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ABSTRACT
A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon
manually selects slices showing the anatomical structure of interest. In addition to common medical imaging
such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have
enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the
region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object
by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is
necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4D-
OCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes
on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently
show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are
evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking
schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error
of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial
tracking of microvessels for image-guidance.
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1. INTRODUCTION
Optical coherence tomography (OCT) is a three-dimensional imaging modality, which provides high-accuracy
depth information of light scattering properties of biological tissue.1 Recent advances have enabled live processing
and volumetric rendering of four-dimensional (3D plus time as fourth dimension) OCT images.2 The integration
of such an OCT into an operating microscope enables its use for high-accuracy intra-operative guidance with
visibility of subcutaneous structures up to 3mm in depth.34 Within this setup, redundant combination or fusion
of RGB camera and OCT data brings additional information to the live camera viewer.5 An advanced future
application is envisioned by soft tissue laser ablation with compensated tissue motion.6

By extracting three orthogonal slices from the regarded volume, the triplanar view (TV) as common repre-
sentation of volumetric images is generated. As this works well for static single-shot 3D volumes, in time-varying
volumes the surgeon can easily lose track of the volume of interest (VOI) due to observer or tissue movement.
A manual adjustment of the TV to desired slices is highly inconvenient and limits the potential of 4D-OCT
as a tool for intra-operative guidance. An alternative to this is the maximum intensity projection (MIP) and
the sliding thin-slab MIP (STS-MIP). MIPs do not have to be adjusted, but the resulting 2D image is low in
contrast, noisy, and occlusions by brighter overlying structures can occur.

To the author’s knowledge, feature tracking has not been done on 4D-OCT images yet. Registration of two
3D-OCT volumes using 3D SIFT has already been achieved, but without any investigation of long-term tracking,
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which is necessary for usage on 4D images.7 Recent work has covered OCT pose estimation on 2D B-scans for
visual servoing purposes.8 However, this is limited to planar pose estimation with 3 degrees of freedom.

The purpose of this paper is to provide a convenient view of 4D-OCT data by automatically and continuously
selecting slices, based on a user defined, pre-selected VOI. Therefore, we present suitable image processing
frameworks and investigate different vision-based tracking algorithms for their use on MIPs of 4D-OCT data.
The estimated location of the VOI is used to select corresponding slices.

2. METHODS

2.1 Experimental setup
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Figure 1. Experimental setup with 4D-OCT image acquisition (left) and image guidance interface (right), with LS–light
source, BS–beam splitter, PD–photo diode, RM–reference mirror, GS–two galvanometer scanners.2

The experimental setup (see Fig. 1) is composed of a 4D-OCT image acquisition unit—acquiring at a rate of
26 volumes per second—and an image guidance interface. Each volume consists of 320 × 320 depth scans,
each with 400 pixel in depth, resulting in a rate of 1 GVoxel per second.2 This study addresses the image
processing required for tracking a user-selected VOI. The motion estimate is used to adapt corresponding slices
and STS-MIPs subsequently for view stabilization.

2.2 Triplanar view of the OCT volume
The triplanar view shows three orthogonal slices (axial, coronal, and sagittal, see Fig. 2) of 3D image datasets,
usually referred as anatomical planes. The coronal or sagittal correlates with the OCT B-scan, depending on the
scan direction. To visualize a certain VOI, e. g. cancerous tissue under the epithelium, the user has to manually
select slices, which intersect this structure.

Without any slice selection, the maximum intensity projection calculates 2D planar projections from 3D
volumetric image data.9 Parallel rays from a certain direction are casted through the OCT volume and intensities
along the rays are analyzed. For each ray, only the maximum intensity value is projected on the resulting image
plane. As OCT images represent light scattering properties, the maximum value corresponds either to matter
interface or background noise. As a result of this, MIP images are low in contrast but have less speckle noise
than single B-scans (see Fig. 2).

To overcome these drawbacks, the sliding thin-slab MIP (STS-MIP) is a technique for improved visualization
of tomographic data. As the name suggests, MIPs from thin-slab subvolumes are only a small number of voxel
thick.10 The slabs can vary in thickness and resulting projections have higher contrast than conventional MIPs.
Selecting the slabs containing the tracked VOI will be done based on the tracking result.
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Figure 2. Visualization of OCT data of finger tip. Top line: volume rendering with corresponding triplanar slices. Bottom
line: Associated maximum intensity projections. (a) Volume rendering. (b–d) Triplanar views.

Table 1. A summary of tracking schemes evaluated in this paper.
# Scheme Description
1 SIFT Scale-Invariant Feature Transform uses extremal values of differences of repeatedly Gaussian filtered

image as feature points. These points are described with a histogram of local image gradients.11

2 SURF Speeded-Up Robust Features are inspired by SIFT. It approximates the Gaussian filtering for com-
putational efficiency and detects feature points by calculating the determinant of the Hessian matrix.
Descriptors are obtained by using spacial wavelet responses.12

3 BRIEF Binary Robust Independent Elementary Features use pixel binary tests in a smoothed image patch
as feature descriptor. Due to its lack of feature detection, we combine BRIEF with SIFT detector.13

4 ORB Oriented FAST and Rotated BRIEF combines FAST14 feature detector with an orientation compo-
nent and oriented BRIEF feature descriptors.15

5 BRISK Binary Robust Invariant Scalable Keypoints uses a novel FAST-based14 feature detector and a bit-
string descriptor from intensity values by sampling each keypoint neighborhood.16

6 FREAK Fast Retina Keypoints are inspired by the human visual system and compare image intensities over
a retinal sampling pattern. Again, we combine it with the SIFT detector.17

7 BMATCH Simple Block Matching slides an image patch over the reference image and calculates the normalized
correlation coefficient. The best match is found at maximum correlation.

8 SOFT Soft Tissue Motion Tracking is a recently proposed tracking scheme combining a piecewise affine
deformation model with the epipolar geometry of stereo images.6

2.3 Investigated tracking schemes
The different tracking schemes evaluated in this study are summarized in Tab. 1. Implementations of schemes
1–7 are used from computer vision library “OpenCV 3.2”.18 The first six uses a brute force matcher to find
feature correspondences. BMATCH is used with normalized correlation coefficient as similarity measure (refer to
OpenCV documentation19 for further explanation). SOFT aims on minimizing the tissue model energy function

ε(S) = εC(S) + λDεD(S) (1)

of tissue model S. ε is defined by the sum of correspondence energy εC and deformation energy εD providing
regularization. The weight parameter is empirically set to λD = 6.0. This makes SOFT robust towards outliers.
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Figure 3. Tracking setup. Left: The axial and sagittal MIPs are used to generate an artificial stereo view. Right: VOI
within the OCT volume and corresponding 2D templates used for the tracking schemes. The VOI is tracked throughout
the sequence with respect to image acquisition unit (OCT) and tissue motion.
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Figure 4. Tracking pipeline bases either on (1) path for BMATCH, (2) path for SOFT, (3) path for tracking schemes 1–6

The following tracking setup is used to assess the performance of the tracking schemes with respect to
precision and computational cost. First, a volume of interest with the dimension of 100× 100× 100 voxels and
a starting center voxel c0 = (150, 120, 150)T within the first OCT volume is defined. In the tracking pipeline
(see Fig. 4), the MIPs of current volume are computed and ct is projected onto them. Due to low contrast, the
MIPs are preprocessed using histogram equalization. The actual tracking is performed on the resulting MIPs and
therefore, the former three-dimensional tracking problem turns into multiple two-dimensional tracking problems.
To reconstruct all components of ct, it is sufficient to track in only two of three possible MIPs. This results
in an artificial stereo view with a rectangular epipolar geometry (see Fig. 3 left). The location of pixels which
correspond to the same voxel share one component, e. g. let ct = (x, y, z)T, then the projection onto axial MIP
is ct,ax = (x, y)T and onto sagittal MIP is ct,sag = (z, y)T. SOFT enforces consistency between axial and sagittal
y-coordinate, whereas the others just merge the common dimension of the results by arithmetic mean. As shown
in Fig. 4, the tracking pipeline splits into three paths, depending on the selected method. The result of either of
these paths is used to update the current VOI and to extract new tracking templates for next iteration.

As ground truth generation in soft tissue motion is still a problem, the forward-backward error metric20 is
used to quantitatively evaluate tracking precision. The FB error for tracked VOI center ct is defined as

eFB,t = ‖c0 − c0,end‖2 (2)
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with initial position c0 and final position c0,end after tracking forward to volume t = n and then backward to
first volume t = 0. The test sequence counts 200 OCT volumes and errors are calculated at every 10th volume,
which means n = {10, 20, . . . , 200}.

3. RESULTS
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Figure 5. Quantitative tracking results measured with forward-backward error in voxels over OCT volume count. Left:
Overview of all tracking results. Right: Selected tracking results until tracking failure.

Quantitative results of the aforementioned tracking setup (see Sec. 3) are shown in Fig. 5. The left figure shows
results of all tracking schemes—including tracking failures. ORB, BRISK, and FREAK fail immediately. For
instance, after the first 10 volumes, ORB already has a tracking error of ∼150 voxels, as a result of a high number
of erroneously matched features. The right figure shows tracking schemes up to their failure. In the beginning,
SIFT and SURF have quite similar error values, but SIFT fails earlier. BRIEF tracks the VOI robustly for up
to 50 frames before failure, but is characterised with higher error values in the beginning. The only schemes
tracking the whole sequence robustly are BMATCH and SOFT, whereas SOFT has the lowest errors for up 110
frames and BMATCH has an almost linear error behaviour. At the end of the sequence, SOFT has the lowest
error with eFB = 37.64 voxels.

Qualitative results are shown in Fig. 6. First line shows four consecutive axial MIPs beginning at an arbitrary
volume k. The images contain motion of the specimen relative to the OCT as well as tissue deformation due
manipulation with the needle. The green dots represent tracked features. The VOI center ct,ax is highlighted
through orange reticle. The needle induces partial occlusion. Coronal and sagittal slices transecting ct are
automatically selected and shown in the lower lines of Fig. 6. SOFT is robustly stabilizing the triplanar view.

Table 2. Average execution time (in seconds) per OCT volume.
SIFT SURF BRIEF ORB BRISK FREAK BMATCH SOFT

t 0.284 0.169 0.126 0.115 0.696 0.228 0.0345 1.663

Table 2 shows overall execution times of all tracking schemes, including MIP calculation. The first six feature-
based schemes all have an execution time of same order of magnitude. BMATCH has the lowest execution time
and is the only one investigated, which is able to process the OCT volumes at image acquisition rate of 26Hz.
SOFT has the longest execution time of 1.66 s. It has to be mentioned, that schemes 1–7 are implemented
efficiently by OpenCV, whereas SOFT has not been optimized, yet.
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Figure 6. Automated slice selection on TV with SOFT algorithm. Top line: feature tracking on axial MIP. Lower lines:
corresponding coronal and sagittal slices on which ct is located. Note sagittal view transecting the needle for t = {0, 1}.

4. CONCLUSION
This study reveals first results of different feature tracking techniques for application in novel 4D-OCT imaging.
It has been shown that conventional feature tracker—like SIFT or SURF—are not able to perform well on this
kind of data. A simple block matching algorithm performed surprisingly good, but the tracking results state, that
an algorithm especially tailored for soft tissue environments is mandatory for this dataset. The achieved accuracy
is sufficient for intended use in 4D-OCT-guided interventions, even though the best performing algorithm has
been developed for use on camera images. Therefore, future work will address the advancement of our soft tissue
tracking scheme for its use on 4D-OCT images, including efficient GPU implementation.

Optical coherence tomography as relatively new and emerging medical imaging modality will attract more
attention in the future. With recent advances in performance of graphics processing units (GPU), real-time
processing of 4D-OCT data to extract additional information for intra-operative guidance and navigation will
be possible and worth investigating. Object tracking on OCT MIPs for better visualization by VOI stabilization
is an important step for enabling 4D-OCT for a whole new class of medical imaging products.
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