There is a newer version of this record available.

Software Open Access

seaborn: statistical data visualization

Michael Waskom


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/ddeeafd5-eae5-4fd4-bd8c-97aa6e22f8b0/mwaskom/seaborn-joss_paper.zip"
      }, 
      "checksum": "md5:3532e17f80adcf5d09dc75fd16e3a1ef", 
      "bucket": "ddeeafd5-eae5-4fd4-bd8c-97aa6e22f8b0", 
      "key": "mwaskom/seaborn-joss_paper.zip", 
      "type": "zip", 
      "size": 1782157
    }
  ], 
  "owners": [
    6810
  ], 
  "doi": "10.5281/zenodo.4645478", 
  "stats": {
    "version_unique_downloads": 1338.0, 
    "unique_views": 1007.0, 
    "views": 1220.0, 
    "version_views": 36367.0, 
    "unique_downloads": 34.0, 
    "version_unique_views": 26364.0, 
    "volume": 65939809.0, 
    "version_downloads": 1675.0, 
    "downloads": 37.0, 
    "version_volume": 1227833605.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.4645478", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.592845", 
    "bucket": "https://zenodo.org/api/files/ddeeafd5-eae5-4fd4-bd8c-97aa6e22f8b0", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.592845.svg", 
    "html": "https://zenodo.org/record/4645478", 
    "latest_html": "https://zenodo.org/record/5205191", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.4645478.svg", 
    "latest": "https://zenodo.org/api/records/5205191"
  }, 
  "conceptdoi": "10.5281/zenodo.592845", 
  "created": "2021-03-29T17:36:34.554715+00:00", 
  "updated": "2021-08-16T00:39:17.164585+00:00", 
  "conceptrecid": "592845", 
  "revision": 8, 
  "id": 4645478, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.4645478", 
    "description": "<p>Seaborn&nbsp;is a library for making statistical graphics in Python. It provides a high-level interface to matplotlib&nbsp;and integrates closely with pandas&nbsp;data structures. Functions in the seaborn&nbsp;library expose a declarative, dataset-oriented API that makes it easy to translate questions about data into graphics that can answer them. When given a dataset and a specification of the plot to make, seaborn&nbsp;automatically maps the data values to visual attributes such as color, size, or style, internally computes statistical transformations, and decorates the plot with informative axis labels and a legend. Many seaborn&nbsp;functions can generate figures with multiple panels that elicit comparisons between conditional subsets of data or across different pairings of variables in a dataset. seaborn&nbsp;is designed to be useful throughout the lifecycle of a scientific project. By producing complete graphics from a single function call with minimal arguments, seaborn&nbsp;facilitates rapid prototyping and exploratory data analysis. And by offering extensive options for customization, along with exposing the underlying matplotlib&nbsp;objects, it can be used to create polished, publication-quality figures.</p>", 
    "license": {
      "id": "other-open"
    }, 
    "title": "seaborn: statistical data visualization", 
    "notes": "This DOI points to the commit representing the v0.11.1 release.", 
    "relations": {
      "version": [
        {
          "count": 17, 
          "index": 14, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "592845"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5205191"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "zenodo"
      }
    ], 
    "version": "JOSS paper", 
    "keywords": [
      "Python", 
      "data science", 
      "data visualization", 
      "statistical graphics"
    ], 
    "publication_date": "2021-03-29", 
    "creators": [
      {
        "affiliation": "Center for Neural Science, NYU", 
        "name": "Michael Waskom"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://github.com/mwaskom/seaborn/tree/joss_paper", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.592845", 
        "relation": "isVersionOf"
      }
    ]
  }
}
36,367
1,675
views
downloads
All versions This version
Views 36,3671,220
Downloads 1,67537
Data volume 1.2 GB65.9 MB
Unique views 26,3641,007
Unique downloads 1,33834

Share

Cite as