Conference paper Open Access

A Domain Independent Semantic Measure for Keyword Sense Disambiguation

María G. Buey; Carlos Bobed; Jorge Gracia; Eduardo Mena


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20210331155056.0</controlfield>
  <controlfield tag="001">4631685</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">22-26</subfield>
    <subfield code="g">SAC 2021</subfield>
    <subfield code="a">36th ACM/SIGAPP Symposium On Applied Computing</subfield>
    <subfield code="c">online</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Zaragoza</subfield>
    <subfield code="a">Carlos Bobed</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Zaragoza</subfield>
    <subfield code="0">(orcid)0000-0001-6452-7627</subfield>
    <subfield code="a">Jorge Gracia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Zaragoza</subfield>
    <subfield code="a">Eduardo Mena</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">484729</subfield>
    <subfield code="z">md5:c9b9a5649d0595bce2f1225115a6d014</subfield>
    <subfield code="u">https://zenodo.org/record/4631685/files/SAC_SWA2021_Semantic_Relatedness_for_Keyword_Disambiguation.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.sigapp.org/sac/sac2021/index.html</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-pret-a-llod</subfield>
    <subfield code="p">user-lynx</subfield>
    <subfield code="o">oai:zenodo.org:4631685</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Everis/NTT Data</subfield>
    <subfield code="a">María G. Buey</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Domain Independent Semantic Measure for Keyword Sense Disambiguation</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-lynx</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-pret-a-llod</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825182</subfield>
    <subfield code="a">Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780602</subfield>
    <subfield code="a">Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Understanding the user&amp;#39;s intention is crucial for many tasks that involve human-machine interaction. To that end, word sense disambiguation (WSD) techniques play an important role. WSD techniques typically require well-formed sentences as context to operate, as well as pre-defined catalogues of word senses. However, there are some scenarios on the Web where such conditions do not apply well, such as when there is a need to disambiguate keywords from a query, or sets of tags describing any Web resource, where the context does not come as well-formed sentences. In this paper, we propose an approach to disambiguate sets of keywords by linking them to concepts of a given ontology that is not known at training time. Our approach grounds on a semantic relatedness measure between words and concepts, and explores different disambiguation algorithms to study the contribution of both word and sentence-level representations. We focus on situations where the available linguistic information is very scarce (e.g., keyword-based / Web search queries), hampering natural language based approaches. Experimental results show the feasibility of our approach in general and in specific knowledge domains without previous training for the target domain.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.4631684</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">ACM</subfield>
    <subfield code="t">Proceedings of 36th ACM/SIGAPP Symposium On Applied Computing</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.4631685</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
89
34
views
downloads
All versions This version
Views 8989
Downloads 3434
Data volume 16.5 MB16.5 MB
Unique views 7777
Unique downloads 3434

Share

Cite as