Journal article Open Access

Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data.

Davide Bacciu; Gioele Bertoncini; Davide Morelli

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20210326123556.0</controlfield>
  <controlfield tag="001">4639212</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Pisa</subfield>
    <subfield code="a">Gioele Bertoncini</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Oxford</subfield>
    <subfield code="a">Davide Morelli</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">12920999</subfield>
    <subfield code="z">md5:fc90c2044e5563a2387212a7bd7c9548</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-04</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-teaching-h2020</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Pisa</subfield>
    <subfield code="0">(orcid)0000-0001-5213-2468</subfield>
    <subfield code="a">Davide Bacciu</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data.</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-teaching-h2020</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data.&lt;/p&gt;</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s00521-020-05600-4</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 38
Downloads 56
Data volume 723.6 MB
Unique views 31
Unique downloads 55


Cite as