Conference paper Open Access

A Domain Independent Semantic Measure for Keyword Sense Disambiguation

María G. Buey; Carlos Bobed; Jorge Gracia; Eduardo Mena


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.4631685</identifier>
  <creators>
    <creator>
      <creatorName>María G. Buey</creatorName>
      <affiliation>Everis/NTT Data</affiliation>
    </creator>
    <creator>
      <creatorName>Carlos Bobed</creatorName>
      <affiliation>University of Zaragoza</affiliation>
    </creator>
    <creator>
      <creatorName>Jorge Gracia</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6452-7627</nameIdentifier>
      <affiliation>University of Zaragoza</affiliation>
    </creator>
    <creator>
      <creatorName>Eduardo Mena</creatorName>
      <affiliation>University of Zaragoza</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Domain Independent Semantic Measure for Keyword Sense Disambiguation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-03-23</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/4631685</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.4631684</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/lynx</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/pret-a-llod</relatedIdentifier>
  </relatedIdentifiers>
  <version>pre-published version</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Understanding the user&amp;#39;s intention is crucial for many tasks that involve human-machine interaction. To that end, word sense disambiguation (WSD) techniques play an important role. WSD techniques typically require well-formed sentences as context to operate, as well as pre-defined catalogues of word senses. However, there are some scenarios on the Web where such conditions do not apply well, such as when there is a need to disambiguate keywords from a query, or sets of tags describing any Web resource, where the context does not come as well-formed sentences. In this paper, we propose an approach to disambiguate sets of keywords by linking them to concepts of a given ontology that is not known at training time. Our approach grounds on a semantic relatedness measure between words and concepts, and explores different disambiguation algorithms to study the contribution of both word and sentence-level representations. We focus on situations where the available linguistic information is very scarce (e.g., keyword-based / Web search queries), hampering natural language based approaches. Experimental results show the feasibility of our approach in general and in specific knowledge domains without previous training for the target domain.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825182/">825182</awardNumber>
      <awardTitle>Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780602/">780602</awardNumber>
      <awardTitle>Building the Legal Knowledge Graph for Smart Compliance Services in Multilingual Europe</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
89
34
views
downloads
All versions This version
Views 8989
Downloads 3434
Data volume 16.5 MB16.5 MB
Unique views 7777
Unique downloads 3434

Share

Cite as