
to encrypt them as so the message authentication code
(mac). A mac is computed for the specified blocks. The
final step is the addition of a specified header. After
the aforementioned procedure, the protocol channels the
above data in a Transmission Control Protocol packet
and then, transmits them (228).

The Change Cipher Spec Protocol is based on a sin-
gle byte which has the value 1 and shows the the pend-
ing state to the current state to update the cryptographic
algorithm (228).

The Alert Protocol provides alert over all the opera-
tion of the TLS. While, the Handshake Protocol imple-
ments an authentication process for the server and the
client and a negotiation process of the encryption algo-
rithm,the mac and the cryptographic keys (228).

The Heartbeat protocol assures the sender that the re-
ceiver is on and listening. Then, it creates additional
network activity to avoid the closure of these connec-
tions by a firewall. Although TLS protocol assure the
principles of confidentiality, integrity and authenticity
of communication, it is an expensive protocol (228).

7.6.3. The DTLS protocol
A variation of the TLS protocol is the DTLS proto-

col. DTLS operates over data, which can be lost, or
received in wrong format. It supports additional mech-
anisms such as the extension of the TLS Record Proto-
col with two additional fields, an epoch and a sequence
number the forbidden utilization of the stream cirphers
and the improved operation of the Handshake Protocol
with the addition of a stateless cookie (228).

7.6.4. The CoAP protocol
Another solution is the CoAP security protocol, a

lightweight version of the HTTP protocol. It runs over
the User Datagram Protocol utilizing 6LoWPAN and
its architecture consist of the methods GET, POST,
DELETE and PUT. CoAP consists of two layers the re-
quest/response layer and the message layer. Message
layer controls the communication over the UDP proto-
col, while the request/response protocol is responsible
for sending the right messages in the proper way (228).

Although the aforementioned protocols are efficient
to provide secure communication link for the data, we
should consider and provide solutions to protect sys-
tems from jamming and intuition attacks. In (229), the
authors provide a method based on the Colonel Blotto,
where a controller device can hinder jamming attacks
against IoT devices. Also in (230), the authors imple-
ment a hierarchical game, which mitigates the jamming
attacks by developing a probabilistic method. Chen
et al. in (231) provide a deep reinforcement learning
model which is devoted to saving power and optimizing
the transmission performance,thus mitigating the jam-
ming attacks.

7.7. Federated Learning

IAI has been introduced to address numerous indus-
trial issues in Industry 4.0 by exploiting ML/DL-based
technology. However, conventional centralized training
may not be sufficient for critical industrial data-driven
situations, such as healthcare and autopilot, for privacy
purposes (232). Furthermore, in most industries, data
exists in the form of isolated islands. To this end, Fed-
erated Learning is addressed, which is a new approach
for training DL models. Instead of exchanging and dis-
closing the training dataset with the server, vast com-
munities of interconnected computers, operating as lo-
cal trainers, jointly refine the model parameters ( e.g.,
neural network weights and biases) (233).

Yang et al in (234) define federated learning as a
learning process in which the data owners collabora-
tively train a model M f ed and process any data that
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owner does not expose to others. The authors also
propose three different architectures for three subcate-
gories of Federated Learning, namely Horizontal Fed-
erated Learning, Vertical Federated Learning and Fed-
erated Transfer Learning.

Horizontal Federated Learning is introduced in the
scenarios that data sets share the same feature space but
they aquire different samples of this feature space. Ver-
tical Federated Learning is implemented in cases were
two data sets share the same sample ID space but differ
in feature space, while Federated Transfer Learning ap-
plies when the two data sets differ both in samples and
in feature space (234). Mohri et al in (235) proposed
a new Federated Learning approach, called as Agnostic
Federated Learning. In Agnostic Federated Learning,
the centralized model is configured for every possible
distribution of the objective generated by a client dis-
tribution combination. The authors identify an agnos-
tic and more risk-averse goal rather than optimizing the
centralized model for a particular distribution, with the
high risk of a mismatch with the target.

Several communication algorithms have been pro-
posed for the model parameters’ transfer from owners to
a central server in a reliable and secure way. Concretely,
Shokri et al in (236) suggested the first distributed learn-
ing system, where participants selectively share small
part of the gradients to ensure the privacy of training
data. Hao et al. in (232) proposed a communica-
tion algorithm called PEFL. In each secure aggregation,
PEFL is non-interactive. The homomorphic ciphertext
of private gradients is inserted into the term Augmented
Learning with Error (A-LWE) to achieve safe aggrega-
tion protocol. In specific, the authors provide a clear
example of using an optimized BGV homomorphic en-
cryption device that reduces the key-switching opera-
tion and improves the key-switching activity. Savazzi
et al. in (233) developed a communication algorithm,
which updates both the model and the gradients of
the model, by relying solely on local cooperation with
neighbors, and local in-network (as opposed to central-
ized) processing.

Furthermore, Xu et al in (237) proposed VerifyNet,
a privacy-preserving and verifiable federated learning
framework. The authors developed a double-masking
protocol to guarantee the confidentiality of users’ local
gradients during the training phase. Qu et al in (238) de-
veloped a congitive model based on federated learning
for industrial purposes. In order to guarantee the se-
curity of the process, they enabled a blockchain frame-
work to secure the engine from poisoning attacks.

8. Conclusions

In this paper, the new industrial revolution and the
key role of the Artificial Intelligence are surveyed and
discussed. Initially, the fundamental elements and the
Ecosystem of the Industrial AI are analysed and a new
application scheme of the Industrial AI is proposed.
Furthermore, the ML and DL algorithms and models
used in manufacturing are discussed and presented thor-
oughly. An analysis of the ML and DL models and al-
gorithms on the Smart Grid, an important field of In-
dustry 4.0, is also implemented in terms of its efficiency
and its applications. In conclusion, the challenges and
trends on the Industrial AI are also documented. The au-
thors are of the opinion that Industry 4.0 has not fully in-
corporated Artificial intelligence into its operations and
there is still much to be done. Cybersecurity is an area
that needs special attention due to the interconnection of
the manufacturing components to the internet. SPEAR
and SDN-microSENSE projects are working to provide
overall solutions in this field.

As future work, the authors aim to apply and examine
the capabilities and the accuracy of the aforementioned
models and algorithms in the use cases of the SPEAR
and SDN-microSENSE project. In particular, the mod-
els and algorithms will be utilized for anomaly detec-
tion, RUL estimation and cost prediction.
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